Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

FPGA-based Personal Authentication Using Fingerprints

Published: 01 February 2012 Publication History

Abstract

The current technological age demands the deployment of biometric security systems not only in those stringent and highly reliable fields (forensic, government, banking, etc.) but also in a wide range of daily use consumer applications (internet access, border control, health monitoring, mobile phones, laptops, etc.) accessible worldwide to any user. In order to succeed in the exploitation of biometric applications over the world, it is needed to make research on power-efficient and cost-effective computational platforms able to deal with those demanding image and signal operations carried out in the biometric processing. The present work deals with the evaluation of alternative system architectures to those existing PC (personal computers), HPC (high-performance computing) or GPU-based (graphics processing unit) platforms in one specific scenario: the physical implementation of an AFAS (automatic fingerprint-based authentication system) application. The development of automated fingerprint-based personal recognition systems in the way of compute-intensive and real-time embedded systems under SoPC (system-on-programmable-chip) devices featuring one general-purpose MPU (microprocessor unit) and one run-time reconfigurable FPGA (field programmable gate array) proves to be an efficient and cost-effective solution. The provided flexibility, not only in terms of software but also in terms of hardware thanks to the programmability and run-time reconfigurability performance exhibited by the suggested FPGA device, permits to build any application by means of hardware-software co-design techniques. The parallelism and acceleration performances inherent to the hardware design and the ability of reusing hardware resources along the application execution time are key factors to improve the performance of existing systems.

References

[1]
The Biometric Consortium, http://www.biometrics.org.
[2]
Maltoni, D., Maio, D., Jain, A. K., & Prabhakar, S. (2009). Handbook of fingerprint recognition (2nd ed.). London: Springer.
[3]
FVC2004 & FVC2006 web sites: http://bias.csr.univbo.it/fvc2004, http://bias.csr.unibo.it/fvc2006.
[4]
Neurotechnology Verifinger SDK, http://www.neurotechnology.com.
[5]
DigitalPersona One Touch SDK, http://www.digitalpersona.com.
[6]
Precise Biometrics BioMatch SDK, http://www.precisebiometrics.com.
[7]
Suprema BioMini SDK, http://www.supremainc.com.
[8]
3M Cogent BioTrust SDK, http://www.cogentsystems.com.
[9]
Biometrika FxIntegrator Fingerprint Recognition Module, http://www.biometrika.it.
[10]
SecuGen SDA Stand-Alone Fingerprint Recognition Modules, http://www.secugen.com.
[11]
Suprema SFM Series Fingerprint Modules, http://www.supremainc.com.
[12]
Privaris plusIDUniversal Biometric Devices, http://www.privaris.com.
[13]
3M Cogent SecurASIC Chip, http://www.cogentsystems.com.
[14]
TMS320 Texas Instruments DSP Platforms, http://www.ti.com.
[15]
AuthenTec TCD50D Digital ID Hardware Engine, http://www.upek.com.
[16]
L-1 Identity Solutions MV1210 & MV1250 Bioscrypt Fingerprint Modules, http://www.l1id.com.
[17]
Oki ML67Q5250 Fingerprint Authentication MCU, http://www. okisemi.com.
[18]
Fingerprint Cards FPC2020 ASIC Fingerprint Processor and FPC- AM3 Biometric Module, http://www.fingerprints.com.
[19]
Galbally, J., Fierrez, J., Alonso-Fernandez, F., & Martinez-Diaz, M. (2010). Evaluation of direct attacks to fingerprint verification systems. Journal of Telecommunication Systems (Springer-Verlag), Special Issue on Biometrics Systems and Applications, 47(3-4), 243-254.
[20]
Baldisserra, D., Franco, A., Maio, D., & Maltoni, D. (2005). Fake fingerprint detection by odor analysis. International Conference on Biometric Authentication, 3832, 265-272.
[21]
Poh, N., Bourlai, T., Kittler, J., Allano, L., Alonso-Fernandez, F., Ambekar, O., et al. (2009). Benchmarking quality-dependent and cost-sensitive score-level multimodal biometric fusion algorithms. IEEE Transactions on Information Forensics and Security, 4(4), 849-866.
[22]
Nagar, A., Nandakumar, K., & Jain, A. K. (2010). A hybrid biometric cryptosystem for securing fingerprint minutiae templates. Pattern Recognition Letters, 31, 733-741.
[23]
Altera Corporation, http://www.altera.com.
[24]
Atmel Corporation, http://www.atmel.com.
[25]
Tico, M., & Kuosmanen, P. (2003). Fingerprint matching using an orientation-based minutia descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8), 1009-1014.
[26]
Ross, A., Jain, A., & Reisman, J. (2003). A hybrid fingerprint matcher. Pattern Recognition, 36(7), 1661-1673.
[27]
Jain, A. K., Feng, J., & Nandakumar, K. (2010). Fingerprint matching. IEEE Computer, 2010, 36-44.
[28]
Su, Q., Tian, J., Chen, X., & Yang, X. (2005). A fingerprint authentication system based on mobile phone. Audio- and Video-Based Biometric Person Authentication (AVBPA), 3546, 151-159.
[29]
Pan, S. B., Moon, D., Gil, Y., Ahn, D., & Chung, Y. (2003). An ultra-low memory fingerprint matching algorithm and its implementation on a 32-bit smart card. IEEE Transactions on Consumer Electronics, 49(2), 453-459.
[30]
Mostafa Abd Allah, M. (2005). A fast and memory efficient approach for fingerprint authentication system. IEEE Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 259-263.
[31]
Yang, S., Schaumont, P., & Verbauwhede, I. (2005). Microcoded coprocessor for embedded secure biometric authentication systems. IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2005, pp. 130-135.
[32]
Gupta, P., Ravi, S., Raghunathan, A., & Jha, N. K. (2005). Efficient fingerprint-based user authentication for embedded systems. Design Automation Conference (DAC), 2005, 244-247.
[33]
Lindoso, A., Entrena, L., López-Ongil, C., & Liu, J. (2005). Correlation-based fingerprint matching using FPGAs. IEEE International Conference on Field-Programmable Technology (FPT), 2005, 87-94.
[34]
Schaumont, P., Hwang, D., & Verbauwhede, I. (2005). Platform-based design for an embedded fingerprint authentication device. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, 24(12), 1929-1936.
[35]
Lindoso, A., & Entrena, L. (2007). High performance FPGA-based image correlation. Journal of Real-time Image Processing, 2(4), 223-233.
[36]
Jiang, R. M., & Crookes, D. (2008). FPGA-based minutia matching for biometric fingerprint image database retrieval. Journal of Real-Time Image Processing, 3(3), 177-182.
[37]
Danese, G., Giachero, M., Leporati, F., Matrone, G., & Nazzicari, N. (2009). An FPGA-based embedded system for fingerprint matching using phase-only correlation algorithm. IEEE Euromicro Conference on Digital System Design: Architectures, Methods and Tools, 2009, 672-679.
[38]
Razak, A. H. A., & Taharim, R. H. (2009). Implementing Gabor filter for fingerprint recognition using Verilog HDL. Internacional Colloquium on Signal Processing & Its Applications (CSPA), 2009, 423-427.
[39]
Liu, J., Wang, S., Li, Y., Han, J., & Zeng, X. (2010). Configurable pipelined Gabor filter implementation for fingerprint image enhancement. IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2010, 584-586.
[40]
Hermanto, L., Sudiro, S. A., & Wibowo, E. P. (2010). Hardware implementation of fingerprint image thinning algorithm in FPGA device. International Conference on Networking and Information Technology (ICNIT), 2010, 187-191.
[41]
Becker, J., Hübner, M., Hettich, G., Constapel, R., Eisenmann, J., & Luka, J. (2007). Dynamic and partial FPGA exploitation. Proceedings of the IEEE, 95(2), 438-452.
[42]
Delahaye, J. P., Gogniat, G., Roland, C., & Bomel, P. (2004). Software radio and dynamic reconfiguration on a DSP/FPGA platform. Frequenz, Journal of Telecommunications, 58, 152-159.
[43]
Fons, M., Fons, F., & Cantó, E. (2010). Fingerprint image processing acceleration through run-time reconfigurable hardware. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(12), 991-995.
[44]
Mainguet, J. F., Gong, W., & Wang, A. (2004). Reducing silicon fingerprint sensor area. International Conference on Biometric Authentication (ICBA), 3072, 301-308.
[45]
Hong, L., Wan, Y., & Jain, A. (2004). Fingerprint image enhancement: algorithm and performance evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 777-789.
[46]
Cheng, J., & Tian, J. (2004). Fingerprint enhancement with dyadic scale-space. Pattern Recognition Letters, 25(11), 1273-1284.
[47]
Ravishankar Rao, A., & Schunck, B. G. (1989). Computing oriented texture fields. IEEE International Conference on Computer Vision and Pattern Recognition, pp. 61-68.
[48]
Ratha, N. K., Chen, S., & Jain, A. K. (1995). Adaptive flow orientation-based feature extraction in fingerprint images. Pattern Recognition, 28(11), 1657-1672.
[49]
Lam, L., Lee, S.-W., & Suen, C. Y. (1992). Thinning methodologies. A comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(9), 869-885.
[50]
Gao, Z., & Hall, W. R. (1989). Parallel thinning with two-subiteration algorithm. Communications of the ACM, 32(3), 359-373.
[51]
Jiang, X., & Yau, W.-Y. (2000). Fingerprint minutiae matching based on the local and global structures. International Conference on Pattern Recognition, 2, 1038-1041.
[52]
Barrenechea, M., Altuna, J., Mendicute, M., & Del Ser, J. (2009). A low-cost FPGA-based embedded fingerprint verification and matching system. Intelligent Technical Systems, 38(5), 247-260.
[53]
Yang, S., Sakiyama, K., & Verbauwhede, I. (2006). Efficient and secure fingerprint verification for embedded devices. EURASIP Journal on Applied Signal Processing, 2006(3), 1-11.
[54]
Vitabile, S., Conti, V., Militello, C., & Sorbello, F. (2007). A self-contained biometric sensor for ubiquitous authentication. International Conference on Intelligent Pervasive Computing (IPC), 2007, 289-294.
[55]
Danese, G., Giachero, M., Leporati, F., & Nazzicari, N. (2010). A multicore embedded processor for fingerprint recognition. IEEE Euromicro Conference on Digital System Design: Architectures, Methods and Tools, 2010, 779-784.
[56]
Lindoso, A., Entrena, L., & Izquierdo, J. (2007). FPGA-based acceleration of fingerprint minutiae matching. IEEE Southern Conference on Programmable Logic (SPL), 2007, 81-86.
[57]
Bum Pan, S., Moon, D., Kim, K., & Chung, Y. (2008). A fingerprint matching hardware for smart cards. The Institute of Electronics, Information and Communication Engineers (IEICE) Electronics Express, 5(4), 136-144.
[58]
Xilinx, Inc., http://www.xilinx.com.

Cited By

View all
  • (2021)A New Low Power Schema for Stream Processors Front-End with Power-Aware DA-Based FIR Filters by Investigation of Image Transitions SparsityCircuits, Systems, and Signal Processing10.1007/s00034-020-01632-240:7(3456-3478)Online publication date: 1-Jul-2021
  • (2018)Floating-point accelerator for biometric recognition on FPGA embedded systemsJournal of Parallel and Distributed Computing10.1016/j.jpdc.2017.09.010112:P1(20-34)Online publication date: 1-Feb-2018
  • (2018)Implementation of Fingerprint Based Biometric System Using Optimized 5/3 DWT Architecture and Modified CORDIC Based FFTCircuits, Systems, and Signal Processing10.1007/s00034-017-0555-037:1(342-366)Online publication date: 1-Jan-2018
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Signal Processing Systems
Journal of Signal Processing Systems  Volume 66, Issue 2
February 2012
130 pages
ISSN:1939-8018
EISSN:1939-8115
Issue’s Table of Contents

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 February 2012

Author Tags

  1. Biometrics
  2. Field programmable gate array
  3. Flexible hardware
  4. Hardware-software co-design
  5. Real-time embedded system
  6. Run-time reconfigurable computing

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2021)A New Low Power Schema for Stream Processors Front-End with Power-Aware DA-Based FIR Filters by Investigation of Image Transitions SparsityCircuits, Systems, and Signal Processing10.1007/s00034-020-01632-240:7(3456-3478)Online publication date: 1-Jul-2021
  • (2018)Floating-point accelerator for biometric recognition on FPGA embedded systemsJournal of Parallel and Distributed Computing10.1016/j.jpdc.2017.09.010112:P1(20-34)Online publication date: 1-Feb-2018
  • (2018)Implementation of Fingerprint Based Biometric System Using Optimized 5/3 DWT Architecture and Modified CORDIC Based FFTCircuits, Systems, and Signal Processing10.1007/s00034-017-0555-037:1(342-366)Online publication date: 1-Jan-2018
  • (2017)Efficient Hardware Implementation For Fingerprint Image Enhancement Using Anisotropic Gaussian FilterIEEE Transactions on Image Processing10.1109/TIP.2017.267178126:5(2116-2126)Online publication date: 1-May-2017
  • (2016)An Efficient Reconfigurable Architecture for Fingerprint RecognitionVLSI Design10.1155/2016/95327622016(1)Online publication date: 1-Jul-2016
  • (2015)Fast fingerprint identification using GPUsInformation Sciences: an International Journal10.1016/j.ins.2014.12.052301:C(195-214)Online publication date: 20-Apr-2015

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media