Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Adaptive neural control for mobile manipulator systems based on adaptive state observer

Authors Info & Claims
Published:07 June 2022Publication History
Skip Abstract Section

Abstract

Abstract

This study processes the adaptive robust control problem in a task space for a mobile manipulator with uncertain dynamics and external disturbances based on radial basis function neural networks(RBFNN) and a nonlinear state observer. Owing to the high nonlinearity, strong coupling, and unknown uncertainty characteristics of the mobile manipulators, their control poses a considerable challenge. An adaptive robust control strategy for nonlinear mobile robot systems with unknown uncertainties and disturbances based on the RBFNN and state observer is proposed in the operating space. First, a feedforward-feedback virtual speed generator is developed based on the feedforward control and backstepping method to implement virtual speed tracking control in the operation space to make the positional error asymptotically stable. Then, a model-independent RBFNN based adaptive robust controller (ARBFNNC) with the state observer is proposed, which converts the virtual speed input into the control torque of the actual mobile manipulator to achieve precise position tracking in the task space, and theoretical analysis performed through Lyapunov stability theory shows the global asymptotic stability of a system under the control of the proposed method. Finally, simulation results confirm the effectiveness of the proposed control method in position regulation and tracking control of the nonlinear mobile manipulator.

References

  1. [1] Siegwart R., Nourbakhsh I.R., Introduction to Autonomous Mobile Robots, MIT Press, 2004.Google ScholarGoogle Scholar
  2. [2] Grotzinger J.P., Crisp J., Vasavada A.R., et al., Mars Science Laboratory mission and science investigation, Space science reviews 170 (1) (2012) 556.Google ScholarGoogle Scholar
  3. [3] Ding L., Xia K., Gao H., Liu G., Deng Z., Robust adaptive control of door opening by a mobile rescue manipulator based on unknown-force-related constraints estimation, ROBOTICA 36 (2018) 119140.Google ScholarGoogle Scholar
  4. [4] Prada-Jiménez V., Niño-Suárez P.A., Mauledoux-Monroy M.F., Non-holonomic Constrains for a Mobile Manipulator, Int. J. Mech. Eng. Robotics Res. (2020) 5659.Google ScholarGoogle Scholar
  5. [5] Wu X., Wang Y., Dang X., Robust adaptive sliding-mode control of condenser-cleaning mobile manipulator using fuzzy wavelet neural network, Fuzzy Set Syst. 235 (2014) 6282.Google ScholarGoogle Scholar
  6. [6] Peng J., Dubay R., Adaptive fuzzy backstepping control for a class of uncertain nonlinear strict-feedback systems based on dynamic surface control approach, Expert Syst. Appl. 120 (2019) 239252.Google ScholarGoogle Scholar
  7. [7] Zhao Y., Zhang S., Lee J., Adaptive finite-time backstepping control for a two-wheeled mobile manipulator, J. Mech. Sci. Technol. 32 (2018) 58975906.Google ScholarGoogle Scholar
  8. [8] Baigzadehnoe B., Rahmani Z., Khosravi A., Rezaie B., On position/force tracking control problem of cooperative robot manipulators using adaptive fuzzy backstepping approach, ISA T 70 (2017) 432446.Google ScholarGoogle Scholar
  9. [9] Sun W., Wu Y., Modeling and Finite-Time Tracking Control for Mobile Manipulators with Affine and Holonomic Constraints, J. Syst. Sci. Complex 29 (2016) 589601.Google ScholarGoogle Scholar
  10. [10] Leica O., Camacho S., Lozada R., Guaman D., Chavez V.H., Andaluz, Comparison of control schemes for path tracking of mobile manipulators, Int. J. Modelling, Identification Control 28 (2017) 8696.Google ScholarGoogle Scholar
  11. [11] Cheng M., Su W., Tsai C., Nguyen T., Intelligent tracking control of a dual-arm wheeled mobile manipulator with dynamic uncertainties, Int. J. Robust. Nonlin. 23 (2013) 839857.Google ScholarGoogle Scholar
  12. [12] Lin S., Goldenberg A.A., Neural-network control of mobile manipulators, IEEE Trans. Neural Networks 12 (2001) 11211133.Google ScholarGoogle Scholar
  13. [13] Boukattaya M., Damak T., Jallouli M., Robust adaptive control for mobile manipulators, Int. J. Autom. Comput. 8 (2011) 813.Google ScholarGoogle Scholar
  14. [14] Slotine J.J.E., Li W., Applied nonlinear control[M], Prentice hall, Englewood Cliffs, NJ, 1991.Google ScholarGoogle Scholar
  15. [15] Peng J., Yang Z., Wang Y., Zhang F., Liu Y., Robust adaptive motion/force control scheme for crawler-type mobile manipulator with nonholonomic constraint based on sliding mode control approach, ISA T 92 (2019) 166179.Google ScholarGoogle Scholar
  16. [16] Chen N., Song F., Li G., Sun X., Ai C., An adaptive sliding mode backstepping control for the mobile manipulator with nonholonomic constraints, Commun. Nonlinear Sci. 18 (2013) 28852899.Google ScholarGoogle Scholar
  17. [17] Galicki M., Optimal sliding control of mobile manipulators, B Pol Acad. Sci.-Tech. 67 (2019) 777788.Google ScholarGoogle Scholar
  18. [18] Wu X., Wang Y., Dang X., Robust adaptive sliding-mode control of condenser-cleaning mobile manipulator using fuzzy wavelet neural network, Fuzzy Set Syst. 235 (2014) 6282.Google ScholarGoogle Scholar
  19. [19] Cheng M., Su W., Tsai C., Robust tracking control of a unicycle-type wheeled mobile manipulator using a hybrid sliding mode fuzzy neural network, Int. J. Syst. Sci. 43 (2012) 408425.Google ScholarGoogle Scholar
  20. [20] Yang Z., Peng J., Liu Y., Adaptive neural network force tracking impedance control for uncertain robotic manipulator based on nonlinear velocity observer, Neurocomputing 331 (2019) 263280.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. [21] Peng J., Liu Y., Wang J., Fuzzy adaptive output feedback control for robotic systems based on fuzzy adaptive observer, Nonlinear Dyn. 78 (2014) 789801.Google ScholarGoogle Scholar
  22. [22] Namvar M., A Class of Globally Convergent Velocity Observers for Robotic Manipulators, IEEE Trans. Automat. Contr. 54 (2009) 19561961.Google ScholarGoogle Scholar
  23. [23] Zhang Y., Kim D., Zhao Y., Lee J., PD Control of a Manipulator with Gravity and Inertia Compensation Using an RBF Neural Network, Int. J. Control Autom. Syst. 18 (2020) 30833092.Google ScholarGoogle Scholar
  24. [24] Xi R., Yang Z., Xiao X., Adaptive Neural Network Observer Based PID-Backstepping Terminal Sliding Mode Control for Robot Manipulators, IEEE (2020) 209214.Google ScholarGoogle Scholar
  25. [25] Wang F., Chao Z., Huang L., Li H., Zhang C., Trajectory tracking control of robot manipulator based on RBF neural network and fuzzy sliding mode, Cluster Computing 22 (2019) 57995809.Google ScholarGoogle Scholar
  26. [26] Jin L., Li S., Yu J., He J., Robot manipulator control using neural networks: A survey, Neurocomputing 285 (2018) 2334.Google ScholarGoogle Scholar
  27. [27] Van Pham C., Wang Y.N., Robust Adaptive Trajectory Tracking Sliding mode control based on Neural networks for Cleaning and Detecting Robot Manipulators, J. Intell. Robot Syst. 79 (2015) 101114.Google ScholarGoogle Scholar
  28. [28] Miao Z., Wang Y., Yang Y., Robust tracking control of uncertain dynamic nonholonomic systems using recurrent neural networks, Neurocomputing 142 (2014) 216227.Google ScholarGoogle Scholar
  29. [29] Xu C.K., Li M., Yin J., Neural Network Sliding Mode Control of 5DOFs Robotic Manipulator, Adv. Mater. Res. 898 (2014) 514520.Google ScholarGoogle Scholar
  30. [30] Rani K., Kumar N., Intelligent controller for hybrid force and position control of robot manipulators using RBF neural network, Int. J. Dyn. Control 7 (2019) 767775.Google ScholarGoogle Scholar
  31. [31] Kim Y.H., Lewis F.L., Abdallah C.T., A dynamic recurrent neural-network-based adaptive observer for a class of nonlinear systems, Automatica 33 (1997) 15391543.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. [32] Kim Y.H., Lewis F.L., Neural network output feedback control of robot manipulators, IEEE Trans. Robotics Automation 15 (1999) 301309.Google ScholarGoogle Scholar
  33. [33] Lewis F.L., Yesildirek A., Liu K., Multilayer neural-net robot controller with guaranteed tracking performance, IEEE Trans. Neural Networks 7 (1996) 388399.Google ScholarGoogle Scholar
  34. [34] Seo I.S., Han S.I., Dual closed-loop sliding mode control for a decoupled three-link wheeled mobile manipulator, ISA T 80 (2018) 322335.Google ScholarGoogle Scholar
  35. [35] Begnini M., Bertol D.W., Martins N.A., A robust adaptive fuzzy variable structure tracking control for the wheeled mobile robot: Simulation and experimental results, Control Eng. Pract. 64 (2017) 2743.Google ScholarGoogle Scholar
  36. [36] Peng J., Yu J., Wang J., Robust adaptive tracking control for nonholonomic mobile manipulator with uncertainties, ISA T 53 (2014) 10351043.Google ScholarGoogle Scholar
  37. [37] Boukattaya M., Jallouli M., Damak T., On trajectory tracking control for nonholonomic mobile manipulators with dynamic uncertainties and external torque disturbances, Robot. Auton Syst. 60 (2012) 16401647.Google ScholarGoogle Scholar
  38. [38] Seraji H., Configuration control of redundant manipulators: Theory and implementation, IEEE Trans. Robotics Autom. 5 (1989) 472490.Google ScholarGoogle Scholar
  39. [39] Liu X., Yang C., Chen Z., Wang M., Su C., Neuro-adaptive observer based control of flexible joint robot, Neurocomputing 275 (2018) 7382.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. [40] B. Patel, Y. Pan, U. Ahmad, Adaptive backstepping control approach for the trajectory tracking of mobile manipulators, 2017 IEEE International Conference on Robotics and Biomimetics, pp. 1769–1774.Google ScholarGoogle Scholar
  41. [41] Wu Y., Hu Y., Kinematics, Dynamics and Motion Planning of Wheeled Mobile Manipulators, Pro of Int on CSIMTA 4 (2004) 221226.Google ScholarGoogle Scholar
  42. [42] L.W., H.X., J.Z., W.B., L.Z., Sliding Mode Control of Manipulator Based on Nominal Model and Nonlinear Disturbance Observer, IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, 2018), pp.5519-5524.Google ScholarGoogle Scholar
  43. [43] Ouyang P.R., Acob J., Pano V., PD with sliding mode control for trajectory tracking of robotic system, Robot CIM-Int. Manuf. 30 (2014) 189200.Google ScholarGoogle Scholar
  44. [44] Hu Y M, Guo B H. Modeling and motion planning of a three-link wheeled mobile manipulator[C]//ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004. IEEE, (2004), 2: 993-998.Google ScholarGoogle Scholar

Index Terms

  1. Adaptive neural control for mobile manipulator systems based on adaptive state observer
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access