Security
Transparent Security Outperforms Traditional DDoS Solution in Lab Trial
Transparent Security is an open-source solution for identifying and mitigating distributed denial of service (DDoS) attacks and the devices (e.g., Internet of Things [IoT] sensors) that are the source of those attacks. Transparent Security is enabled through a programmable data plane (e.g., “P4”-based) and uses in-band network telemetry (INT) technology for device identification and mitigation, blocking attack traffic where it originates on the operator’s network.
Cox Communications and CableLabs conducted a proof-of-concept test of the Transparent Security solution in the Cox lab in late 2020. Testing was primarily focused on the following major objectives:
- Compare and contrast performance of the Transparent Security solution against that of a leading commercially available DDoS mitigation solution.
- Validate that INT-encapsulated packets can be transported across an IPv4/IPv6/Multiprotocol Label Switching (MPLS) network without any adverse impact to network performance.
- Validate that the Transparent Security solution can be readily implemented on commercially available programmable switches.
This trial compared the effectiveness of Transparent Security with that of a leading DDoS mitigation solution. Transparent Security was able to identify and mitigate attacks in one second as compared with one minute for the leading vendor. We also validated that inserting and removing the INT header had no observable impact on throughput or latency.
The History and Updates of Transparent Security
We initially released the Transparent Security architecture and open-source reference implementation in October 2019. Since then, we’ve achieved several milestones:
- We added source-only metadata to the P4 in-band telemetry specification, along with Transparent Security as an example implementation.
- We added support to collate multiple packet headers in a single telemetry report.
- We released a document titled “Transparent Security: Personal Data Privacy Considerations.”
- We created a Transparent Security landing page.
Why Cox Is Interested
As the proliferation of IoT devices continues to increase, the number of devices that can be compromised and used to participate in DDoS attacks also increases. At the same time, the frequency of DDoS attacks continues to grow because of the widespread availability of DDoS for-hire sites that allow individuals to launch DDoS attacks for relatively little cost. These factors contribute to a trend of malicious traffic increasingly using upstream bandwidth on the access network.
Although currently available DDoS mitigation solutions can monitor for outbound attacks, they’re primarily focused on mitigating DDoS attacks directed at endpoints on the operator’s network. These solutions use techniques such as BGP diversion and Flowspec to drop traffic as it comes into the network. However, mitigating outbound attacks using these techniques aren’t effective because the malicious traffic will have already traversed the access network, where it has the greatest negative impact before the traffic can be diverted to a scrubber or dropped by a Flowspec rule.
Transparent Security offers the promise of near-instantaneous detection of outbound attacks, as well as the ability to mitigate that attack at the source, on the customer premises equipment (CPE), thereby preventing that traffic from using upstream access network resources.
In addition to Transparent Security’s DDoS mitigation capabilities, there are additional benefits to network performance/visibility in general. Implementation of Transparent Security on the CPE means that network operators can derive the specific device type associated with a given flow. This allows the operator to determine the type of IoT devices being leveraged in the attack.
This also opens myriad other possibilities—for example, reducing truck rolls by enabling customer service personnel to determine that a customer’s issue is with one specific device versus all the devices on the internal network. Another example would be the capability to track the path a given packet followed through the network by examining the INT metadata.
Consumers will see a direct benefit from Transparent Security. Once compromised devices are identified, the consumer can be notified to resolve the issue or, alternatively, rules can be pushed to the CPE to isolate that device from the internet while allowing the consumer’s other devices continued access. Such isolation mitigates the additional harm coming from compromised devices. This additional harm can take the form of degraded performance, exfiltration of private data, breaks in presumed confidentiality in communications, as well as the traffic consumed through DDoS. Less malicious traffic on the network provides for a better overall customer experience.
Lab Trial Setup
The test environment was designed to simulate traffic originating from the access network, carried over the service provider’s core backbone network, and targeting another endpoint on the service provider’s access network in a different market (e.g., an “east-to-west” or “west-to-east" attack).
The following diagram provides a high-level overview of the lab test environment:
In the lab trial, various types of DDoS traffic (UDP/TCP over IPv4/IPV6) were generated by the traffic generator and sent to the West Market Arista switch, which used a custom P4 profile to insert an INT header and metadata before sending the traffic to the West Market PE router. The traffic then traversed an MPLS label-switched path (LSP) to the East Market PE router, before being sent to the East Market Arista, which used a custom P4 profile to generate INT telemetry reports and to strip the INT headers before sending the original IPv4/IPv6 packet back to the traffic generator.
Results
When comparing and contrasting the performance of the Transparent Security solution against that of a leading commercially available DDoS mitigation solution, the lab test results were very promising. Detection of outbound attacks was rapid, taking approximately one second, and Transparent Security deployed the mitigation in five seconds. The commercial solution took 80 seconds to detect and mitigate the attack. These tests were run with randomized UDP floods; UDP reflection and TCP state exhaustion attacks were identified and mitigated by both solutions. In this trial, only packets related to the attack were dropped. Packets not related to the attack were not dropped.
The Transparent Security solution was implemented on commercially available programmable switches provided by Arista. These switches are being deployed in networks today. No changes to the Networking Operations System (NOS) were required to implement Transparent Security.
The tests validated that INT-encapsulated packets can be transported across an IPv4/IPv6/MPLS network without any adverse impact. There was no observable impact to throughput when adding INT headers, generating telemetry reports or mitigating the DDoS attacks. We validated that the traffic ran at line speed, with the INT headers increasing the packet size by an average 2.4 percent.
Application response time showed no variance with or without enabling Transparent Security. This suggests that there will be no measurable impact to customer traffic when the solution is deployed in a production network.
Conclusion and Next Steps
Transparent Security uses in-band telemetry to help identify the source of the DDoS attack.
This trial focused on using Transparent Security on switches inside the service provider’s network. For the full impact of Transparent Security to be realized, its reach needs to be extended to gateways on the customer premises. Such a configuration can mitigate an attack before it uses any network bandwidth outside of the home and will help identify the exact device that is participating in the attack.
This testing took place on a custom P4 profile based on our open-source reference implementation. We would encourage vendors to add INT support to their devices and operators to deploy programmable switches and INT-enabled CPEs.
Take the opportunity today to explore the opportunities for using INT and Transparent Security to solve problems and improve traffic visibility across your network.