Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Bird's Eye View Evaluation 2017


The bird's eye view benchmark consists of 7481 training images and 7518 test images as well as the corresponding point clouds, comprising a total of 80.256 labeled objects. For evaluation, we compute precision-recall curves. To rank the methods we compute average precision. We require that all methods use the same parameter set for all test pairs. Our development kit provides details about the data format as well as MATLAB / C++ utility functions for reading and writing the label files.

We evaluate bird's eye view detection performance using the PASCAL criteria also used for 2D object detection. Far objects are thus filtered based on their bounding box height in the image plane. As only objects also appearing on the image plane are labeled, objects in don't car areas do not count as false positives. We note that the evaluation does not take care of ignoring detections that are not visible on the image plane — these detections might give rise to false positives. For cars we require a bounding box overlap of 70% in bird's eye view, while for pedestrians and cyclists we require an overlap of 50%. Difficulties are defined as follows:

  • Easy: Min. bounding box height: 40 Px, Max. occlusion level: Fully visible, Max. truncation: 15 %
  • Moderate: Min. bounding box height: 25 Px, Max. occlusion level: Partly occluded, Max. truncation: 30 %
  • Hard: Min. bounding box height: 25 Px, Max. occlusion level: Difficult to see, Max. truncation: 50 %

All methods are ranked based on the moderately difficult results.

Note 2: On 08.10.2019, we have followed the suggestions of the Mapillary team in their paper Disentangling Monocular 3D Object Detection and use 40 recall positions instead of the 11 recall positions proposed in the original Pascal VOC benchmark. This results in a more fair comparison of the results, please check their paper. The last leaderboards right before this change can be found here: Object Detection Evaluation, 3D Object Detection Evaluation, Bird's Eye View Evaluation.
Important Policy Update: As more and more non-published work and re-implementations of existing work is submitted to KITTI, we have established a new policy: from now on, only submissions with significant novelty that are leading to a peer-reviewed paper in a conference or journal are allowed. Minor modifications of existing algorithms or student research projects are not allowed. Such work must be evaluated on a split of the training set. To ensure that our policy is adopted, new users must detail their status, describe their work and specify the targeted venue during registration. Furthermore, we will regularly delete all entries that are 6 months old but are still anonymous or do not have a paper associated with them. For conferences, 6 month is enough to determine if a paper has been accepted and to add the bibliography information. For longer review cycles, you need to resubmit your results.
Additional information used by the methods
  • Stereo: Method uses left and right (stereo) images
  • Flow: Method uses optical flow (2 temporally adjacent images)
  • Multiview: Method uses more than 2 temporally adjacent images
  • Laser Points: Method uses point clouds from Velodyne laser scanner
  • Additional training data: Use of additional data sources for training (see details)

Car


Method Setting Code Moderate Easy Hard Runtime Environment
1 VirConv-S code 93.52 % 95.99 % 90.38 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, S. Shi and C. Wang: Virtual Sparse Convolution for Multimodal 3D Object Detection. CVPR 2023.
2 UDeerPEP code 93.40 % 95.34 % 89.07 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Z. Dong, H. Ji, X. Huang, W. Zhang, X. Zhan and J. Chen: PeP: a Point enhanced Painting method for unified point cloud tasks. 2023.
3 VirConv-T code 92.65 % 96.11 % 89.69 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, S. Shi and C. Wang: Virtual Sparse Convolution for Multimodal 3D Object Detection. CVPR 2023.
4 GraR-Po code 92.12 % 95.79 % 87.11 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
5 TSSTDet 92.11 % 95.80 % 89.23 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang, D. Bui and M. Yoo: TSSTDet: Transformation-Based 3-D Object Detection via a Spatial Shape Transformer. IEEE Sensors Journal 2024.
6 MPCF 92.07 % 95.92 % 87.29 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
7 TED code 92.05 % 95.44 % 87.30 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
8 MB3D 91.93 % 95.33 % 88.71 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
9 PVFusion code 91.87 % 95.01 % 86.96 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
10 VPFNet code 91.86 % 93.02 % 86.94 % 0.06 s 2 cores @ 2.5 Ghz (Python)
H. Zhu, J. Deng, Y. Zhang, J. Ji, Q. Mao, H. Li and Y. Zhang: VPFNet: Improving 3D Object Detection with Virtual Point based LiDAR and Stereo Data Fusion. IEEE Transactions on Multimedia 2022.
11 SFD code 91.85 % 95.64 % 86.83 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Wu, L. Peng, H. Yang, L. Xie, C. Huang, C. Deng, H. Liu and D. Cai: Sparse Fuse Dense: Towards High Quality 3D Detection with Depth Completion. CVPR 2022.
12 SE-SSD
This method makes use of Velodyne laser scans.
code 91.84 % 95.68 % 86.72 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
W. Zheng, W. Tang, L. Jiang and C. Fu: SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud. CVPR 2021.
13 HDet3D 91.82 % 94.90 % 84.68 % 0.07 s >8 cores @ 2.5 Ghz (Python)
14 LVP(84.92) 91.80 % 95.49 % 88.91 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
15 ACFNet 91.78 % 92.91 % 87.06 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Tian, X. Zhang, X. Wang, J. Xu, J. Wang, R. Ai, W. Gu and W. Ding: ACF-Net: Asymmetric Cascade Fusion for 3D Detection With LiDAR Point Clouds and Images. IEEE Transactions on Intelligent Vehicles 2023.
16 GraR-Vo code 91.72 % 95.27 % 86.51 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
17 NIV-SSD 91.69 % 95.66 % 86.72 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
18 CDF 91.67 % 92.68 % 86.62 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
19 PVT-SSD 91.63 % 95.23 % 86.43 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, W. Wang, M. Chen, B. Lin, T. He, H. Chen, X. He and W. Ouyang: PVT-SSD: Single-Stage 3D Object Detector with Point-Voxel Transformer. CVPR 2023.
20 HAF-PVP_test 91.60 % 95.33 % 86.71 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
21 SPANet 91.59 % 95.59 % 86.53 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
Y. Ye: SPANet: Spatial and Part-Aware Aggregation Network for 3D Object Detection. Pacific Rim International Conference on Artificial Intelligence 2021.
22 CasA code 91.54 % 95.19 % 86.82 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
23 FEIF3D
This method makes use of Velodyne laser scans.
91.53 % 95.29 % 86.87 % 0.1 s GPU @ 2.5 Ghz (Python)
24 LoGoNet code 91.52 % 95.48 % 87.09 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
25 GraR-Pi code 91.52 % 95.06 % 86.42 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
26 MM-UniMODE 91.51 % 95.69 % 88.71 % 0.04 s 1 core @ 2.5 Ghz (Python)
27 MAK_VOXEL_RCNN 91.46 % 95.32 % 86.81 % 0.03 s 1 core @ 2.5 Ghz (Python)
28 UPIDet code 91.36 % 92.96 % 86.80 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing: Unleash the Potential of Image Branch for Cross-modal 3D Object Detection. Thirty-seventh Conference on Neural Information Processing Systems 2023.
29 BADet code 91.32 % 95.23 % 86.48 % 0.14 s 1 core @ 2.5 Ghz (C/C++)
R. Qian, X. Lai and X. Li: BADet: Boundary-Aware 3D Object Detection from Point Clouds. Pattern Recognition 2022.
30 Anonymous 91.30 % 95.26 % 86.73 % 0.1 s 1 core @ 2.5 Ghz (Python)
31 ANM code 91.30 % 94.91 % 88.51 % ANM ANM
32 DEF-Model 91.28 % 93.03 % 86.48 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
33 SSLFusion 91.26 % 94.86 % 88.55 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
34 TED-S Reproduced 91.23 % 95.34 % 86.68 % 0.1 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
35 URFormer 91.22 % 94.40 % 86.35 % 0.1 s 1 core @ 2.5 Ghz (Python)
36 CasA++ code 91.22 % 94.57 % 88.43 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
37 OGMMDet code 91.21 % 95.59 % 88.33 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
38 voxel_spark code 91.18 % 94.82 % 86.58 % 0.04 s GPU @ 2.5 Ghz (C/C++)
39 spark 91.13 % 94.93 % 86.54 % 0.1 s 1 core @ 2.5 Ghz (Python)
40 3D HANet code 91.13 % 94.33 % 86.33 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Q. Xia, Y. Chen, G. Cai, G. Chen, D. Xie, J. Su and Z. Wang: 3D HANet: A Flexible 3D Heatmap Auxiliary Network for Object Detection. IEEE Transactions on Geoscience and Remote Sensing 2023.
41 test 91.12 % 93.93 % 86.17 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
42 DiffCandiDet 91.11 % 95.05 % 86.45 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
43 spark_voxel_rcnn code 91.08 % 94.61 % 86.59 % 0.04 s 1 core @ 2.5 Ghz (Python)
44 voxel-rcnn+++ code 91.06 % 92.84 % 86.27 % 0.08 s GPU @ 2.5 Ghz (Python)
45 SA-SSD code 91.03 % 95.03 % 85.96 % 0.04 s 1 core @ 2.5 Ghz (Python)
C. He, H. Zeng, J. Huang, X. Hua and L. Zhang: Structure Aware Single-stage 3D Object Detection from Point Cloud. CVPR 2020.
46 L-AUG 91.00 % 94.52 % 88.08 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
T. Cortinhal, I. Gouigah and E. Aksoy: Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object Detection. 2023.
47 TED_S_baseline code 90.98 % 94.56 % 86.41 % 0.09 s 1 core @ 2.5 Ghz (Python)
48 spark2 90.95 % 92.93 % 86.44 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
49 HS-fusion 90.95 % 93.77 % 87.79 % - s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
50 Voxel_Spark_focal_we code 90.93 % 94.83 % 86.45 % 0.08 s 1 core @ 2.5 Ghz (Python)
51 c2f 90.89 % 92.31 % 86.25 % 1 s 1 core @ 2.5 Ghz (C/C++)
52 3D Dual-Fusion code 90.86 % 93.08 % 86.44 % 0.1 s 1 core @ 2.5 Ghz (Python)
Y. Kim, K. Park, M. Kim, D. Kum and J. Choi: 3D Dual-Fusion: Dual-Domain Dual-Query Camera-LiDAR Fusion for 3D Object Detection. arXiv preprint arXiv:2211.13529 2022.
53 PR-SSD 90.78 % 94.23 % 86.14 % 0.02 s GPU @ 2.5 Ghz (Python)
54 MLFusion-VS 90.78 % 95.10 % 88.41 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
55 GraphAlign(ICCV2023) code 90.73 % 94.46 % 88.34 % 0.03 s GPU @ 2.0 Ghz (Python)
Z. Song, H. Wei, L. Bai, L. Yang and C. Jia: GraphAlign: Enhancing accurate feature alignment by graph matching for multi-modal 3D object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2023.
56 GF-pointnet 90.67 % 93.88 % 86.09 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
57 SDGUFusion 90.65 % 95.10 % 86.45 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
58 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 90.65 % 94.98 % 86.14 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
59 SQD 90.63 % 95.44 % 88.04 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
60 focalnet 90.61 % 94.46 % 88.12 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
61 BPG3D 90.57 % 93.00 % 86.21 % 0.05 s 1 core @ 2.5 Ghz (Python)
62 focalnet 90.56 % 94.52 % 88.08 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
63 VPFNet code 90.52 % 93.94 % 86.25 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
C. Wang, H. Chen, Y. Chen, P. Hsiao and L. Fu: VoPiFNet: Voxel-Pixel Fusion Network for Multi-Class 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2024.
64 ECA 90.50 % 93.87 % 85.94 % 0.08 s GPU @ 1.5 Ghz (Python)
65 PDV code 90.48 % 94.56 % 86.23 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
66 LGNet-3classes code 90.44 % 94.98 % 86.06 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
67 Spark_PartA2_Soft_fo code 90.38 % 93.90 % 85.91 % 0.1 s 1 core @ 2.5 Ghz (Python)
68 M3DeTR code 90.37 % 94.41 % 85.98 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
69 VoTr-TSD code 90.34 % 94.03 % 86.14 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
J. Mao, Y. Xue, M. Niu, H. Bai, J. Feng, X. Liang, H. Xu and C. Xu: Voxel Transformer for 3D Object Detection. ICCV 2021.
70 HA-PillarNet 90.33 % 94.29 % 85.99 % 0.05 s 1 core @ 2.5 Ghz (Python)
71 MSIT-Det 90.24 % 96.01 % 80.53 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
72 Spark_partA22 90.23 % 92.61 % 85.89 % 10 s 1 core @ 2.5 Ghz (Python)
73 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 90.13 % 92.42 % 85.93 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
74 LFT 90.12 % 95.83 % 85.06 % 0.1s 1 core @ 2.5 Ghz (C/C++)
75 XView 90.12 % 92.27 % 85.94 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
76 SFA-GCL code 90.12 % 95.75 % 84.97 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
77 SFA-GCL(80) code 90.11 % 95.76 % 84.96 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
78 GraR-VoI code 90.10 % 95.69 % 86.85 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
79 CAT-Det 90.07 % 92.59 % 85.82 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
80 3ONet 90.07 % 95.87 % 85.09 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang and M. Yoo: 3ONet: 3-D Detector for Occluded Object Under Obstructed Conditions. IEEE Sensors Journal 2023.
81 SFA-GCL(80, k=4) code 90.04 % 95.67 % 84.91 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
82 focal 90.02 % 94.56 % 85.95 % 100 s 1 core @ 2.5 Ghz (Python)
83 GeVo 90.02 % 92.45 % 85.86 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
84 spark-part2 90.01 % 93.82 % 85.89 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
85 SP_SECOND_IOU code 89.95 % 92.23 % 85.84 % 0.04 s 1 core @ 2.5 Ghz (Python)
86 CG-SSD 89.93 % 94.26 % 85.76 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
87 Anonymous code 89.91 % 93.38 % 84.91 % 0.04 s 1 core @ 2.5 Ghz (Python)
88 OFFNet 89.88 % 91.62 % 85.57 % 0.1 s GPU @ 2.5 Ghz (Python)
89 SVGA-Net 89.88 % 92.07 % 85.59 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
90 EBM3DOD code 89.86 % 95.64 % 84.56 % 0.12 s 1 core @ 2.5 Ghz (Python)
F. Gustafsson, M. Danelljan and T. Schön: Accurate 3D Object Detection using Energy- Based Models. arXiv preprint arXiv:2012.04634 2020.
91 U_PV_V2_ep_100_100 89.86 % 92.17 % 85.81 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
92 CIA-SSD
This method makes use of Velodyne laser scans.
code 89.84 % 93.74 % 82.39 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
W. Zheng, W. Tang, S. Chen, L. Jiang and C. Fu: CIA-SSD: Confident IoU-Aware Single-Stage Object Detector From Point Cloud. AAAI 2021.
93 MLF-DET 89.82 % 93.38 % 84.78 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
Z. Lin, Y. Shen, S. Zhou, S. Chen and N. Zheng: MLF-DET: Multi-Level Fusion for Cross- Modal 3D Object Detection. International Conference on Artificial Neural Networks 2023.
94 CLOCs_PVCas code 89.80 % 93.05 % 86.57 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection . 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
95 VoxelFSD 89.79 % 92.57 % 85.77 % 0.08 s 1 core @ 2.5 Ghz (Python)
96 GLENet-VR code 89.76 % 93.48 % 84.89 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, Z. Zhu, J. Hou and Y. Yuan: GLENet: Boosting 3D object detectors with generative label uncertainty estimation. International Journal of Computer Vision 2023.
Y. Zhang, J. Hou and Y. Yuan: A Comprehensive Study of the Robustness for LiDAR-based 3D Object Detectors against Adversarial Attacks. International Journal of Computer Vision 2023.
97 RDIoU code 89.75 % 94.90 % 84.67 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Sheng, S. Cai, N. Zhao, B. Deng, J. Huang, X. Hua, M. Zhao and G. Lee: Rethinking IoU-based Optimization for Single- stage 3D Object Detection. ECCV 2022.
98 PV-RCNN-Plus 89.75 % 91.93 % 85.77 % 1 s 1 core @ 2.5 Ghz (C/C++)
99 SFA-GCL(baseline) code 89.74 % 95.55 % 84.63 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
100 SFA-GCL_dataaug code 89.73 % 93.44 % 84.60 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
101 SFA-GCL code 89.71 % 93.53 % 84.58 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
102 DGEnhCL code 89.66 % 95.21 % 84.53 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
103 EBM3DOD baseline code 89.63 % 95.44 % 84.34 % 0.05 s 1 core @ 2.5 Ghz (Python)
F. Gustafsson, M. Danelljan and T. Schön: Accurate 3D Object Detection using Energy- Based Models. arXiv preprint arXiv:2012.04634 2020.
104 SCNet3D 89.61 % 93.36 % 84.78 % 0.08 s 1 core @ 2.5 Ghz (Python)
105 VPA 89.61 % 95.46 % 86.81 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
106 MAK code 89.59 % 93.21 % 86.84 % 0.03 s GPU @ 2.5 Ghz (Python)
107 pointpillars_spark code 89.57 % 92.98 % 84.91 % 0.02 s GPU @ 2.5 Ghz (C/C++)
108 3D-CVF at SPA
This method makes use of Velodyne laser scans.
code 89.56 % 93.52 % 82.45 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
J. Yoo, Y. Kim, J. Kim and J. Choi: 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection. ECCV 2020.
109 OcTr 89.56 % 93.08 % 86.74 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
C. Zhou, Y. Zhang, J. Chen and D. Huang: OcTr: Octree-based Transformer for 3D Object Detection. CVPR 2023.
110 Struc info fusion II 89.54 % 95.26 % 82.31 % 0.05 s GPU @ 2.5 Ghz (Python)
P. An, J. Liang, J. Ma, K. Yu and B. Fang: Struc info fusion. Submitted to CVIU 2021.
111 spark_second_focal_w 89.53 % 91.19 % 85.11 % 0.1 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
112 spark_second code 89.53 % 91.23 % 85.02 % . s 1 core @ 2.5 Ghz (Python)
113 PSMS-Net
This method makes use of Velodyne laser scans.
89.53 % 95.32 % 86.71 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
114 IIOU code 89.52 % 92.90 % 84.56 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
115 spark_pointpillar code 89.51 % 93.58 % 85.03 % 0.02 s GPU @ 2.5 Ghz (Python)
116 SASA
This method makes use of Velodyne laser scans.
code 89.51 % 92.87 % 86.35 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
C. Chen, Z. Chen, J. Zhang and D. Tao: SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object Detection. arXiv preprint arXiv:2201.01976 2022.
117 Fast-CLOCs 89.49 % 93.03 % 86.40 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
118 IA-SSD (single) code 89.48 % 93.14 % 84.42 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
119 KPTr 89.48 % 92.74 % 84.50 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
120 CLOCs code 89.48 % 92.91 % 86.42 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection . 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
121 PA3DNet 89.46 % 93.11 % 84.60 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
M. Wang, L. Zhao and Y. Yue: PA3DNet: 3-D Vehicle Detection with Pseudo Shape Segmentation and Adaptive Camera- LiDAR Fusion. IEEE Transactions on Industrial Informatics 2023.
122 PG-RCNN code 89.46 % 93.39 % 86.54 % 0.06 s GPU @ 1.5 Ghz (Python)
I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim: PG-RCNN: Semantic Surface Point Generation for 3D Object Detection. 2023.
123 DFAF3D 89.45 % 93.14 % 84.22 % 0.05 s 1 core @ 2.5 Ghz (Python)
Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds. Image and Vision Computing 2023.
124 DVF-V 89.42 % 93.12 % 86.50 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
A. Mahmoud, J. Hu and S. Waslander: Dense Voxel Fusion for 3D Object Detection. WACV 2023.
125 Struc info fusion I 89.38 % 94.91 % 84.29 % 0.05 s 1 core @ 2.5 Ghz (Python)
P. An, J. Liang, J. Ma, K. Yu and B. Fang: Struc info fusion. Submitted to CVIU 2021.
126 BtcDet
This method makes use of Velodyne laser scans.
code 89.34 % 92.81 % 84.55 % 0.09 s GPU @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhong and U. Neumann: Behind the Curtain: Learning Occluded Shapes for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
127 IA-SSD (multi) code 89.33 % 92.79 % 84.35 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
128 GSG-FPS code 89.32 % 92.77 % 84.27 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
129 spark_second2 89.27 % 90.94 % 84.85 % 10 s 1 core @ 2.5 Ghz (Python)
130 ACDet code 89.21 % 92.87 % 85.80 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
131 DVF-PV 89.20 % 93.08 % 86.28 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
A. Mahmoud, J. Hu and S. Waslander: Dense Voxel Fusion for 3D Object Detection. WACV 2023.
132 Test_dif code 89.20 % 92.69 % 84.23 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
133 STD code 89.19 % 94.74 % 86.42 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for Point Cloud. ICCV 2019.
134 FIRM-Net 89.18 % 92.56 % 86.33 % 0.07 s 1 core @ 2.5 Ghz (Python)
135 Point-GNN
This method makes use of Velodyne laser scans.
code 89.17 % 93.11 % 83.90 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
136 HMFI code 89.17 % 93.04 % 86.37 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
137 sec_spark code 89.16 % 90.89 % 84.84 % 0.03 s GPU @ 2.5 Ghz (Python)
138 SSL-PointGNN code 89.16 % 92.92 % 83.99 % 0.56 s GPU @ 1.5 Ghz (Python)
E. Erçelik, E. Yurtsever, M. Liu, Z. Yang, H. Zhang, P. Topçam, M. Listl, Y. Çaylı and A. Knoll: 3D Object Detection with a Self-supervised Lidar Scene Flow Backbone. arXiv preprint arXiv:2205.00705 2022.
139 MMAE
This method makes use of Velodyne laser scans.
89.15 % 92.42 % 84.01 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
140 SPG_mini
This method makes use of Velodyne laser scans.
code 89.12 % 92.80 % 86.27 % 0.09 s GPU @ 2.5 Ghz (Python)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
141 EQ-PVRCNN code 89.09 % 94.55 % 86.42 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
142 VoxSeT code 89.07 % 92.70 % 86.29 % 33 ms 1 core @ 2.5 Ghz (C/C++)
C. He, R. Li, S. Li and L. Zhang: Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds. CVPR 2022.
143 RAFDet 89.07 % 92.64 % 85.96 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
144 RAFDet 89.05 % 92.29 % 84.35 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
145 3DSSD code 89.02 % 92.66 % 85.86 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object Detector. CVPR 2020.
146 RagNet3D code 89.01 % 92.87 % 86.36 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
147 EPNet++ 89.00 % 95.41 % 85.73 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
148 DDF 89.00 % 92.57 % 86.50 % 0.1 s 1 core @ 2.5 Ghz (Python)
149 IOUFusion 89.00 % 92.47 % 84.10 % 0.1 s GPU @ 2.5 Ghz (Python)
150 Focals Conv code 89.00 % 92.67 % 86.33 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, Y. Li, X. Zhang, J. Sun and J. Jia: Focal Sparse Convolutional Networks for 3D Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
151 RAFDet code 88.99 % 92.23 % 84.21 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
152 LGNet-Car code 88.98 % 92.83 % 86.26 % 0.11 s 1 core @ 2.5 Ghz (Python + C/C++)
153 USVLab BSAODet code 88.90 % 92.66 % 86.23 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
154 bs 88.88 % 94.53 % 86.00 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
155 CZY_PPF_Net 88.88 % 94.68 % 86.15 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
156 H^23D R-CNN code 88.87 % 92.85 % 86.07 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
J. Deng, W. Zhou, Y. Zhang and H. Li: From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2021.
157 Pyramid R-CNN 88.84 % 92.19 % 86.21 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
J. Mao, M. Niu, H. Bai, X. Liang, H. Xu and C. Xu: Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection. ICCV 2021.
158 CityBrainLab-CT3D code 88.83 % 92.36 % 84.07 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Sheng, S. Cai, Y. Liu, B. Deng, J. Huang, X. Hua and M. Zhao: Improving 3D Object Detection with Channel- wise Transformer. ICCV 2021.
159 Voxel R-CNN code 88.83 % 94.85 % 86.13 % 0.04 s GPU @ 3.0 Ghz (C/C++)
J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang and H. Li: Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection . AAAI 2021.
160 HVNet 88.82 % 92.83 % 83.38 % 0.03 s GPU @ 2.0 Ghz (Python)
M. Ye, S. Xu and T. Cao: HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection. CVPR 2020.
161 AMVFNet code 88.82 % 92.68 % 86.18 % 0.04 s GPU @ 2.5 Ghz (Python)
162 GD-MAE 88.82 % 94.22 % 83.54 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, T. He, J. Liu, H. Chen, B. Wu, B. Lin, X. He and W. Ouyang: GD-MAE: Generative Decoder for MAE Pre- training on LiDAR Point Clouds. CVPR 2023.
163 SPG
This method makes use of Velodyne laser scans.
code 88.70 % 94.33 % 85.98 % 0.09 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
164 MG 88.66 % 92.64 % 83.61 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
165 SIENet code 88.65 % 92.38 % 86.03 % 0.08 s 1 core @ 2.5 Ghz (Python)
Z. Li, Y. Yao, Z. Quan, W. Yang and J. Xie: SIENet: Spatial Information Enhancement Network for 3D Object Detection from Point Cloud. 2021.
166 P2V-RCNN 88.63 % 92.72 % 86.14 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
167 FromVoxelToPoint code 88.61 % 92.23 % 86.11 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
168 RangeIoUDet
This method makes use of Velodyne laser scans.
88.59 % 92.28 % 85.83 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, Z. Zhang, M. Zhang, X. Zhao and S. Pu: RangeIoUDet: Range Image Based Real-Time 3D Object Detector Optimized by Intersection Over Union. CVPR 2021.
169 af 88.58 % 92.43 % 86.05 % 1 s GPU @ 2.5 Ghz (Python)
170 RBEV-Voxel code 88.54 % 91.92 % 85.73 % 0.08 s GPU @ 2.5 Ghz (Python)
171 MFB3D 88.54 % 94.67 % 85.75 % 0.14 s 1 core @ 2.5 Ghz (Python)
172 second_iou_baseline code 88.48 % 92.24 % 85.57 % 0.05 s 1 core @ 2.5 Ghz (Python)
173 EPNet code 88.47 % 94.22 % 83.69 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
T. Huang, Z. Liu, X. Chen and X. Bai: EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection. ECCV 2020.
174 CenterNet3D 88.46 % 91.80 % 83.62 % 0.04 s GPU @ 1.5 Ghz (Python)
G. Wang, B. Tian, Y. Ai, T. Xu, L. Chen and D. Cao: CenterNet3D:An Anchor free Object Detector for Autonomous Driving. 2020.
175 FARP-Net code 88.45 % 91.20 % 86.01 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
T. Xie, L. Wang, K. Wang, R. Li, X. Zhang, H. Zhang, L. Yang, H. Liu and J. Li: FARP-Net: Local-Global Feature Aggregation and Relation-Aware Proposals for 3D Object Detection. IEEE Transactions on Multimedia 2023.
176 PUDet 88.42 % 92.68 % 83.70 % 0.3 s GPU @ 2.5 Ghz (Python)
177 RangeRCNN
This method makes use of Velodyne laser scans.
88.40 % 92.15 % 85.74 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, M. Zhang, Z. Zhang, X. Zhao and S. Pu: RangeRCNN: Towards Fast and Accurate 3D Object Detection with Range Image Representation. arXiv preprint arXiv:2009.00206 2020.
178 second_iou_baseline 88.40 % 92.12 % 85.54 % 0.03 s 1 core @ 2.5 Ghz (Python)
179 Patches
This method makes use of Velodyne laser scans.
88.39 % 92.72 % 83.19 % 0.15 s GPU @ 2.0 Ghz
J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler and S. Hochreiter: Patch Refinement: Localized 3D Object Detection. arXiv preprint arXiv:1910.04093 2019.
180 3D IoU-Net 88.38 % 94.76 % 81.93 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, S. Luo, Z. Zhu, H. Dai, S. Krylov, Y. Ding and L. Shao: 3D IoU-Net: IoU Guided 3D Object Detector for Point Clouds. arXiv preprint arXiv:2004.04962 2020.
181 StructuralIF 88.38 % 91.78 % 85.67 % 0.02 s 8 cores @ 2.5 Ghz (Python)
J. Pei An: Deep structural information fusion for 3D object detection on LiDAR-camera system. Accepted in CVIU 2021.
182 PASS-PV-RCNN-Plus 88.37 % 92.17 % 85.75 % 1 s 1 core @ 2.5 Ghz (Python)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
183 AAMVFNet code 88.36 % 92.31 % 85.81 % 0.04 s GPU @ 2.5 Ghz (Python)
184 CLOCs_SecCas 88.23 % 91.16 % 82.63 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
185 UberATG-MMF
This method makes use of Velodyne laser scans.
88.21 % 93.67 % 81.99 % 0.08 s GPU @ 2.5 Ghz (Python)
M. Liang*, B. Yang*, Y. Chen, R. Hu and R. Urtasun: Multi-Task Multi-Sensor Fusion for 3D Object Detection. CVPR 2019.
186 MMpointpillars 88.17 % 91.76 % 81.13 % 0.05 s 1 core @ 2.5 Ghz (Python)
187 Patches - EMP
This method makes use of Velodyne laser scans.
88.17 % 94.49 % 84.75 % 0.5 s GPU @ 2.5 Ghz (Python)
J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler and S. Hochreiter: Patch Refinement: Localized 3D Object Detection. arXiv preprint arXiv:1910.04093 2019.
188 SRDL 88.17 % 92.01 % 85.43 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
189 Res3DNet 88.16 % 91.71 % 84.85 % 0.05 s GPU @ 3.5 Ghz (Python)
190 P2P code 88.15 % 91.92 % 81.12 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
191 PointPainting
This method makes use of Velodyne laser scans.
88.11 % 92.45 % 83.36 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
192 SERCNN
This method makes use of Velodyne laser scans.
88.10 % 94.11 % 83.43 % 0.1 s 1 core @ 2.5 Ghz (Python)
D. Zhou, J. Fang, X. Song, L. Liu, J. Yin, Y. Dai, H. Li and R. Yang: Joint 3D Instance Segmentation and Object Detection for Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2020.
193 PartA2_basline code 88.09 % 92.35 % 85.42 % 0.09 s 1 core @ 2.5 Ghz (Python)
194 Associate-3Ddet code 88.09 % 91.40 % 82.96 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
L. Du, X. Ye, X. Tan, J. Feng, Z. Xu, E. Ding and S. Wen: Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection. The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
195 HotSpotNet 88.09 % 94.06 % 83.24 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
196 Faraway-Frustum
This method makes use of Velodyne laser scans.
code 88.08 % 91.90 % 85.35 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-frustum: Dealing with lidar sparsity for 3D object detection using fusion. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) 2021.
197 SFEBEV 88.08 % 93.44 % 83.01 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
198 pointpillar_spark_fo 88.02 % 92.48 % 84.82 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
199 UberATG-HDNET
This method makes use of Velodyne laser scans.
87.98 % 93.13 % 81.23 % 0.05 s GPU @ 2.5 Ghz (Python)
B. Yang, M. Liang and R. Urtasun: HDNET: Exploiting HD Maps for 3D Object Detection. 2nd Conference on Robot Learning (CoRL) 2018.
200 spark_pointpillar2 87.93 % 92.74 % 84.70 % 10 s 1 core @ 2.5 Ghz (Python)
201 BAPartA2S-4h 87.89 % 91.96 % 83.31 % 0.1 s 1 core @ 2.5 Ghz (Python)
202 Fast Point R-CNN
This method makes use of Velodyne laser scans.
87.84 % 90.87 % 80.52 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, S. Liu, X. Shen and J. Jia: Fast Point R-CNN. Proceedings of the IEEE international conference on computer vision (ICCV) 2019.
203 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 87.79 % 91.70 % 84.61 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
204 SIF 87.76 % 91.44 % 85.15 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
205 MVAF-Net code 87.73 % 91.95 % 85.00 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
G. Wang, B. Tian, Y. Zhang, L. Chen, D. Cao and J. Wu: Multi-View Adaptive Fusion Network for 3D Object Detection. arXiv preprint arXiv:2011.00652 2020.
206 DVFENet 87.68 % 90.93 % 84.60 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
207 S-AT GCN 87.68 % 90.85 % 84.20 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
208 RangeDet (Official) code 87.67 % 90.93 % 82.92 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
L. Fan, X. Xiong, F. Wang, N. Wang and Z. Zhang: RangeDet: In Defense of Range View for LiDAR-Based 3D Object Detection. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
209 pointpillar_baseline code 87.61 % 92.52 % 83.84 % 0.01 s 1 core @ 2.5 Ghz (Python)
210 Second_baseline code 87.60 % 90.94 % 84.36 % 0.03 s 1 core @ 2.5 Ghz (Python)
211 VoxelFSD-S 87.60 % 90.94 % 84.11 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
212 U_second_v4_ep_100_8 87.58 % 90.54 % 84.34 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
213 SC-SSD 87.56 % 90.70 % 84.36 % 1 s 1 core @ 2.5 Ghz (C/C++)
214 MODet
This method makes use of Velodyne laser scans.
87.56 % 90.80 % 82.69 % 0.05 s GTX1080Ti
Y. Zhang, Z. Xiang, C. Qiao and S. Chen: Accurate and Real-Time Object Detection Based on Bird's Eye View on 3D Point Clouds. 2019 International Conference on 3D Vision (3DV) 2019.
215 TF-PartA2 87.54 % 91.93 % 83.33 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
216 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 87.53 % 91.99 % 81.03 % 0.0047s 1 core @ 2.5 Ghz (Python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
217 mm3d_PartA2 87.51 % 91.75 % 83.01 % 0.1 s GPU @ >3.5 Ghz (Python)
218 SeSame-point code 87.49 % 90.84 % 83.77 % N/A s TITAN RTX @ 1.35 Ghz (Python)
219 PointRGCN 87.49 % 91.63 % 80.73 % 0.26 s GPU @ V100 (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
220 MGAF-3DSSD code 87.47 % 92.70 % 82.19 % 0.1 s 1 core @ 2.5 Ghz (Python)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
221 PC-CNN-V2
This method makes use of Velodyne laser scans.
87.40 % 91.19 % 79.35 % 0.5 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Du, M. Ang, S. Karaman and D. Rus: A General Pipeline for 3D Detection of Vehicles. 2018 IEEE International Conference on Robotics and Automation (ICRA) 2018.
222 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 87.39 % 92.13 % 82.72 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
223 Sem-Aug
This method makes use of Velodyne laser scans.
87.37 % 93.35 % 82.43 % 0.1 s GPU @ 2.5 Ghz (Python)
L. Zhao, M. Wang and Y. Yue: Sem-Aug: Improving Camera-LiDAR Feature Fusion With Semantic Augmentation for 3D Vehicle Detection. IEEE Robotics and Automation Letters 2022.
224 MAFF-Net(DAF-Pillar) 87.34 % 90.79 % 77.66 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Z. Zhang, Z. Liang, M. Zhang, X. Zhao, Y. Ming, T. Wenming and S. Pu: MAFF-Net: Filter False Positive for 3D Vehicle Detection with Multi-modal Adaptive Feature Fusion. arXiv preprint arXiv:2009.10945 2020.
225 Harmonic PointPillar code 87.28 % 90.89 % 82.54 % 0.01 s 1 core @ 2.5 Ghz (Python)
H. Zhang, J. Mekala, Z. Nain, J. Park and H. Jung: 3D Harmonic Loss: Towards Task-consistent and Time-friendly 3D Object Detection for V2X Orchestration. will submit to IEEE Transactions on Vehicular Technology 2022.
226 PASS-PointPillar 87.23 % 91.07 % 81.98 % 1 s 1 core @ 2.5 Ghz (C/C++)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
227 HRI-VoxelFPN 87.21 % 92.75 % 79.82 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
H. Kuang, B. Wang, J. An, M. Zhang and Z. Zhang: Voxel-FPN:multi-scale voxel feature aggregation in 3D object detection from point clouds. sensors 2020.
228 epBRM
This method makes use of Velodyne laser scans.
code 87.13 % 90.70 % 81.92 % 0.1 s GPU @ >3.5 Ghz (Python + C/C++)
K. Shin: Improving a Quality of 3D Object Detection by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.
229 LVFSD 87.12 % 90.42 % 83.91 % 0.06 s
ERROR: Wrong syntax in BIBTEX file.
230 XT-PartA2 87.08 % 90.89 % 82.70 % 0.1 s GPU @ >3.5 Ghz (Python)
231 centerpoint_pcdet 87.04 % 90.04 % 83.32 % 0.06 s 1 core @ 2.5 Ghz (Python)
232 SARPNET 86.92 % 92.21 % 81.68 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Ye, H. Chen, C. Zhang, X. Hao and Z. Zhang: SARPNET: Shape Attention Regional Proposal Network for LiDAR-based 3D Object Detection. Neurocomputing 2019.
233 SeSame-pillar code 86.88 % 90.61 % 81.93 % N/A s TITAN RTX @ 1.35 Ghz (Python)
234 ARPNET 86.81 % 90.06 % 79.41 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
235 C-GCN 86.78 % 91.11 % 80.09 % 0.147 s GPU @ V100 (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
236 PointPillars
This method makes use of Velodyne laser scans.
code 86.56 % 90.07 % 82.81 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
237 TANet code 86.54 % 91.58 % 81.19 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
238 PCNet3D 86.54 % 90.09 % 81.43 % 0.05 s GPU @ 3.5 Ghz (Python)
239 MEDL-U 86.50 % 91.75 % 79.29 % 1 s GPU @ >3.5 Ghz (Python)
240 SCNet
This method makes use of Velodyne laser scans.
86.48 % 90.07 % 81.30 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
241 MM_SECOND code 86.39 % 90.52 % 81.49 % 0.05 s GPU @ >3.5 Ghz (Python)
242 SegVoxelNet 86.37 % 91.62 % 83.04 % 0.04 s 1 core @ 2.5 Ghz (Python)
H. Yi, S. Shi, M. Ding, J. Sun, K. Xu, H. Zhou, Z. Wang, S. Li and G. Wang: SegVoxelNet: Exploring Semantic Context and Depth-aware Features for 3D Vehicle Detection from Point Cloud. ICRA 2020.
243 IIOU_LDR code 86.31 % 91.80 % 81.30 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
244 3D IoU Loss
This method makes use of Velodyne laser scans.
86.22 % 91.36 % 81.20 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
D. Zhou, J. Fang, X. Song, C. Guan, J. Yin, Y. Dai and R. Yang: IoU Loss for 2D/3D Object Detection. International Conference on 3D Vision (3DV) 2019.
245 VSAC 86.22 % 91.98 % 81.50 % 0.07 s 1 core @ 1.0 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
246 prcnn_v18_80_100 86.20 % 90.79 % 81.39 % 0.1 s 1 core @ 2.5 Ghz (Python)
247 voxelnext_pcdet 86.15 % 89.72 % 82.34 % 0.05 s 1 core @ 2.5 Ghz (Python)
248 ROT_S3D 86.11 % 91.33 % 81.17 % 0.1 s GPU @ 2.5 Ghz (Python)
249 SeSame-pillar w/scor code 86.11 % 90.43 % 81.38 % N/A s 1 core @ 2.5 Ghz (C/C++)
250 R-GCN 86.05 % 91.91 % 81.05 % 0.16 s GPU @ 2.5 Ghz (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
251 UberATG-PIXOR++
This method makes use of Velodyne laser scans.
86.01 % 93.28 % 80.11 % 0.035 s GPU @ 2.5 Ghz (Python)
B. Yang, M. Liang and R. Urtasun: HDNET: Exploiting HD Maps for 3D Object Detection. 2nd Conference on Robot Learning (CoRL) 2018.
252 HINTED 86.01 % 90.61 % 79.29 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
253 CAT2 85.90 % 91.13 % 80.81 % 1 s 1 core @ 2.5 Ghz (C/C++)
254 Sem-Aug-PointRCNN++ 85.88 % 91.68 % 83.37 % 0.1 s 8 cores @ 3.0 Ghz (Python)
L. Zhao, M. Wang and Y. Yue: Sem-Aug: Improving Camera-LiDAR Feature Fusion With Semantic Augmentation for 3D Vehicle Detection. IEEE Robotics and Automation Letters 2022.
255 DASS 85.85 % 91.74 % 80.97 % 0.09 s 1 core @ 2.0 Ghz (Python)
O. Unal, L. Van Gool and D. Dai: Improving Point Cloud Semantic Segmentation by Learning 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2021.
256 F-ConvNet
This method makes use of Velodyne laser scans.
code 85.84 % 91.51 % 76.11 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
257 SecAtten 85.84 % 91.32 % 82.57 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
258 PI-RCNN 85.81 % 91.44 % 81.00 % 0.1 s 1 core @ 2.5 Ghz (Python)
L. Xie, C. Xiang, Z. Yu, G. Xu, Z. Yang, D. Cai and X. He: PI-RCNN: An Efficient Multi-sensor 3D Object Detector with Point-based Attentive Cont-conv Fusion Module. AAAI 2020 : The Thirty-Fourth AAAI Conference on Artificial Intelligence 2020.
259 PointRGBNet 85.73 % 91.39 % 80.68 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
260 SeSame-voxel code 85.62 % 89.86 % 80.95 % N/A s TITAN RTX @ 1.35 Ghz (Python)
261 WA 85.61 % 90.76 % 79.99 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
262 UberATG-ContFuse
This method makes use of Velodyne laser scans.
85.35 % 94.07 % 75.88 % 0.06 s GPU @ 2.5 Ghz (Python)
M. Liang, B. Yang, S. Wang and R. Urtasun: Deep Continuous Fusion for Multi-Sensor 3D Object Detection. ECCV 2018.
263 PFF3D
This method makes use of Velodyne laser scans.
code 85.08 % 89.61 % 80.42 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
264 AVOD
This method makes use of Velodyne laser scans.
code 84.95 % 89.75 % 78.32 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
265 WS3D
This method makes use of Velodyne laser scans.
84.93 % 90.96 % 77.96 % 0.1 s GPU @ 2.5 Ghz (Python)
Q. Meng, W. Wang, T. Zhou, J. Shen, L. Van Gool and D. Dai: Weakly Supervised 3D Object Detection from Lidar Point Cloud. 2020.
266 PI-SECOND code 84.83 % 90.15 % 79.86 % 0.05 s GPU @ >3.5 Ghz (Python + C/C++)
267 ODGS 84.82 % 89.59 % 78.20 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
268 AVOD-FPN
This method makes use of Velodyne laser scans.
code 84.82 % 90.99 % 79.62 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
269 F-PointNet
This method makes use of Velodyne laser scans.
code 84.67 % 91.17 % 74.77 % 0.17 s GPU @ 3.0 Ghz (Python)
C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.
270 AEPF 84.63 % 89.99 % 80.02 % 0.05 s GPU @ 2.5 Ghz (Python)
271 mmFUSION code 84.60 % 90.35 % 79.82 % 1s 1 core @ 2.5 Ghz (Python)
J. Ahmad and A. Del Bue: mmFUSION: Multimodal Fusion for 3D Objects Detection. arXiv preprint arXiv:2311.04058 2023.
272 3DBN
This method makes use of Velodyne laser scans.
83.94 % 89.66 % 76.50 % 0.13s 1080Ti (Python+C/C++)
X. Li, J. Guivant, N. Kwok and Y. Xu: 3D Backbone Network for 3D Object Detection. CoRR 2019.
273 EOTL code 83.14 % 89.10 % 71.41 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek: Efficient Online Transfer Learning for Road Participants Detection in Autonomous Driving. IEEE Sensors Journal 2023.
274 MLOD
This method makes use of Velodyne laser scans.
code 82.68 % 90.25 % 77.97 % 0.12 s GPU @ 1.5 Ghz (Python)
J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.
275 BirdNet+
This method makes use of Velodyne laser scans.
code 81.85 % 87.43 % 75.36 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
276 DMF
This method uses stereo information.
80.29 % 84.64 % 76.05 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
277 UberATG-PIXOR
This method makes use of Velodyne laser scans.
80.01 % 83.97 % 74.31 % 0.035 s TITAN Xp (Python)
B. Yang, W. Luo and R. Urtasun: PIXOR: Real-time 3D Object Detection from Point Clouds. CVPR 2018.
278 MV3D (LIDAR)
This method makes use of Velodyne laser scans.
78.98 % 86.49 % 72.23 % 0.24 s GPU @ 2.5 Ghz (Python + C/C++)
X. Chen, H. Ma, J. Wan, B. Li and T. Xia: Multi-View 3D Object Detection Network for Autonomous Driving. CVPR 2017.
279 DSGN++
This method uses stereo information.
code 78.94 % 88.55 % 69.74 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
280 MV3D
This method makes use of Velodyne laser scans.
78.93 % 86.62 % 69.80 % 0.36 s GPU @ 2.5 Ghz (Python + C/C++)
X. Chen, H. Ma, J. Wan, B. Li and T. Xia: Multi-View 3D Object Detection Network for Autonomous Driving. CVPR 2017.
281 StereoDistill 78.59 % 89.03 % 69.34 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
282 MMLAB LIGA-Stereo
This method uses stereo information.
code 76.78 % 88.15 % 67.40 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
283 RCD 75.83 % 82.26 % 69.61 % 0.1 s GPU @ 2.5 Ghz (Python)
A. Bewley, P. Sun, T. Mensink, D. Anguelov and C. Sminchisescu: Range Conditioned Dilated Convolutions for Scale Invariant 3D Object Detection. Conference on Robot Learning (CoRL) 2020.
284 LaserNet 74.52 % 79.19 % 68.45 % 12 ms GPU @ 2.5 Ghz (C/C++)
G. Meyer, A. Laddha, E. Kee, C. Vallespi-Gonzalez and C. Wellington: LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
285 PL++ (SDN+GDC)
This method uses stereo information.
This method makes use of Velodyne laser scans.
code 73.80 % 84.61 % 65.59 % 0.6 s GPU @ 2.5 Ghz (C/C++)
Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving. International Conference on Learning Representations 2020.
286 SNVC
This method uses stereo information.
code 73.61 % 86.88 % 64.49 % 1 s GPU @ 1.0 Ghz (Python)
S. Li, Z. Liu, Z. Shen and K. Cheng: Stereo Neural Vernier Caliper. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
287 A3DODWTDA
This method makes use of Velodyne laser scans.
code 73.26 % 79.58 % 62.77 % 0.08 s GPU @ 3.0 Ghz (Python)
F. Gustafsson and E. Linder-Norén: Automotive 3D Object Detection Without Target Domain Annotations. 2018.
288 Complexer-YOLO
This method makes use of Velodyne laser scans.
68.96 % 77.24 % 64.95 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
289 TopNet-Retina
This method makes use of Velodyne laser scans.
68.16 % 80.16 % 63.43 % 52ms GeForce 1080Ti (tensorflow-gpu, v1.12)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
290 SeSame-point w/score code 67.18 % 83.44 % 57.68 % N/A s GPU @ 1.5 Ghz (Python)
291 CG-Stereo
This method uses stereo information.
66.44 % 85.29 % 58.95 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
292 PLUME
This method uses stereo information.
66.27 % 82.97 % 56.70 % 0.15 s GPU @ 2.5 Ghz (Python)
Y. Wang, B. Yang, R. Hu, M. Liang and R. Urtasun: PLUME: Efficient 3D Object Detection from Stereo Images. IROS 2021.
293 CDN
This method uses stereo information.
code 66.24 % 83.32 % 57.65 % 0.6 s GPU @ 2.5 Ghz (Python)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems (NeurIPS) 2020.
294 DSGN
This method uses stereo information.
code 65.05 % 82.90 % 56.60 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
295 TopNet-DecayRate
This method makes use of Velodyne laser scans.
64.60 % 79.74 % 58.04 % 92 ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
296 SeSame-voxel w/score code 63.36 % 71.98 % 57.52 % N/A s GPU @ 1.5 Ghz (Python)
297 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 63.33 % 84.80 % 61.23 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
298 3D FCN
This method makes use of Velodyne laser scans.
61.67 % 70.62 % 55.61 % >5 s 1 core @ 2.5 Ghz (C/C++)
B. Li: 3D Fully Convolutional Network for Vehicle Detection in Point Cloud. IROS 2017.
299 CDN-PL++
This method uses stereo information.
61.04 % 81.27 % 52.84 % 0.4 s GPU @ 2.5 Ghz (C/C++)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems 2020.
300 BirdNet
This method makes use of Velodyne laser scans.
59.83 % 84.17 % 57.35 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
301 TopNet-UncEst
This method makes use of Velodyne laser scans.
59.67 % 72.05 % 51.67 % 0.09 s NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing Object Detection Uncertainty in Multi-Layer Grid Maps. 2019.
302 RT3D-GMP
This method uses stereo information.
59.00 % 69.14 % 45.49 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
303 Disp R-CNN (velo)
This method uses stereo information.
code 58.62 % 79.76 % 47.73 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
304 ESGN
This method uses stereo information.
58.12 % 78.10 % 49.28 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
305 Pseudo-LiDAR++
This method uses stereo information.
code 58.01 % 78.31 % 51.25 % 0.4 s GPU @ 2.5 Ghz (Python)
Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving. International Conference on Learning Representations 2020.
306 Disp R-CNN
This method uses stereo information.
code 57.98 % 79.61 % 47.09 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
307 ZoomNet
This method uses stereo information.
code 54.91 % 72.94 % 44.14 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
L. Z. Xu: ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2020.
308 VoxelJones code 53.96 % 66.21 % 47.66 % .18 s 1 core @ 2.5 Ghz (Python + C/C++)
M. Motro and J. Ghosh: Vehicular Multi-object Tracking with Persistent Detector Failures. arXiv preprint arXiv:1907.11306 2019.
309 TopNet-HighRes
This method makes use of Velodyne laser scans.
53.05 % 67.84 % 46.99 % 101ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
310 OC Stereo
This method uses stereo information.
code 51.47 % 68.89 % 42.97 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
311 YOLOStereo3D
This method uses stereo information.
code 50.28 % 76.10 % 36.86 % 0.1 s GPU 1080Ti
Y. Liu, L. Wang and M. Liu: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
312 SST [st]
This method uses stereo information.
47.07 % 71.08 % 41.90 % 1 s 1 core @ 2.5 Ghz (Python)
313 RT3DStereo
This method uses stereo information.
46.82 % 58.81 % 38.38 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
314 Pseudo-Lidar
This method uses stereo information.
code 45.00 % 67.30 % 38.40 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Wang, W. Chao, D. Garg, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR From Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
315 BKDStereo3D code 44.02 % 70.19 % 32.78 % 0.1 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
316 RT3D
This method makes use of Velodyne laser scans.
44.00 % 56.44 % 42.34 % 0.09 s GPU @ 1.8Ghz
Y. Zeng, Y. Hu, S. Liu, J. Ye, Y. Han, X. Li and N. Sun: RT3D: Real-Time 3-D Vehicle Detection in LiDAR Point Cloud for Autonomous Driving. IEEE Robotics and Automation Letters 2018.
317 Stereo CenterNet
This method uses stereo information.
42.12 % 62.97 % 35.37 % 0.04 s GPU @ 2.5 Ghz (Python)
Y. Shi, Y. Guo, Z. Mi and X. Li: Stereo CenterNet-based 3D object detection for autonomous driving. Neurocomputing 2022.
318 Stereo R-CNN
This method uses stereo information.
code 41.31 % 61.92 % 33.42 % 0.3 s GPU @ 2.5 Ghz (Python)
P. Li, X. Chen and S. Shen: Stereo R-CNN based 3D Object Detection for Autonomous Driving. CVPR 2019.
319 BKDStereo3D w/o KD code 40.69 % 67.38 % 29.98 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
320 MonoTRKDv2 36.89 % 46.87 % 33.39 % 40 s 1 core @ 2.5 Ghz (Python)
321 DA3D+KM3D+v2-99 34.88 % 44.27 % 30.29 % 0.120s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
322 CIE + DM3D 33.13 % 46.17 % 28.80 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Ananimities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
323 StereoFENet
This method uses stereo information.
32.96 % 49.29 % 25.90 % 0.15 s 1 core @ 3.5 Ghz (Python)
W. Bao, B. Xu and Z. Chen: MonoFENet: Monocular 3D Object Detection with Feature Enhancement Networks. IEEE Transactions on Image Processing 2019.
324 MonoTAKD V2 32.31 % 43.83 % 28.48 % 0.1 s 1 core @ 2.5 Ghz (Python)
325 error 30.78 % 49.96 % 26.51 % 1 s 1 core @ 2.5 Ghz (Python)
326 monodetrnext-a 30.68 % 37.32 % 31.29 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
327 Mobile Stereo R-CNN
This method uses stereo information.
28.78 % 44.51 % 22.30 % 1.8 s NVIDIA Jetson TX2
M. Hussein, M. Khalil and B. Abdullah: 3D Object Detection using Mobile Stereo R- CNN on Nvidia Jetson TX2. International Conference on Advanced Engineering, Technology and Applications (ICAETA) 2021.
328 DA3D+KM3D code 28.71 % 39.50 % 25.20 % 0.02 s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
329 CIE 28.50 % 41.41 % 23.88 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
330 monodetrnext-f 28.12 % 34.56 % 28.33 % 0.03 s GPU @ 2.5 Ghz (Python)
331 MonoTAKD 27.76 % 38.75 % 24.14 % 0.1 s 1 core @ 2.5 Ghz (Python)
332 MonoLTKD 27.76 % 38.75 % 24.14 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
333 MonoLTKD_V3 27.75 % 38.75 % 24.13 % 0.04 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
334 DA3D 26.92 % 36.83 % 23.41 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
335 MonoLiG code 26.83 % 35.73 % 24.24 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
A. Hekimoglu, M. Schmidt and A. Ramiro: Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning. 2023.
336 Sample code 26.21 % 35.31 % 22.28 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
337 MonoLSS 25.95 % 34.89 % 22.59 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, J. Jia and Y. Shi: MonoLSS: Learnable Sample Selection For Monocular 3D Detection. International Conference on 3D Vision 2024.
338 CMKD code 25.82 % 38.98 % 22.80 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
339 Occlude3D code 25.41 % 33.08 % 20.75 % 0.01 s 1 core @ 2.5 Ghz (Python)
340 PS-SVDM 24.82 % 38.18 % 20.89 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
341 LPCG-Monoflex code 24.81 % 35.96 % 21.86 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
342 Anonymous 24.66 % 34.65 % 20.77 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
343 NeurOCS 24.49 % 37.27 % 20.89 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Min, B. Zhuang, S. Schulter, B. Liu, E. Dunn and M. Chandraker: NeurOCS: Neural NOCS Supervision for Monocular 3D Object Localization. CVPR 2023.
344 Mix-Teaching code 24.23 % 35.74 % 20.80 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
345 MonoAux-v2 code 24.15 % 34.14 % 20.84 % 0.04 s GPU @ 2.5 Ghz (Python)
346 MonoSKD code 24.08 % 37.12 % 20.37 % 0.04 s 1 core @ 2.5 Ghz (Python)
S. Wang and J. Zheng: MonoSKD: General Distillation Framework for Monocular 3D Object Detection via Spearman Correlation Coefficient. ECAI 2023.
347 MonoSample (DID-M3D) code 23.94 % 37.64 % 20.46 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
J. Qiao, B. Liu, J. Yang, B. Wang, S. Xiu, X. Du and X. Nie: MonoSample: Synthetic 3D Data Augmentation Method in Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2024.
348 TBD 23.87 % 37.10 % 20.24 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
349 PS-fld code 23.76 % 32.64 % 20.64 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
350 MSFENet code 23.65 % 36.81 % 20.06 % 0.1 s 1 core @ 2.5 Ghz (Python)
351 SHUD 23.63 % 36.39 % 20.01 % 0.04 s 1 core @ 2.5 Ghz (Python)
352 ADD code 23.58 % 35.20 % 20.08 % 0.1 s 1 core @ 2.5 Ghz (Python)
Z. Wu, Y. Wu, J. Pu, X. Li and X. Wang: Attention-based Depth Distillation with 3D-Aware Positional Encoding for Monocular 3D Object Detection. AAAI2023 .
353 MonoNeRD code 23.46 % 31.13 % 20.97 % na s 1 core @ 2.5 Ghz (Python)
J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai: MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection. ICCV 2023.
354 MonoDDE 23.46 % 33.58 % 20.37 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
355 DD3D code 23.41 % 32.35 % 20.42 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
356 MonoSGC 23.27 % 35.78 % 19.92 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
357 FDGNet code 23.27 % 36.25 % 19.56 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
358 MonoUNI code 23.05 % 33.28 % 19.39 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Jia, Z. Li and Y. Shi: MonoUNI: A Unified Vehicle and Infrastructure-side Monocular 3D Object Detection Network with Sufficient Depth Clues. Thirty-seventh Conference on Neural Information Processing Systems 2023.
359 MonoCD code 22.81 % 33.41 % 19.57 % n/a s 1 core @ 2.5 Ghz (Python)
L. Yan, P. Yan, S. Xiong, X. Xiang and Y. Tan: MonoCD: Monocular 3D Object Detection with Complementary Depths. CVPR 2024.
360 MonoFRD 22.77 % 29.65 % 20.41 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
361 DID-M3D code 22.76 % 32.95 % 19.83 % 0.04 s 1 core @ 2.5 Ghz (Python)
L. Peng, X. Wu, Z. Yang, H. Liu and D. Cai: DID-M3D: Decoupling Instance Depth for Monocular 3D Object Detection. ECCV 2022.
362 OPA-3D code 22.53 % 33.54 % 19.22 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
363 MonoSTL 22.42 % 32.19 % 19.48 % na s 1 core @ 2.5 Ghz (Python)
364 MonoCDiT 21.97 % 30.32 % 18.80 % 0.05 s GPU @ >3.5 Ghz (Python)
365 BA2-Det+MonoFlex 21.54 % 31.61 % 18.35 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
366 DCD code 21.50 % 32.55 % 18.25 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Y. Li, Y. Chen, J. He and Z. Zhang: Densely Constrained Depth Estimator for Monocular 3D Object Detection. European Conference on Computer Vision 2022.
367 MonoDETR code 21.45 % 32.20 % 18.68 % 0.04 s 1 core @ 2.5 Ghz (Python)
R. Zhang, H. Qiu, T. Wang, X. Xu, Z. Guo, Y. Qiao, P. Gao and H. Li: MonoDETR: Depth-aware Transformer for Monocular 3D Object Detection. arXiv preprint arXiv:2203.13310 2022.
368 SGM3D code 21.37 % 31.49 % 18.43 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
369 Cube R-CNN code 21.20 % 31.70 % 18.43 % 0.05 s GPU @ 2.5 Ghz (Python)
G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. CVPR 2023.
370 GUPNet code 21.19 % 30.29 % 18.20 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
371 MonoSIM_v2 21.19 % 30.36 % 18.45 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
372 HomoLoss(monoflex) code 20.68 % 29.60 % 17.81 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
373 DEVIANT code 20.44 % 29.65 % 17.43 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
374 MonoDTR 20.38 % 28.59 % 17.14 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
375 MDSNet 20.14 % 32.81 % 15.77 % 0.05 s 1 core @ 2.5 Ghz (Python)
Z. Xie, Y. Song, J. Wu, Z. Li, C. Song and Z. Xu: MDS-Net: Multi-Scale Depth Stratification 3D Object Detection from Monocular Images. Sensors 2022.
376 MonoSIM 20.09 % 28.68 % 18.28 % 0.16 s 1 core @ 2.5 Ghz (Python)
377 AutoShape code 20.08 % 30.66 % 15.95 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Z. Liu, D. Zhou, F. Lu, J. Fang and L. Zhang: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
378 MonoFlex 19.75 % 28.23 % 16.89 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
379 MonoEF 19.70 % 29.03 % 17.26 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
380 MonOAPC 19.67 % 28.91 % 16.99 % 0035 s 1 core @ 2.5 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, P. Han, X. Chai and Y. Qiu: Occlusion-Aware Plane-Constraints for Monocular 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2023.
381 MonoDSSMs-M 19.59 % 28.29 % 16.34 % 0.02 s 1 core @ 2.5 Ghz (Python + C/C++)
382 HomoLoss(imvoxelnet) code 19.25 % 29.18 % 16.21 % 0.20 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homogrpahy Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
383 DFR-Net 19.17 % 28.17 % 14.84 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
384 PS-SVDM 19.07 % 28.52 % 16.30 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
385 DLE code 19.05 % 31.09 % 14.13 % 0.06 s NVIDIA Tesla V100
C. Liu, S. Gu, L. Gool and R. Timofte: Deep Line Encoding for Monocular 3D Object Detection and Depth Prediction. Proceedings of the British Machine Vision Conference (BMVC) 2021.
386 PCT code 19.03 % 29.65 % 15.92 % 0.045 s 1 core @ 2.5 Ghz (C/C++)
L. Wang, L. Zhang, Y. Zhu, Z. Zhang, T. He, M. Li and X. Xue: Progressive Coordinate Transforms for Monocular 3D Object Detection. NeurIPS 2021.
387 CaDDN code 18.91 % 27.94 % 17.19 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
388 monodle code 18.89 % 24.79 % 16.00 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
389 Neighbor-Vote 18.65 % 27.39 % 16.54 % 0.1 s GPU @ 2.5 Ghz (Python)
X. Chu, J. Deng, Y. Li, Z. Yuan, Y. Zhang, J. Ji and Y. Zhang: Neighbor-Vote: Improving Monocular 3D Object Detection through Neighbor Distance Voting. ACM MM 2021.
390 MonoRCNN++ code 18.62 % 27.20 % 15.69 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
391 GrooMeD-NMS code 18.27 % 26.19 % 14.05 % 0.12 s 1 core @ 2.5 Ghz (Python)
A. Kumar, G. Brazil and X. Liu: GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection. CVPR 2021.
392 MonoRCNN code 18.11 % 25.48 % 14.10 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Q. Ye, X. Chen, C. Chen, Z. Chen and T. Kim: Geometry-based Distance Decomposition for Monocular 3D Object Detection. ICCV 2021.
393 Ground-Aware code 17.98 % 29.81 % 13.08 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
Y. Liu, Y. Yuan and M. Liu: Ground-aware Monocular 3D Object Detection for Autonomous Driving. IEEE Robotics and Automation Letters 2021.
394 Aug3D-RPN 17.89 % 26.00 % 14.18 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
395 DDMP-3D 17.89 % 28.08 % 13.44 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
396 IAFA 17.88 % 25.88 % 15.35 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
D. Zhou, X. Song, Y. Dai, J. Yin, F. Lu, M. Liao, J. Fang and L. Zhang: IAFA: Instance-Aware Feature Aggregation for 3D Object Detection from a Single Image. Proceedings of the Asian Conference on Computer Vision 2020.
397 mdab 17.74 % 26.42 % 15.71 % 22 s 1 core @ 2.5 Ghz (C/C++)
398 FMF-occlusion-net 17.60 % 27.39 % 13.25 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
399 RefinedMPL 17.60 % 28.08 % 13.95 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
400 Kinematic3D code 17.52 % 26.69 % 13.10 % 0.12 s 1 core @ 1.5 Ghz (C/C++)
G. Brazil, G. Pons-Moll, X. Liu and B. Schiele: Kinematic 3D Object Detection in Monocular Video. ECCV 2020 .
401 MonoAuxNorm 17.38 % 23.43 % 14.74 % 0.02 s GPU @ 2.5 Ghz (Python)
402 MonoRUn code 17.34 % 27.94 % 15.24 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
403 AM3D 17.32 % 25.03 % 14.91 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
X. Ma, Z. Wang, H. Li, P. Zhang, W. Ouyang and X. Fan: Accurate Monocular Object Detection via Color- Embedded 3D Reconstruction for Autonomous Driving. Proceedings of the IEEE international Conference on Computer Vision (ICCV) 2019.
404 YoloMono3D code 17.15 % 26.79 % 12.56 % 0.05 s GPU @ 2.5 Ghz (Python)
Y. Liu, L. Wang and L. Ming: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
405 CMAN 17.04 % 25.89 % 12.88 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
406 GAC3D 16.93 % 25.80 % 12.50 % 0.25 s 1 core @ 2.5 Ghz (Python)
M. Bui, D. Ngo, H. Pham and D. Nguyen: GAC3D: improving monocular 3D object detection with ground-guide model and adaptive convolution. 2021.
407 PatchNet code 16.86 % 22.97 % 14.97 % 0.4 s 1 core @ 2.5 Ghz (C/C++)
X. Ma, S. Liu, Z. Xia, H. Zhang, X. Zeng and W. Ouyang: Rethinking Pseudo-LiDAR Representation. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
408 PGD-FCOS3D code 16.51 % 26.89 % 13.49 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
409 ImVoxelNet code 16.37 % 25.19 % 13.58 % 0.2 s GPU @ 2.5 Ghz (Python)
D. Rukhovich, A. Vorontsova and A. Konushin: ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection. arXiv preprint arXiv:2106.01178 2021.
410 KM3D code 16.20 % 23.44 % 14.47 % 0.03 s 1 core @ 2.5 Ghz (Python)
P. Li: Monocular 3D Detection with Geometric Constraints Embedding and Semi-supervised Training. 2020.
411 D4LCN code 16.02 % 22.51 % 12.55 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
412 MonoAIU 15.68 % 23.01 % 12.87 % 0.03 s GPU @ 2.5 Ghz (Python)
413 mdab 15.09 % 23.18 % 13.38 % 22 s 1 core @ 2.5 Ghz (Python)
414 MonoPair 14.83 % 19.28 % 12.89 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
415 Decoupled-3D 14.82 % 23.16 % 11.25 % 0.08 s GPU @ 2.5 Ghz (C/C++)
Y. Cai, B. Li, Z. Jiao, H. Li, X. Zeng and X. Wang: Monocular 3D Object Detection with Decoupled Structured Polygon Estimation and Height-Guided Depth Estimation. AAAI 2020.
416 QD-3DT
This is an online method (no batch processing).
code 14.71 % 20.16 % 12.76 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
417 SMOKE code 14.49 % 20.83 % 12.75 % 0.03 s GPU @ 2.5 Ghz (Python)
Z. Liu, Z. Wu and R. Tóth: SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation. 2020.
418 RTM3D code 14.20 % 19.17 % 11.99 % 0.05 s GPU @ 1.0 Ghz (Python)
P. Li, H. Zhao, P. Liu and F. Cao: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving. 2020.
419 Mono3D_PLiDAR code 13.92 % 21.27 % 11.25 % 0.1 s NVIDIA GeForce 1080 (pytorch)
X. Weng and K. Kitani: Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud. arXiv:1903.09847 2019.
420 M3D-RPN code 13.67 % 21.02 % 10.23 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
421 CSoR
This method makes use of Velodyne laser scans.
13.07 % 18.67 % 10.34 % 3.5 s 4 cores @ >3.5 Ghz (Python + C/C++)
L. Plotkin: PyDriver: Entwicklung eines Frameworks für räumliche Detektion und Klassifikation von Objekten in Fahrzeugumgebung. 2015.
422 mdab 12.67 % 18.79 % 10.41 % 0.02 s 1 core @ 2.5 Ghz (Python)
423 MonoPSR code 12.58 % 18.33 % 9.91 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
424 Plane-Constraints code 12.06 % 17.31 % 10.05 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
425 MonoCInIS 11.64 % 22.28 % 9.95 % 0,13 s GPU @ 2.5 Ghz (C/C++)
J. Heylen, M. De Wolf, B. Dawagne, M. Proesmans, L. Van Gool, W. Abbeloos, H. Abdelkawy and D. Reino: MonoCInIS: Camera Independent Monocular 3D Object Detection using Instance Segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
426 SS3D 11.52 % 16.33 % 9.93 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
427 mdab 11.47 % 17.81 % 9.08 % 0.02 s 1 core @ 2.5 Ghz (Python)
428 MonoGRNet code 11.17 % 18.19 % 8.73 % 0.04s NVIDIA P40
Z. Qin, J. Wang and Y. Lu: MonoGRNet: A Geometric Reasoning Network for 3D Object Localization. The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19) 2019.
429 MonoFENet 11.03 % 17.03 % 9.05 % 0.15 s 1 core @ 3.5 Ghz (Python)
W. Bao, B. Xu and Z. Chen: MonoFENet: Monocular 3D Object Detection with Feature Enhancement Networks. IEEE Transactions on Image Processing 2019.
430 MonoCInIS 10.96 % 20.42 % 9.23 % 0,14 s GPU @ 2.5 Ghz (Python)
J. Heylen, M. De Wolf, B. Dawagne, M. Proesmans, L. Van Gool, W. Abbeloos, H. Abdelkawy and D. Reino: MonoCInIS: Camera Independent Monocular 3D Object Detection using Instance Segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
431 A3DODWTDA (image) code 8.66 % 10.37 % 7.06 % 0.8 s GPU @ 3.0 Ghz (Python)
F. Gustafsson and E. Linder-Norén: Automotive 3D Object Detection Without Target Domain Annotations. 2018.
432 TLNet (Stereo)
This method uses stereo information.
code 7.69 % 13.71 % 6.73 % 0.1 s 1 core @ 2.5 Ghz (Python)
Z. Qin, J. Wang and Y. Lu: Triangulation Learning Network: from Monocular to Stereo 3D Object Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
433 Shift R-CNN (mono) code 6.82 % 11.84 % 5.27 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
434 SparVox3D 6.39 % 10.20 % 5.06 % 0.05 s GPU @ 2.0 Ghz (Python)
E. Balatkan and F. Kıraç: Improving Regression Performance on Monocular 3D Object Detection Using Bin-Mixing and Sparse Voxel Data. 2021 6th International Conference on Computer Science and Engineering (UBMK) 2021.
435 GS3D 6.08 % 8.41 % 4.94 % 2 s 1 core @ 2.5 Ghz (C/C++)
B. Li, W. Ouyang, L. Sheng, X. Zeng and X. Wang: GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
436 MVRA + I-FRCNN+ 5.84 % 9.05 % 4.50 % 0.18 s GPU @ 2.5 Ghz (Python)
H. Choi, H. Kang and Y. Hyun: Multi-View Reprojection Architecture for Orientation Estimation. The IEEE International Conference on Computer Vision (ICCV) Workshops 2019.
437 WeakM3D code 5.66 % 11.82 % 4.08 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, S. Yan, B. Wu, Z. Yang, X. He and D. Cai: WeakM3D: Towards Weakly Supervised Monocular 3D Object Detection. ICLR 2022.
438 ROI-10D 4.91 % 9.78 % 3.74 % 0.2 s GPU @ 3.5 Ghz (Python)
F. Manhardt, W. Kehl and A. Gaidon: ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape. Computer Vision and Pattern Recognition (CVPR) 2019.
439 3D-GCK 4.57 % 5.79 % 3.64 % 24 ms Tesla V100
N. Gählert, J. Wan, N. Jourdan, J. Finkbeiner, U. Franke and J. Denzler: Single-Shot 3D Detection of Vehicles from Monocular RGB Images via Geometrically Constrained Keypoints in Real-Time. 2020 IEEE Intelligent Vehicles Symposium (IV) 2020.
440 FQNet 3.23 % 5.40 % 2.46 % 0.5 s 1 core @ 2.5 Ghz (Python)
L. Liu, J. Lu, C. Xu, Q. Tian and J. Zhou: Deep Fitting Degree Scoring Network for Monocular 3D Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
441 3D-SSMFCNN code 2.63 % 3.20 % 2.40 % 0.1 s GPU @ 1.5 Ghz (C/C++)
L. Novak: Vehicle Detection and Pose Estimation for Autonomous Driving. 2017.
442 VeloFCN
This method makes use of Velodyne laser scans.
0.14 % 0.02 % 0.21 % 1 s GPU @ 2.5 Ghz (Python + C/C++)
B. Li, T. Zhang and T. Xia: Vehicle Detection from 3D Lidar Using Fully Convolutional Network. RSS 2016 .
443 f3sd code 0.01 % 0.00 % 0.01 % 1.67 s 1 core @ 2.5 Ghz (C/C++)
444 multi-task CNN 0.00 % 0.00 % 0.00 % 25.1 ms GPU @ 2.0 Ghz (Python)
M. Oeljeklaus, F. Hoffmann and T. Bertram: A Fast Multi-Task CNN for Spatial Understanding of Traffic Scenes. IEEE Intelligent Transportation Systems Conference 2018.
445 mBoW
This method makes use of Velodyne laser scans.
0.00 % 0.00 % 0.00 % 10 s 1 core @ 2.5 Ghz (C/C++)
J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.
Table as LaTeX | Only published Methods

Pedestrian


Method Setting Code Moderate Easy Hard Runtime Environment
1 PiFeNet code 53.92 % 63.25 % 50.53 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
D. Le, H. Shi, H. Rezatofighi and J. Cai: Accurate and Real-time 3D Pedestrian Detection Using an Efficient Attentive Pillar Network. IEEE Robotics and Automation Letters 2022.
2 CasA++ code 53.84 % 60.14 % 51.35 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
3 TED code 53.48 % 60.13 % 50.89 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
4 UPIDet code 53.32 % 58.91 % 50.82 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing: Unleash the Potential of Image Branch for Cross-modal 3D Object Detection. Thirty-seventh Conference on Neural Information Processing Systems 2023.
5 EQ-PVRCNN code 52.81 % 61.73 % 49.87 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
6 VPFNet code 52.41 % 60.07 % 50.28 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
C. Wang, H. Chen, Y. Chen, P. Hsiao and L. Fu: VoPiFNet: Voxel-Pixel Fusion Network for Multi-Class 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2024.
7 Frustum-PointPillars code 52.23 % 60.98 % 48.30 % 0.06 s 4 cores @ 3.0 Ghz (Python)
A. Paigwar, D. Sierra-Gonzalez, \. Erkent and C. Laugier: Frustum-PointPillars: A Multi-Stage Approach for 3D Object Detection using RGB Camera and LiDAR. International Conference on Computer Vision, ICCV, Workshop on Autonomous Vehicle Vision 2021.
8 LoGoNet code 52.06 % 58.24 % 49.87 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
9 TANet code 51.38 % 60.85 % 47.54 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
10 focalnet 51.38 % 58.82 % 49.23 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
11 CasA code 51.37 % 57.95 % 49.08 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
12 focalnet 51.34 % 58.94 % 49.21 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
13 SDGUFusion 51.00 % 58.58 % 48.72 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
14 MLF-DET 50.88 % 56.45 % 47.60 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
Z. Lin, Y. Shen, S. Zhou, S. Chen and N. Zheng: MLF-DET: Multi-Level Fusion for Cross- Modal 3D Object Detection. International Conference on Artificial Neural Networks 2023.
15 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 50.57 % 59.86 % 46.74 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
16 DPPFA-Net 50.55 % 57.02 % 47.25 % 0.1 s 1 core @ 2.5 Ghz (Python)
J. Wang, X. Kong, H. Nishikawa, Q. Lian and H. Tomiyama: Dynamic Point-Pixel Feature Alignment for Multi-modal 3D Object Detection. IEEE Internet of Things Journal 2023.
17 HotSpotNet 50.53 % 57.39 % 46.65 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
18 OGMMDet code 50.50 % 57.39 % 46.76 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
19 ANM code 50.50 % 57.39 % 46.76 % ANM ANM
20 VMVS
This method makes use of Velodyne laser scans.
50.34 % 60.34 % 46.45 % 0.25 s GPU @ 2.5 Ghz (Python)
J. Ku, A. Pon, S. Walsh and S. Waslander: Improving 3D object detection for pedestrians with virtual multi-view synthesis orientation estimation. IROS 2019.
21 AVOD-FPN
This method makes use of Velodyne laser scans.
code 50.32 % 58.49 % 46.98 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
22 3DSSD code 49.94 % 60.54 % 45.73 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object Detector. CVPR 2020.
23 PointPainting
This method makes use of Velodyne laser scans.
49.93 % 58.70 % 46.29 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
24 SemanticVoxels 49.93 % 58.91 % 47.31 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
J. Fei, W. Chen, P. Heidenreich, S. Wirges and C. Stiller: SemanticVoxels: Sequential Fusion for 3D Pedestrian Detection using LiDAR Point Cloud and Semantic Segmentation. MFI 2020.
25 ACDet code 49.82 % 58.35 % 47.17 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
26 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 49.81 % 59.04 % 45.92 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
27 USVLab BSAODet code 49.75 % 56.05 % 47.59 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
28 ACFNet 49.74 % 58.07 % 47.27 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Tian, X. Zhang, X. Wang, J. Xu, J. Wang, R. Ai, W. Gu and W. Ding: ACF-Net: Asymmetric Cascade Fusion for 3D Detection With LiDAR Point Clouds and Images. IEEE Transactions on Intelligent Vehicles 2023.
29 F-PointNet
This method makes use of Velodyne laser scans.
code 49.57 % 57.13 % 45.48 % 0.17 s GPU @ 3.0 Ghz (Python)
C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.
30 IOUFusion 49.45 % 57.53 % 45.42 % 0.1 s GPU @ 2.5 Ghz (Python)
31 af 49.12 % 55.95 % 46.90 % 1 s GPU @ 2.5 Ghz (Python)
32 F-ConvNet
This method makes use of Velodyne laser scans.
code 48.96 % 57.04 % 44.33 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
33 HVNet 48.86 % 54.84 % 46.33 % 0.03 s GPU @ 2.0 Ghz (Python)
M. Ye, S. Xu and T. Cao: HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection. CVPR 2020.
34 CAT-Det 48.78 % 57.13 % 45.56 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
35 STD code 48.72 % 60.02 % 44.55 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for Point Cloud. ICCV 2019.
36 PSMS-Net
This method makes use of Velodyne laser scans.
48.66 % 55.15 % 45.14 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
37 PointPillars
This method makes use of Velodyne laser scans.
code 48.64 % 57.60 % 45.78 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
38 focal 48.56 % 55.56 % 46.42 % 100 s 1 core @ 2.5 Ghz (Python)
39 EPNet++ 48.47 % 56.24 % 45.73 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
40 MGAF-3DSSD code 48.46 % 56.09 % 44.90 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
41 FIRM-Net 48.37 % 55.63 % 45.97 % 0.07 s 1 core @ 2.5 Ghz (Python)
42 Fast-CLOCs 48.27 % 57.19 % 44.55 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
43 SCNet3D 48.17 % 54.99 % 45.83 % 0.08 s 1 core @ 2.5 Ghz (Python)
44 FromVoxelToPoint code 48.15 % 56.54 % 45.63 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
45 R^2 R-CNN 48.10 % 56.04 % 45.65 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
46 SFA-GCL code 47.98 % 56.37 % 44.08 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
47 SFA-GCL_dataaug code 47.95 % 56.33 % 44.07 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
48 EOTL code 47.80 % 56.52 % 43.36 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek: Efficient Online Transfer Learning for Road Participants Detection in Autonomous Driving. IEEE Sensors Journal 2023.
49 RAFDet 47.80 % 55.20 % 45.34 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
50 HMFI code 47.77 % 55.61 % 45.17 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
51 SFA-GCL(baseline) code 47.69 % 55.95 % 43.91 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
52 IIOU code 47.41 % 54.83 % 43.70 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
53 LVFSD 47.41 % 55.85 % 44.77 % 0.06 s
ERROR: Wrong syntax in BIBTEX file.
54 P2V-RCNN 47.36 % 54.15 % 45.10 % 0.1 s 2 cores @ 2.5 Ghz (Python)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
55 CZY_PPF_Net 47.22 % 51.95 % 45.46 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
56 Point-GNN
This method makes use of Velodyne laser scans.
code 47.07 % 55.36 % 44.61 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
57 3ONet 47.05 % 56.76 % 44.62 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang and M. Yoo: 3ONet: 3-D Detector for Occluded Object Under Obstructed Conditions. IEEE Sensors Journal 2023.
58 OFFNet 47.05 % 53.85 % 44.75 % 0.1 s GPU @ 2.5 Ghz (Python)
59 LGNet-3classes code 46.89 % 52.46 % 44.77 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
60 BPG3D 46.83 % 52.80 % 44.70 % 0.05 s 1 core @ 2.5 Ghz (Python)
61 KPTr 46.83 % 53.98 % 44.56 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
62 SCNet
This method makes use of Velodyne laser scans.
46.73 % 56.87 % 42.74 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
63 DGEnhCL code 46.53 % 56.39 % 42.65 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
64 PASS-PV-RCNN-Plus 46.36 % 51.47 % 44.10 % 1 s 1 core @ 2.5 Ghz (Python)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
65 RAFDet code 46.32 % 53.65 % 42.98 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
66 VPA 46.23 % 52.37 % 42.84 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
67 SFA-GCL(80, k=4) code 46.16 % 55.88 % 43.84 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
68 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 46.13 % 54.77 % 42.84 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
69 ARPNET 45.92 % 55.48 % 42.54 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
70 SFA-GCL(80) code 45.85 % 55.34 % 42.02 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
71 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 45.82 % 52.03 % 43.81 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
72 SVGA-Net 45.68 % 53.09 % 43.30 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
73 epBRM
This method makes use of Velodyne laser scans.
code 45.49 % 52.48 % 42.75 % 0.10 s 1 core @ 2.5 Ghz (C/C++)
K. Shin: Improving a Quality of 3D Object Detection by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.
74 PG-RCNN code 45.48 % 51.63 % 43.30 % 0.06 s GPU @ 1.5 Ghz (Python)
I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim: PG-RCNN: Semantic Surface Point Generation for 3D Object Detection. 2023.
75 MG 45.46 % 51.71 % 42.09 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
76 PDV code 45.45 % 51.95 % 43.33 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
77 MLOD
This method makes use of Velodyne laser scans.
code 45.40 % 55.09 % 41.42 % 0.12 s GPU @ 1.5 Ghz (Python)
J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.
78 MLFusion-VS 45.27 % 50.74 % 43.28 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
79 HA-PillarNet 45.26 % 50.50 % 43.21 % 0.05 s 1 core @ 2.5 Ghz (Python)
80 centerpoint_pcdet 45.22 % 51.41 % 43.05 % 0.06 s 1 core @ 2.5 Ghz (Python)
81 IA-SSD (single) code 45.07 % 52.73 % 42.75 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
82 DiffCandiDet 45.02 % 52.45 % 41.24 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
83 DFAF3D 45.01 % 52.86 % 42.73 % 0.05 s 1 core @ 2.5 Ghz (Python)
Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds. Image and Vision Computing 2023.
84 voxelnext_pcdet 44.91 % 52.43 % 42.56 % 0.05 s 1 core @ 2.5 Ghz (Python)
85 SRDL 44.84 % 52.42 % 42.56 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
86 M3DeTR code 44.78 % 50.63 % 42.57 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
87 Anonymous code 44.66 % 53.73 % 42.58 % 0.04 s 1 core @ 2.5 Ghz (Python)
88 PI-SECOND code 44.64 % 54.33 % 40.68 % 0.05 s GPU @ >3.5 Ghz (Python + C/C++)
89 PV-RCNN-Plus 44.61 % 51.20 % 42.55 % 1 s 1 core @ 2.5 Ghz (C/C++)
90 MFB3D 44.54 % 49.77 % 42.09 % 0.14 s 1 core @ 2.5 Ghz (Python)
91 TF-PartA2 44.47 % 53.22 % 41.88 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
92 U_second_v4_ep_100_8 44.46 % 51.36 % 42.47 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
93 SIF 44.28 % 52.05 % 42.03 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
94 BAPartA2S-4h 44.18 % 53.05 % 41.54 % 0.1 s 1 core @ 2.5 Ghz (Python)
95 bs 44.18 % 50.59 % 41.92 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
96 U_PV_V2_ep_100_100 44.18 % 49.62 % 42.44 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
97 CG-SSD 44.17 % 50.84 % 42.02 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
98 SFA-GCL code 44.17 % 53.53 % 41.97 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
99 DVFENet 44.12 % 50.98 % 41.62 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
100 Test_dif code 43.97 % 51.07 % 41.05 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
101 Faraway-Frustum
This method makes use of Velodyne laser scans.
code 43.85 % 52.15 % 41.68 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-frustum: Dealing with lidar sparsity for 3D object detection using fusion. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) 2021.
102 RAFDet 43.81 % 51.37 % 41.62 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
103 GSG-FPS code 43.77 % 50.21 % 41.60 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
104 HAF-PVP_test 43.70 % 50.24 % 40.12 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
105 SC-SSD 43.64 % 50.05 % 41.56 % 1 s 1 core @ 2.5 Ghz (C/C++)
106 PR-SSD 43.58 % 50.38 % 41.36 % 0.02 s GPU @ 2.5 Ghz (Python)
107 GF-pointnet 43.47 % 50.12 % 41.30 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
108 GeVo 43.46 % 47.87 % 41.53 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
109 S-AT GCN 43.43 % 50.63 % 41.58 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
110 AAMVFNet code 43.29 % 49.38 % 40.33 % 0.04 s GPU @ 2.5 Ghz (Python)
111 SecAtten 42.89 % 51.42 % 40.28 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
112 BirdNet+
This method makes use of Velodyne laser scans.
code 42.87 % 48.90 % 40.59 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
113 L-AUG 42.84 % 50.32 % 40.29 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
T. Cortinhal, I. Gouigah and E. Aksoy: Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object Detection. 2023.
114 AEPF 42.84 % 50.61 % 40.74 % 0.05 s GPU @ 2.5 Ghz (Python)
115 XT-PartA2 42.68 % 50.62 % 40.25 % 0.1 s GPU @ >3.5 Ghz (Python)
116 IA-SSD (multi) code 42.61 % 51.76 % 40.51 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
117 AMVFNet code 42.61 % 50.04 % 39.35 % 0.04 s GPU @ 2.5 Ghz (Python)
118 prcnn_v18_80_100 42.48 % 50.92 % 38.81 % 0.1 s 1 core @ 2.5 Ghz (Python)
119 XView 42.42 % 47.24 % 39.96 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
120 PCNet3D 42.19 % 50.02 % 39.69 % 0.05 s GPU @ 3.5 Ghz (Python)
121 GraphAlign(ICCV2023) code 41.95 % 46.61 % 40.05 % 0.03 s GPU @ 2.0 Ghz (Python)
Z. Song, H. Wei, L. Bai, L. Yang and C. Jia: GraphAlign: Enhancing accurate feature alignment by graph matching for multi-modal 3D object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2023.
122 SeSame-voxel code 41.59 % 50.12 % 37.79 % N/A s TITAN RTX @ 1.35 Ghz (Python)
123 HINTED 41.55 % 53.09 % 39.18 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
124 PUDet 41.48 % 50.24 % 39.22 % 0.3 s GPU @ 2.5 Ghz (Python)
125 mm3d_PartA2 41.24 % 48.45 % 38.92 % 0.1 s GPU @ >3.5 Ghz (Python)
126 SeSame-point code 41.22 % 48.25 % 39.18 % N/A s TITAN RTX @ 1.35 Ghz (Python)
127 PFF3D
This method makes use of Velodyne laser scans.
code 40.94 % 48.74 % 38.54 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
128 MMpointpillars 40.43 % 47.85 % 37.68 % 0.05 s 1 core @ 2.5 Ghz (Python)
129 VoxelFSD-S 40.39 % 47.66 % 38.12 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
130 VSAC 40.37 % 49.91 % 36.64 % 0.07 s 1 core @ 1.0 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
131 IIOU_LDR code 40.24 % 48.51 % 37.03 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
132 MM_SECOND code 40.22 % 49.46 % 37.46 % 0.05 s GPU @ >3.5 Ghz (Python)
133 ROT_S3D 40.08 % 46.62 % 38.33 % 0.1 s GPU @ 2.5 Ghz (Python)
134 DSGN++
This method uses stereo information.
code 38.92 % 50.26 % 35.12 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
135 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 38.79 % 47.51 % 35.85 % 0.0047s 1 core @ 2.5 Ghz (python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
136 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 38.28 % 45.53 % 35.37 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
137 CSW3D
This method makes use of Velodyne laser scans.
37.96 % 49.27 % 33.83 % 0.03 s 4 cores @ 2.5 Ghz (C/C++)
J. Hu, T. Wu, H. Fu, Z. Wang and K. Ding: Cascaded Sliding Window Based Real-Time 3D Region Proposal for Pedestrian Detection. ROBIO 2019.
138 StereoDistill 37.75 % 50.79 % 34.28 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
139 SeSame-pillar code 37.31 % 44.21 % 35.17 % N/A s TITAN RTX @ 1.35 Ghz (Python)
140 P2P code 36.71 % 44.67 % 34.86 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
141 DMF
This method uses stereo information.
34.92 % 42.08 % 32.69 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
142 SparsePool code 34.15 % 43.33 % 31.78 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
143 MMLAB LIGA-Stereo
This method uses stereo information.
code 34.13 % 44.71 % 30.42 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
144 SeSame-voxel w/score code 33.76 % 39.42 % 31.31 % N/A s GPU @ 1.5 Ghz (Python)
145 AVOD
This method makes use of Velodyne laser scans.
code 33.57 % 42.58 % 30.14 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
146 SparsePool code 33.22 % 41.55 % 29.66 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
147 SeSame-pillar w/scor code 32.78 % 39.11 % 30.87 % N/A s 1 core @ 2.5 Ghz (C/C++)
148 ODGS 31.23 % 37.54 % 28.97 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
149 SFEBEV 31.04 % 38.14 % 29.09 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
150 CG-Stereo
This method uses stereo information.
29.56 % 39.24 % 25.87 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
151 PointRGBNet 29.32 % 38.07 % 26.94 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
152 Disp R-CNN
This method uses stereo information.
code 29.12 % 42.72 % 25.09 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
153 Disp R-CNN (velo)
This method uses stereo information.
code 28.34 % 40.21 % 24.46 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
154 SeSame-point w/score code 25.79 % 33.98 % 22.50 % N/A s GPU @ 1.5 Ghz (Python)
155 BirdNet
This method makes use of Velodyne laser scans.
23.06 % 28.20 % 21.65 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
156 OC Stereo
This method uses stereo information.
code 20.80 % 29.79 % 18.62 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
157 YOLOStereo3D
This method uses stereo information.
code 20.76 % 31.01 % 18.41 % 0.1 s GPU 1080Ti
Y. Liu, L. Wang and M. Liu: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
158 DSGN
This method uses stereo information.
code 20.75 % 26.61 % 18.86 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
159 Complexer-YOLO
This method makes use of Velodyne laser scans.
18.26 % 21.42 % 17.06 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
160 BKDStereo3D code 17.44 % 25.47 % 14.44 % 0.1 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
161 BKDStereo3D w/o KD code 16.87 % 23.82 % 14.85 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
162 TopNet-Retina
This method makes use of Velodyne laser scans.
14.57 % 18.04 % 12.48 % 52ms GeForce 1080Ti (tensorflow-gpu, v1.12)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
163 RT3D-GMP
This method uses stereo information.
14.22 % 19.92 % 12.83 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
164 MonoLTKD_V3 13.62 % 19.79 % 11.92 % 0.04 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
165 TopNet-HighRes
This method makes use of Velodyne laser scans.
13.50 % 19.43 % 11.93 % 101ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
166 MonoTAKD V2 13.47 % 19.67 % 11.75 % 0.1 s 1 core @ 2.5 Ghz (Python)
167 ESGN
This method uses stereo information.
13.03 % 17.94 % 11.54 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
168 SST [st]
This method uses stereo information.
12.66 % 19.18 % 11.07 % 1 s 1 core @ 2.5 Ghz (Python)
169 DD3D code 12.51 % 18.58 % 10.65 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
170 MonoLSS 12.34 % 18.40 % 10.54 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, J. Jia and Y. Shi: MonoLSS: Learnable Sample Selection For Monocular 3D Detection. International Conference on 3D Vision 2024.
171 PS-fld code 12.23 % 19.03 % 10.53 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
172 MonoTAKD 12.15 % 18.23 % 10.50 % 0.1 s 1 core @ 2.5 Ghz (Python)
173 CIE 11.94 % 17.90 % 10.34 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
174 MonoLTKD 11.85 % 17.74 % 10.26 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
175 error 11.11 % 16.66 % 9.46 % 1 s 1 core @ 2.5 Ghz (Python)
176 OPA-3D code 11.01 % 17.14 % 9.94 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
177 MonoUNI code 10.90 % 16.54 % 9.17 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Jia, Z. Li and Y. Shi: MonoUNI: A Unified Vehicle and Infrastructure-side Monocular 3D Object Detection Network with Sufficient Depth Clues. Thirty-seventh Conference on Neural Information Processing Systems 2023.
178 MonoDTR 10.59 % 16.66 % 9.00 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
179 MonoFRD 10.38 % 15.68 % 8.79 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
180 GUPNet code 10.37 % 15.62 % 8.79 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
181 CMKD code 10.28 % 16.03 % 8.85 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
182 MonoSIM 10.08 % 15.80 % 8.64 % 0.16 s 1 core @ 2.5 Ghz (Python)
183 DEVIANT code 9.77 % 14.49 % 8.28 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
184 PS-SVDM 9.75 % 15.03 % 8.37 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
185 MonoNeRD code 9.66 % 15.27 % 8.28 % na s 1 core @ 2.5 Ghz (Python)
J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai: MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection. ICCV 2023.
186 CaDDN code 9.41 % 14.72 % 8.17 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
187 SGM3D code 9.39 % 15.39 % 8.61 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
188 MonoRCNN++ code 9.04 % 13.45 % 7.74 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
189 HomoLoss(monoflex) code 8.81 % 13.26 % 7.41 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
190 mdab 8.79 % 13.79 % 7.99 % 22 s 1 core @ 2.5 Ghz (C/C++)
191 mdab 8.78 % 13.62 % 7.88 % 22 s 1 core @ 2.5 Ghz (Python)
192 MonoSIM_v2 8.62 % 13.13 % 7.27 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
193 MonoDDE 8.41 % 12.38 % 7.16 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
194 Mix-Teaching code 8.40 % 12.34 % 7.06 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
195 MDSNet 8.18 % 12.05 % 7.03 % 0.05 s 1 core @ 2.5 Ghz (Python)
Z. Xie, Y. Song, J. Wu, Z. Li, C. Song and Z. Xu: MDS-Net: Multi-Scale Depth Stratification 3D Object Detection from Monocular Images. Sensors 2022.
196 PS-SVDM 8.11 % 12.70 % 6.84 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
197 LPCG-Monoflex code 7.92 % 12.11 % 6.61 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
198 RefinedMPL 7.92 % 13.09 % 7.25 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
199 Cube R-CNN code 7.65 % 11.67 % 6.60 % 0.05 s GPU @ 2.5 Ghz (Python)
G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. CVPR 2023.
200 MonoRUn code 7.59 % 11.70 % 6.34 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
201 MonoFlex 7.36 % 10.36 % 6.29 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
202 MonoTRKDv2 7.22 % 11.05 % 6.11 % 40 s 1 core @ 2.5 Ghz (Python)
203 DA3D+KM3D+v2-99 7.06 % 10.32 % 6.10 % 0.120s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
204 MonoPair 7.04 % 10.99 % 6.29 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
205 monodle code 6.96 % 10.73 % 6.20 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
206 MonOAPC 6.82 % 9.62 % 5.78 % 0035 s 1 core @ 2.5 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, P. Han, X. Chai and Y. Qiu: Occlusion-Aware Plane-Constraints for Monocular 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2023.
207 TopNet-DecayRate
This method makes use of Velodyne laser scans.
6.59 % 8.78 % 6.25 % 92 ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
208 MonoAIU 6.43 % 9.55 % 5.39 % 0.03 s GPU @ 2.5 Ghz (Python)
209 mdab 6.36 % 10.26 % 5.62 % 0.02 s 1 core @ 2.5 Ghz (Python)
210 Anonymous 6.25 % 9.22 % 5.32 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
211 Shift R-CNN (mono) code 5.66 % 8.58 % 4.49 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
212 FMF-occlusion-net 5.62 % 8.69 % 5.25 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
213 Aug3D-RPN 5.22 % 7.14 % 4.21 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
214 TopNet-UncEst
This method makes use of Velodyne laser scans.
4.60 % 6.88 % 3.79 % 0.09 s NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing Object Detection Uncertainty in Multi-Layer Grid Maps. 2019.
215 MonoPSR code 4.56 % 7.24 % 4.11 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
216 DFR-Net 4.52 % 6.66 % 3.71 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
217 MonoGhost_Ped_Cycl 4.49 % 7.14 % 4.39 % 0.03 s 1 core @ 2.5 Ghz (Python)
218 QD-3DT
This is an online method (no batch processing).
code 4.23 % 6.62 % 3.39 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
219 DA3D+KM3D code 4.05 % 5.94 % 3.55 % 0.02 s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
220 M3D-RPN code 4.05 % 5.65 % 3.29 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
221 DDMP-3D 4.02 % 5.53 % 3.36 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
222 CMAN 3.96 % 5.24 % 3.18 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
223 D4LCN code 3.86 % 5.06 % 3.59 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
224 RT3DStereo
This method uses stereo information.
3.65 % 4.72 % 3.00 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
225 DA3D 3.27 % 4.93 % 2.74 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
226 MonoEF 3.05 % 4.61 % 2.85 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
227 MonoLiG code 2.72 % 3.74 % 2.55 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
A. Hekimoglu, M. Schmidt and A. Ramiro: Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning. 2023.
228 mdab 2.43 % 3.68 % 2.26 % 0.02 s 1 core @ 2.5 Ghz (Python)
229 SS3D 2.09 % 2.48 % 1.61 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
230 SparVox3D 2.05 % 2.90 % 1.69 % 0.05 s GPU @ 2.0 Ghz (Python)
E. Balatkan and F. Kıraç: Improving Regression Performance on Monocular 3D Object Detection Using Bin-Mixing and Sparse Voxel Data. 2021 6th International Conference on Computer Science and Engineering (UBMK) 2021.
231 PGD-FCOS3D code 1.88 % 2.82 % 1.54 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
232 MonoAuxNorm 1.24 % 1.58 % 0.96 % 0.02 s GPU @ 2.5 Ghz (Python)
233 Plane-Constraints code 1.16 % 1.87 % 1.13 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
234 f3sd code 0.00 % 0.00 % 0.00 % 1.67 s 1 core @ 2.5 Ghz (C/C++)
235 mBoW
This method makes use of Velodyne laser scans.
0.00 % 0.00 % 0.00 % 10 s 1 core @ 2.5 Ghz (C/C++)
J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.
Table as LaTeX | Only published Methods

Cyclist


Method Setting Code Moderate Easy Hard Runtime Environment
1 UPIDet code 78.19 % 89.65 % 71.13 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing: Unleash the Potential of Image Branch for Cross-modal 3D Object Detection. Thirty-seventh Conference on Neural Information Processing Systems 2023.
2 CasA++ code 76.99 % 88.93 % 70.10 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
3 TED code 76.95 % 89.54 % 70.31 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
4 CasA code 75.74 % 88.99 % 68.47 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
5 LoGoNet code 74.92 % 85.85 % 67.62 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
6 MLF-DET 74.88 % 86.20 % 66.75 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
Z. Lin, Y. Shen, S. Zhou, S. Chen and N. Zheng: MLF-DET: Multi-Level Fusion for Cross- Modal 3D Object Detection. International Conference on Artificial Neural Networks 2023.
7 USVLab BSAODet code 74.38 % 85.01 % 67.38 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
8 PSMS-Net
This method makes use of Velodyne laser scans.
74.30 % 85.06 % 66.34 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
9 HMFI code 74.06 % 85.69 % 67.11 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
10 VPA 73.91 % 84.94 % 66.92 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
11 CZY_PPF_Net 73.64 % 85.39 % 66.01 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
12 EQ-PVRCNN code 73.30 % 86.25 % 65.49 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
13 OGMMDet code 72.92 % 86.07 % 65.95 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
14 ANM code 72.92 % 86.07 % 65.95 % ANM ANM
15 OFFNet 72.74 % 83.33 % 67.53 % 0.1 s GPU @ 2.5 Ghz (Python)
16 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 72.61 % 83.93 % 65.82 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
17 CAT-Det 72.51 % 85.35 % 65.55 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
18 HA-PillarNet 72.50 % 86.25 % 65.38 % 0.05 s 1 core @ 2.5 Ghz (Python)
19 KPTr 72.24 % 83.83 % 63.94 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
20 GF-pointnet 71.90 % 84.28 % 63.75 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
21 BtcDet
This method makes use of Velodyne laser scans.
code 71.76 % 84.48 % 64.70 % 0.09 s GPU @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhong and U. Neumann: Behind the Curtain: Learning Occluded Shapes for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
22 ACFNet 71.68 % 85.76 % 65.33 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Tian, X. Zhang, X. Wang, J. Xu, J. Wang, R. Ai, W. Gu and W. Ding: ACF-Net: Asymmetric Cascade Fusion for 3D Detection With LiDAR Point Clouds and Images. IEEE Transactions on Intelligent Vehicles 2023.
23 RagNet3D code 71.64 % 85.10 % 65.02 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
24 Anonymous code 71.61 % 86.04 % 63.31 % 0.04 s 1 core @ 2.5 Ghz (Python)
25 focalnet 71.57 % 82.10 % 65.37 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
26 PointPainting
This method makes use of Velodyne laser scans.
71.54 % 83.91 % 62.97 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
27 PASS-PV-RCNN-Plus 71.51 % 83.03 % 63.85 % 1 s 1 core @ 2.5 Ghz (Python)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
28 PV-RCNN-Plus 71.51 % 83.83 % 64.77 % 1 s 1 core @ 2.5 Ghz (C/C++)
29 RangeIoUDet
This method makes use of Velodyne laser scans.
71.49 % 85.99 % 63.62 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, Z. Zhang, M. Zhang, X. Zhao and S. Pu: RangeIoUDet: Range Image Based Real-Time 3D Object Detector Optimized by Intersection Over Union. CVPR 2021.
30 ACDet code 71.48 % 87.76 % 64.69 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
31 IA-SSD (single) code 71.44 % 85.91 % 63.41 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
32 U_PV_V2_ep_100_100 71.35 % 84.08 % 63.95 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
33 PDV code 71.31 % 85.54 % 64.40 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
34 3ONet 71.29 % 85.17 % 62.99 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang and M. Yoo: 3ONet: 3-D Detector for Occluded Object Under Obstructed Conditions. IEEE Sensors Journal 2023.
35 DFAF3D 71.27 % 85.75 % 64.25 % 0.05 s 1 core @ 2.5 Ghz (Python)
Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds. Image and Vision Computing 2023.
36 BPG3D 71.24 % 85.28 % 63.42 % 0.05 s 1 core @ 2.5 Ghz (Python)
37 focalnet 71.24 % 81.78 % 65.37 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
38 HVNet 71.17 % 83.97 % 63.65 % 0.03 s GPU @ 2.0 Ghz (Python)
M. Ye, S. Xu and T. Cao: HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection. CVPR 2020.
39 DiffCandiDet 71.11 % 85.33 % 64.52 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
40 RAFDet 70.99 % 84.92 % 62.93 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
41 M3DeTR code 70.89 % 85.03 % 63.14 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
42 PR-SSD 70.88 % 83.44 % 63.43 % 0.02 s GPU @ 2.5 Ghz (Python)
43 HAF-PVP_test 70.66 % 83.99 % 62.42 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
44 PG-RCNN code 70.65 % 84.94 % 64.03 % 0.06 s GPU @ 1.5 Ghz (Python)
I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim: PG-RCNN: Semantic Surface Point Generation for 3D Object Detection. 2023.
45 AAMVFNet code 70.52 % 84.47 % 63.85 % 0.04 s GPU @ 2.5 Ghz (Python)
46 LGNet-3classes code 70.44 % 81.32 % 62.95 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
47 AMVFNet code 70.44 % 83.98 % 63.87 % 0.04 s GPU @ 2.5 Ghz (Python)
48 SPG_mini
This method makes use of Velodyne laser scans.
code 70.09 % 82.66 % 63.61 % 0.09 s GPU @ 2.5 Ghz (Python)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
49 SDGUFusion 70.05 % 81.15 % 63.98 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
50 RAFDet code 69.81 % 82.41 % 62.17 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
51 RAFDet 69.79 % 81.93 % 62.63 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
52 GeVo 69.56 % 83.03 % 62.74 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
53 MFB3D 69.52 % 83.15 % 63.38 % 0.14 s 1 core @ 2.5 Ghz (Python)
54 GraphAlign(ICCV2023) code 69.43 % 80.71 % 63.57 % 0.03 s GPU @ 2.0 Ghz (Python)
Z. Song, H. Wei, L. Bai, L. Yang and C. Jia: GraphAlign: Enhancing accurate feature alignment by graph matching for multi-modal 3D object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2023.
55 FIRM-Net 69.09 % 82.99 % 62.48 % 0.07 s 1 core @ 2.5 Ghz (Python)
56 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 68.89 % 82.49 % 62.41 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
57 F-ConvNet
This method makes use of Velodyne laser scans.
code 68.88 % 84.16 % 60.05 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
58 IIOU code 68.82 % 83.89 % 60.14 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
59 SCNet3D 68.77 % 84.49 % 62.12 % 0.08 s 1 core @ 2.5 Ghz (Python)
60 bs 68.73 % 82.32 % 62.18 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
61 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 68.73 % 83.43 % 61.85 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
62 U_second_v4_ep_100_8 68.62 % 82.37 % 61.11 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
63 HotSpotNet 68.51 % 83.29 % 61.84 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
64 MLFusion-VS 68.43 % 80.99 % 62.46 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
65 CG-SSD 68.24 % 79.80 % 61.05 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
66 P2V-RCNN 68.06 % 81.09 % 60.73 % 0.1 s 2 cores @ 2.5 Ghz (Python)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
67 SFA-GCL(80) code 68.06 % 84.65 % 61.18 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
68 H^23D R-CNN code 67.90 % 82.76 % 60.49 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
J. Deng, W. Zhou, Y. Zhang and H. Li: From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2021.
69 SFA-GCL code 67.72 % 84.16 % 60.89 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
70 focal 67.67 % 80.82 % 61.88 % 100 s 1 core @ 2.5 Ghz (Python)
71 VPFNet code 67.66 % 80.83 % 61.36 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
C. Wang, H. Chen, Y. Chen, P. Hsiao and L. Fu: VoPiFNet: Voxel-Pixel Fusion Network for Multi-Class 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2024.
72 3DSSD code 67.62 % 85.04 % 61.14 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object Detector. CVPR 2020.
73 Fast-CLOCs 67.55 % 83.34 % 59.61 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
74 SFA-GCL(80, k=4) code 67.46 % 84.31 % 58.87 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
75 XT-PartA2 67.40 % 81.41 % 61.92 % 0.1 s GPU @ >3.5 Ghz (Python)
76 DVFENet 67.40 % 82.29 % 60.71 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
77 FromVoxelToPoint code 67.36 % 82.68 % 59.15 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
78 Point-GNN
This method makes use of Velodyne laser scans.
code 67.28 % 81.17 % 59.67 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
79 HINTED 67.27 % 81.53 % 60.88 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
80 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 67.24 % 82.56 % 60.28 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
81 STD code 67.23 % 81.36 % 59.35 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for Point Cloud. ICCV 2019.
82 mm3d_PartA2 67.12 % 82.10 % 60.42 % 0.1 s GPU @ >3.5 Ghz (Python)
83 BAPartA2S-4h 67.05 % 82.22 % 61.08 % 0.1 s 1 core @ 2.5 Ghz (Python)
84 SVGA-Net 66.82 % 81.25 % 59.37 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
85 S-AT GCN 66.71 % 78.53 % 60.19 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
86 TF-PartA2 66.67 % 82.42 % 60.64 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
87 ARPNET 66.39 % 82.32 % 58.80 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
88 SecAtten 66.30 % 79.23 % 60.98 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
89 IA-SSD (multi) code 66.29 % 81.30 % 59.58 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
90 MGAF-3DSSD code 66.00 % 83.03 % 57.57 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
91 IOUFusion 65.88 % 82.98 % 59.11 % 0.1 s GPU @ 2.5 Ghz (Python)
92 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 65.85 % 80.00 % 58.69 % 0.0047s 1 core @ 2.5 Ghz (Python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
93 EOTL code 65.76 % 81.44 % 56.47 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek: Efficient Online Transfer Learning for Road Participants Detection in Autonomous Driving. IEEE Sensors Journal 2023.
94 PI-SECOND code 65.62 % 81.99 % 59.19 % 0.05 s GPU @ >3.5 Ghz (Python + C/C++)
95 MG 65.43 % 81.05 % 59.11 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
96 SC-SSD 65.36 % 79.14 % 58.50 % 1 s 1 core @ 2.5 Ghz (C/C++)
97 SFA-GCL code 65.22 % 82.10 % 56.54 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
98 af 65.12 % 78.85 % 59.17 % 1 s GPU @ 2.5 Ghz (Python)
99 DGEnhCL code 65.07 % 81.38 % 58.13 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
100 centerpoint_pcdet 64.99 % 79.83 % 58.43 % 0.06 s 1 core @ 2.5 Ghz (Python)
101 Test_dif code 64.80 % 80.24 % 58.49 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
102 voxelnext_pcdet 64.66 % 81.10 % 57.53 % 0.05 s 1 core @ 2.5 Ghz (Python)
103 GSG-FPS code 64.65 % 78.65 % 58.47 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
104 Res3DNet 64.64 % 79.47 % 57.99 % 0.05 s GPU @ 3.5 Ghz (Python)
105 Faraway-Frustum
This method makes use of Velodyne laser scans.
code 64.54 % 79.65 % 57.84 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-frustum: Dealing with lidar sparsity for 3D object detection using fusion. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) 2021.
106 SRDL 64.52 % 79.64 % 57.90 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
107 VoxelFSD-S 64.26 % 80.07 % 57.17 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
108 SIF 64.13 % 79.32 % 57.38 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
109 prcnn_v18_80_100 63.87 % 80.66 % 57.25 % 0.1 s 1 core @ 2.5 Ghz (Python)
110 TANet code 63.77 % 79.16 % 56.21 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
111 SFA-GCL_dataaug code 63.35 % 81.93 % 56.47 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
112 ROT_S3D 63.26 % 79.60 % 56.95 % 0.1 s GPU @ 2.5 Ghz (Python)
113 SFA-GCL(baseline) code 63.24 % 81.50 % 56.42 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
114 XView 63.06 % 81.32 % 56.65 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
115 EPNet++ 62.94 % 78.57 % 56.62 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
116 PointPillars
This method makes use of Velodyne laser scans.
code 62.73 % 79.90 % 55.58 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
117 MM_SECOND code 62.61 % 77.98 % 55.67 % 0.05 s GPU @ >3.5 Ghz (Python)
118 L-AUG 62.56 % 75.41 % 56.86 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
T. Cortinhal, I. Gouigah and E. Aksoy: Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object Detection. 2023.
119 PCNet3D 62.48 % 78.52 % 55.54 % 0.05 s GPU @ 3.5 Ghz (Python)
120 IIOU_LDR code 61.70 % 77.26 % 55.43 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
121 SeSame-point code 61.70 % 75.73 % 55.27 % N/A s TITAN RTX @ 1.35 Ghz (Python)
122 LVFSD 61.68 % 79.03 % 55.02 % 0.06 s
ERROR: Wrong syntax in BIBTEX file.
123 F-PointNet
This method makes use of Velodyne laser scans.
code 61.37 % 77.26 % 53.78 % 0.17 s GPU @ 3.0 Ghz (Python)
C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.
124 MMpointpillars 61.06 % 74.55 % 55.02 % 0.05 s 1 core @ 2.5 Ghz (Python)
125 P2P code 61.03 % 75.03 % 55.05 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
126 VSAC 60.23 % 78.55 % 53.91 % 0.07 s 1 core @ 1.0 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
127 SeSame-pillar code 60.21 % 72.22 % 53.67 % N/A s TITAN RTX @ 1.35 Ghz (Python)
128 epBRM
This method makes use of Velodyne laser scans.
code 59.79 % 75.13 % 53.36 % 0.10 s 1 core @ 2.5 Ghz (C/C++)
K. Shin: Improving a Quality of 3D Object Detection by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.
129 BirdNet+
This method makes use of Velodyne laser scans.
code 59.58 % 70.84 % 54.20 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
130 SeSame-voxel code 59.36 % 76.95 % 53.14 % N/A s TITAN RTX @ 1.35 Ghz (Python)
131 SFEBEV 58.28 % 73.10 % 52.31 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
132 DMF
This method uses stereo information.
57.99 % 71.92 % 51.55 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
133 PUDet 57.77 % 72.93 % 51.03 % 0.3 s GPU @ 2.5 Ghz (Python)
134 PointRGBNet 57.59 % 73.09 % 51.78 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
135 AEPF 57.14 % 70.78 % 51.33 % 0.05 s GPU @ 2.5 Ghz (Python)
136 AVOD-FPN
This method makes use of Velodyne laser scans.
code 57.12 % 69.39 % 51.09 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
137 PiFeNet code 56.94 % 72.80 % 50.04 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
D. Le, H. Shi, H. Rezatofighi and J. Cai: Accurate and Real-time 3D Pedestrian Detection Using an Efficient Attentive Pillar Network. IEEE Robotics and Automation Letters 2022.
138 SCNet
This method makes use of Velodyne laser scans.
56.39 % 73.73 % 49.99 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
139 PFF3D
This method makes use of Velodyne laser scans.
code 55.71 % 72.67 % 49.58 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
140 MLOD
This method makes use of Velodyne laser scans.
code 55.06 % 73.03 % 48.21 % 0.12 s GPU @ 1.5 Ghz (Python)
J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.
141 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 52.15 % 72.45 % 46.57 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
142 DSGN++
This method uses stereo information.
code 49.37 % 68.29 % 43.79 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
143 StereoDistill 48.37 % 69.46 % 42.69 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
144 AVOD
This method makes use of Velodyne laser scans.
code 48.15 % 64.11 % 42.37 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
145 SeSame-voxel w/score code 45.61 % 58.94 % 40.68 % N/A s GPU @ 1.5 Ghz (Python)
146 BirdNet
This method makes use of Velodyne laser scans.
41.56 % 58.64 % 36.94 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
147 SparsePool code 40.74 % 56.52 % 36.68 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
148 MMLAB LIGA-Stereo
This method uses stereo information.
code 40.60 % 58.95 % 35.27 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
149 TopNet-Retina
This method makes use of Velodyne laser scans.
36.83 % 47.48 % 33.58 % 52ms GeForce 1080Ti (tensorflow-gpu, v1.12)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
150 CG-Stereo
This method uses stereo information.
36.25 % 55.33 % 32.17 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
151 SparsePool code 35.24 % 43.55 % 30.15 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
152 Disp R-CNN (velo)
This method uses stereo information.
code 27.04 % 44.19 % 23.58 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
153 Disp R-CNN
This method uses stereo information.
code 27.04 % 44.19 % 23.58 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
154 Complexer-YOLO
This method makes use of Velodyne laser scans.
25.43 % 32.00 % 22.88 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
155 DSGN
This method uses stereo information.
code 21.04 % 31.23 % 18.93 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
156 SeSame-pillar w/scor code 19.53 % 15.92 % 17.61 % N/A s 1 core @ 2.5 Ghz (C/C++)
157 OC Stereo
This method uses stereo information.
code 19.23 % 32.47 % 17.11 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
158 TopNet-DecayRate
This method makes use of Velodyne laser scans.
16.00 % 23.02 % 13.24 % 92 ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
159 SST [st]
This method uses stereo information.
15.20 % 26.40 % 13.47 % 1 s 1 core @ 2.5 Ghz (Python)
160 RT3D-GMP
This method uses stereo information.
13.92 % 20.59 % 12.74 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
161 MonoTAKD V2 11.66 % 19.68 % 10.33 % 0.1 s 1 core @ 2.5 Ghz (Python)
162 MonoTAKD 11.17 % 17.98 % 9.99 % 0.1 s 1 core @ 2.5 Ghz (Python)
163 MonoLTKD_V3 9.42 % 16.90 % 8.29 % 0.04 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
164 TopNet-UncEst
This method makes use of Velodyne laser scans.
9.18 % 12.31 % 8.14 % 0.09 s NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing Object Detection Uncertainty in Multi-Layer Grid Maps. 2019.
165 ESGN
This method uses stereo information.
9.02 % 15.78 % 7.96 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
166 SeSame-point w/score code 8.90 % 10.65 % 7.68 % N/A s GPU @ 1.5 Ghz (Python)
167 MonoLTKD 8.25 % 13.73 % 7.01 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
168 CMKD code 8.15 % 14.66 % 7.23 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
169 MonoGhost_Ped_Cycl 8.11 % 12.23 % 6.75 % 0.03 s 1 core @ 2.5 Ghz (Python)
170 PS-fld code 7.29 % 12.80 % 6.05 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
171 error 6.57 % 11.33 % 5.94 % 1 s 1 core @ 2.5 Ghz (Python)
172 MonoLiG code 6.49 % 9.48 % 5.46 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
A. Hekimoglu, M. Schmidt and A. Ramiro: Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning. 2023.
173 TopNet-HighRes
This method makes use of Velodyne laser scans.
6.48 % 9.99 % 6.76 % 101ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
174 DA3D+KM3D+v2-99 5.82 % 9.73 % 4.88 % 0.120s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
175 MonoPSR code 5.78 % 9.87 % 4.57 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
176 DD3D code 5.69 % 9.20 % 5.20 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
177 MonoSIM_v2 5.61 % 9.09 % 4.77 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
178 MonoLSS 5.52 % 8.88 % 4.98 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, J. Jia and Y. Shi: MonoLSS: Learnable Sample Selection For Monocular 3D Detection. International Conference on 3D Vision 2024.
179 CaDDN code 5.38 % 9.67 % 4.75 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
180 Mix-Teaching code 5.36 % 8.56 % 4.62 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
181 PS-SVDM 5.34 % 9.20 % 4.31 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
182 Anonymous 5.23 % 8.88 % 4.47 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
183 MonoUNI code 5.03 % 8.25 % 4.50 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Jia, Z. Li and Y. Shi: MonoUNI: A Unified Vehicle and Infrastructure-side Monocular 3D Object Detection Network with Sufficient Depth Clues. Thirty-seventh Conference on Neural Information Processing Systems 2023.
184 MonoTRKDv2 5.01 % 9.08 % 4.21 % 40 s 1 core @ 2.5 Ghz (Python)
185 mdab 4.97 % 8.83 % 4.74 % 22 s 1 core @ 2.5 Ghz (Python)
186 LPCG-Monoflex code 4.90 % 8.14 % 3.86 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
187 Plane-Constraints code 4.79 % 8.67 % 3.90 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
188 MonoFRD 4.55 % 8.44 % 4.14 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
189 MonoDDE 4.36 % 6.68 % 3.76 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
190 MonoDTR 4.11 % 5.84 % 3.48 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
191 RT3DStereo
This method uses stereo information.
4.10 % 7.03 % 3.88 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
192 HomoLoss(monoflex) code 4.09 % 6.81 % 3.78 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
193 DFR-Net 4.00 % 5.99 % 3.95 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
194 DEVIANT code 3.97 % 6.42 % 3.51 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
195 GUPNet code 3.85 % 6.94 % 3.64 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
196 OPA-3D code 3.75 % 6.01 % 3.56 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
197 CIE 3.74 % 6.13 % 3.18 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
198 PS-SVDM 3.64 % 6.84 % 3.04 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
199 SGM3D code 3.63 % 7.05 % 3.33 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
200 mdab 3.38 % 6.94 % 3.21 % 0.02 s 1 core @ 2.5 Ghz (Python)
201 Cube R-CNN code 3.35 % 5.01 % 3.23 % 0.05 s GPU @ 2.5 Ghz (Python)
G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. CVPR 2023.
202 Aug3D-RPN 3.33 % 5.44 % 2.82 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
203 MonOAPC 3.31 % 6.54 % 3.05 % 0035 s 1 core @ 2.5 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, P. Han, X. Chai and Y. Qiu: Occlusion-Aware Plane-Constraints for Monocular 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2023.
204 monodle code 3.28 % 5.34 % 2.83 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
205 MDSNet 3.22 % 5.99 % 2.62 % 0.05 s 1 core @ 2.5 Ghz (Python)
Z. Xie, Y. Song, J. Wu, Z. Li, C. Song and Z. Xu: MDS-Net: Multi-Scale Depth Stratification 3D Object Detection from Monocular Images. Sensors 2022.
206 DDMP-3D 3.14 % 4.92 % 2.44 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
207 MonoSIM 3.05 % 5.40 % 2.60 % 0.16 s 1 core @ 2.5 Ghz (Python)
208 QD-3DT
This is an online method (no batch processing).
code 3.02 % 5.71 % 2.73 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
209 MonoPair 2.87 % 4.76 % 2.42 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
210 MonoNeRD code 2.80 % 5.24 % 2.55 % na s 1 core @ 2.5 Ghz (Python)
J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai: MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection. ICCV 2023.
211 MonoFlex 2.67 % 4.41 % 2.50 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
212 mdab 2.63 % 4.95 % 2.65 % 22 s 1 core @ 2.5 Ghz (C/C++)
213 RefinedMPL 2.42 % 4.23 % 2.14 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
214 MonoRCNN++ code 2.31 % 3.50 % 2.01 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
215 mdab 2.00 % 4.00 % 2.00 % 0.02 s 1 core @ 2.5 Ghz (Python)
216 SS3D 1.89 % 3.45 % 1.44 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
217 DA3D 1.89 % 3.46 % 1.51 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
218 D4LCN code 1.82 % 2.72 % 1.79 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
219 PGD-FCOS3D code 1.79 % 3.54 % 1.56 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
220 FMF-occlusion-net 1.65 % 1.91 % 1.75 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
221 MonoAuxNorm 1.65 % 3.00 % 1.37 % 0.02 s GPU @ 2.5 Ghz (Python)
222 CMAN 1.48 % 1.76 % 1.17 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
223 DA3D+KM3D code 1.44 % 2.88 % 1.37 % 0.02 s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
224 MonoEF 1.18 % 2.36 % 1.15 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
225 M3D-RPN code 0.81 % 1.25 % 0.78 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
226 MonoRUn code 0.73 % 1.14 % 0.66 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
227 MonoAIU 0.72 % 0.92 % 0.45 % 0.03 s GPU @ 2.5 Ghz (Python)
228 Shift R-CNN (mono) code 0.38 % 0.76 % 0.41 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
229 f3sd code 0.01 % 0.02 % 0.01 % 1.67 s 1 core @ 2.5 Ghz (C/C++)
230 mBoW
This method makes use of Velodyne laser scans.
0.00 % 0.00 % 0.00 % 10 s 1 core @ 2.5 Ghz (C/C++)
J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.
Table as LaTeX | Only published Methods

Related Datasets

Citation

When using this dataset in your research, we will be happy if you cite us:
@inproceedings{Geiger2012CVPR,
  author = {Andreas Geiger and Philip Lenz and Raquel Urtasun},
  title = {Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite},
  booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2012}
}



eXTReMe Tracker