Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/3635637.3662879acmconferencesArticle/Chapter ViewAbstractPublication PagesaamasConference Proceedingsconference-collections
research-article

Deep Anomaly Detection via Active Anomaly Search

Published: 06 May 2024 Publication History
  • Get Citation Alerts
  • Abstract

    Anomaly detection (AD) holds substantial practical value, and considering the limited labeled data, the semi-supervised anomaly detection technique has garnered increasing attention. We find that previous methods suffer from insufficient exploitation of labeled data and under-exploration of unlabeled data. To tackle the above problem, we aim to search for possible anomalies in unlabeled data and use the searched anomalies to enhance performance. We innovatively model this search process as a Markov decision process and utilize a reinforcement learning algorithm to solve it. Our method, Deep Anomaly Detection and Search (DADS), integrates the exploration of unlabeled data and the exploitation of labeled data into one framework. Experimentally, we compare DADS with several state-of-the-art methods in widely used benchmarks, and the results show that DADS can efficiently search anomalies from unlabeled data and learn from them, thus achieving good performance. Code: https://github.com/LAMDA-RL/DADS

    References

    [1]
    Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. 2017. Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, Vol. 34, 6 (2017), 26--38.
    [2]
    Liron Bergman and Yedid Hoshen. 2020. Classification-based anomaly detection for deneral data. In International Conference on Learning Representations.
    [3]
    Sinan Çalişir and Meltem Kurt Pehlivanoug lu. 2019. Model-free reinforcement learning algorithms: A survey. In 2019 27th signal processing and communications applications conference (SIU). IEEE, 1--4.
    [4]
    Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A survey. Comput. Surveys, Vol. 41, 3 (2009), 1--58.
    [5]
    Chun-Hao Chang, Jinsung Yoon, Sercan Arik, Madeleine Udell, and Tomas Pfister. 2022. Data-efficient and interpretable tabular anomaly detection. arXiv preprint arXiv:2203.02034 (2022).
    [6]
    Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. 2009. Semi-supervised learning. IEEE Transactions on Neural Networks, Vol. 20, 3 (2009), 542--542.
    [7]
    Arthur Charpentier, Romuald Elie, and Carl Remlinger. 2021. Reinforcement learning in economics and finance. Computational Economics (2021), 1--38.
    [8]
    Parikshit Gopalan, Vatsal Sharan, and Udi Wieder. 2019. Pidforest: anomaly detection via partial identification. Advances in Neural Information Processing Systems, Vol. 32 (2019).
    [9]
    Nico Görnitz, Marius Kloft, Konrad Rieck, and Ulf Brefeld. 2013. Toward supervised anomaly detection. Journal of Artificial Intelligence Research, Vol. 46 (2013), 235--262.
    [10]
    Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In International Conference on Machine Learning. 1861--1870.
    [11]
    Chengxing Jia, Fuxiang Zhang, Tian Xu, Jing-Cheng Pang, Zongzhang Zhang, and Yang Yu. 2024. Model gradient: unified model and policy learning in model-based reinforcement learning. Frontiers of Computer Science, Vol. 18, 4 (2024), 184339.
    [12]
    Minqi Jiang, Songqiao Han, and Hailiang Huang. 2023. Anomaly Detection with Score Distribution Discrimination. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (, Long Beach, CA, USA,) (KDD '23). Association for Computing Machinery, New York, NY, USA, 984--996.
    [13]
    Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. 1996. Reinforcement learning: A survey. Journal of Artificial Intelligence Research, Vol. 4 (1996), 237--285.
    [14]
    Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature, Vol. 521, 7553 (2015), 436--444.
    [15]
    Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In IEEE International Conference on Data Mining. 413--422.
    [16]
    Fan-Ming Luo, Tian Xu, Hang Lai, Xiong-Hui Chen, Weinan Zhang, and Yang Yu. 2024. A survey on model-based reinforcement learning. Science China Information Sciences, Vol. 67, 2 (2024), 121101.
    [17]
    Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015. Human-level control through deep reinforcement learning. Nature, Vol. 518, 7540 (2015), 529--533.
    [18]
    Thanh Thi Nguyen and Vijay Janapa Reddi. 2023. Deep reinforcement learning for cyber security. IEEE Transactions on Neural Networks and Learning Systems, Vol. 34, 8 (2023), 3779--3795.
    [19]
    Guansong Pang, Chunhua Shen, and Anton van den Hengel. 2019. Deep anomaly detection with deviation networks. In ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 353--362.
    [20]
    Guansong Pang, Anton van den Hengel, Chunhua Shen, and Longbing Cao. 2021. Toward deep supervised anomaly detection: Reinforcement learning from partially labeled anomaly data. In ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 1298--1308.
    [21]
    Chen Qiu, Aodong Li, Marius Kloft, Maja Rudolph, and Stephan Mandt. 2022. Latent outlier exposure for anomaly detection with contaminated data. In International Conference on Machine Learning. PMLR, 18153--18167.
    [22]
    Lukas Ruff, Jacob R Kauffmann, Robert A Vandermeulen, Grégoire Montavon, Wojciech Samek, Marius Kloft, Thomas G Dietterich, and Klaus-Robert Müller. 2021. A unifying review of deep and shallow anomaly detection. Proc. IEEE (2021), 756--795.
    [23]
    Lukas Ruff, Robert A. Vandermeulen, Nico Görnitz, Alexander Binder, Emmanuel Müller, Klaus-Robert Müller, and Marius Kloft. 2019. Deep Semi-Supervised Anomaly Detection. CoRR, Vol. abs/1906.02694 (2019).
    [24]
    Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. 2017. Deep reinforcement learning framework for autonomous driving. Electronic Imaging, Vol. 2017, 19 (2017), 70--76.
    [25]
    David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P. Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. 2017. Mastering the game of Go without human knowledge. Nature, Vol. 550, 7676 (2017), 354--359.
    [26]
    Miryam Elizabeth Villa-Pérez, Miguel Á Álvarez-Carmona, Octavio Loyola-González, Miguel Angel Medina-Pérez, Juan Carlos Velazco-Rossell, and Kim-Kwang Raymond Choo. 2021. Semi-supervised anomaly detection algorithms: A comparative summary and future research directions. Knowledge-Based Systems, Vol. 218 (2021), 106878.
    [27]
    Jinsung Yoon, Kihyuk Sohn, Chun-Liang Li, Sercan O Arik, Chen-Yu Lee, and Tomas Pfister. 2021. Self-supervise, refine, repeat: Improving unsupervised anomaly detection. arXiv preprint arXiv:2106.06115 (2021).
    [28]
    Jinsung Yoon, Kihyuk Sohn, Chun-Liang Li, Sercan O Arik, and Tomas Pfister. 2022. SPADE: Semi-supervised Anomaly Detection under Distribution Mismatch. arXiv preprint arXiv:2212.00173 (2022).
    [29]
    Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. 2021. Reinforcement learning in healthcare: A survey. Comput. Surveys, Vol. 55, 1 (2021), 1--36.
    [30]
    Shixiang Zhu, Henry Shaowu Yuchi, Minghe Zhang, and Yao Xie. 2019. Sequential adversarial anomaly detection for one-class event data. arXiv preprint arXiv:1910.09161 (2019).

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    AAMAS '24: Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems
    May 2024
    2898 pages
    ISBN:9798400704864

    Sponsors

    Publisher

    International Foundation for Autonomous Agents and Multiagent Systems

    Richland, SC

    Publication History

    Published: 06 May 2024

    Check for updates

    Author Tags

    1. anomaly detection
    2. deep learning
    3. reinforcement learning

    Qualifiers

    • Research-article

    Funding Sources

    • National Natural Science Foundation of China
    • Alibaba Research Fellowship Program

    Conference

    AAMAS '23
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 1,155 of 5,036 submissions, 23%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 20
      Total Downloads
    • Downloads (Last 12 months)20
    • Downloads (Last 6 weeks)15

    Other Metrics

    Citations

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media