Notice
This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/134527.2
Local Computation Algorithms for Graphs of Non-constant Degrees
dc.contributor.author | Levi, Reut | |
dc.contributor.author | Rubinfeld, Ronitt | |
dc.contributor.author | Yodpinyanee, Anak | |
dc.date.accessioned | 2021-10-27T20:05:25Z | |
dc.date.available | 2021-10-27T20:05:25Z | |
dc.date.issued | 2017 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/134527 | |
dc.description.abstract | © 2016, Springer Science+Business Media New York. In the model of local computation algorithms (LCAs), we aim to compute the queried part of the output by examining only a small (sublinear) portion of the input. Many recently developed LCAs on graph problems achieve time and space complexities with very low dependence on n, the number of vertices. Nonetheless, these complexities are generally at least exponential in d, the upper bound on the degree of the input graph. Instead, we consider the case where parameter d can be moderately dependent on n, and aim for complexities with subexponential dependence on d, while maintaining polylogarithmic dependence on n. We present:a randomized LCA for computing maximal independent sets whose time and space complexities are quasi-polynomial in d and polylogarithmic in n;for constant ε> 0 , a randomized LCA that provides a (1 - ε) -approximation to maximum matching with high probability, whose time and space complexities are polynomial in d and polylogarithmic in n. | |
dc.language.iso | en | |
dc.publisher | Springer Nature | |
dc.relation.isversionof | 10.1007/S00453-016-0126-Y | |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.source | arXiv | |
dc.title | Local Computation Algorithms for Graphs of Non-constant Degrees | |
dc.type | Article | |
dc.identifier.citation | Levi, Reut, Ronitt Rubinfeld, and Anak Yodpinyanee. "Local Computation Algorithms for Graphs of Non-Constant Degrees." Algorithmica 77 4 (2017): 971-94. | |
dc.relation.journal | Algorithmica | |
dc.eprint.version | Original manuscript | |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | |
dc.date.updated | 2019-07-03T13:55:12Z | |
dspace.orderedauthors | Levi, R; Rubinfeld, R; Yodpinyanee, A | |
dspace.date.submission | 2019-07-03T13:55:12Z | |
mit.journal.volume | 77 | |
mit.journal.issue | 4 | |
mit.metadata.status | Authority Work and Publication Information Needed |