Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Nonlinear Integral Sliding Mode Control with Adaptive Extreme Learning Machine and Robust Control Term for Anti-External Disturbance Robotic Manipulator

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

To overcome the limitations of the traditional sliding mode control (SMC) method, including steady-state errors, low tracking accuracy, external disturbances, and difficulties in estimating uncertain parameters, a nonlinear integral SMC method with an adaptive extreme learning machine (ELM) and a robust control term is developed. First, the ELM is used to approximate the uncertain parameters in the manipulator dynamics model to improve the tracking accuracy of the manipulator. In this process of using an ELM to approximate uncertain parameters, a method of adaptively updating the output weight is applied to improve the stability and closed-loop tracking accuracy of the system and ensure the real-time performance of manipulator control. A new nonlinear integral sliding mode function is designed to reduce the steady-state error of the system, avoid the issue of system instability caused by large initial errors of the system, and enable the system to track the desired trajectory quickly. Moreover, a robust control term is added to the SMC law to compensate for the error of ELM approximation, which increases the robustness of the manipulator and reduces the fluctuation amplitude of the control input in the presence of external disturbances. Finally, a simulation analysis is performed and stable convergence of the proposed method using Lyapunov stability functions is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li, D.; Tee, K.P.; Xie, L.: Time-synchronized control for disturbed systems. IEEE Trans. Cybernet. (2021). https://doi.org/10.1109/TCYB.2021.3054589(EarlyAccess)

    Article  Google Scholar 

  2. Song, S.; Zhang, B.; Song, X.: Neuro-fuzzy-based adaptive dynamic surface control for fractional-order nonlinear strict-feedback systems with input constraint. IEEE Trans. Syst. Man Cybernet. Syst. 51(6), 3575–3586 (2021). https://doi.org/10.1109/TSMC.2019.2933359

    Article  Google Scholar 

  3. Xia, K.; Gao, H.; Ding, L.: Trajectory tracking control of wheeled mobile manipulator based on fuzzy neural network and extended Kalman filtering. Neural Comput. Appl. 30(2), 447–462 (2018). https://doi.org/10.1007/s00521-016-2643-7

    Article  Google Scholar 

  4. Selvaraj, P.; Sakthivel, R.; Kwon, O.M.; Muslim, M.: Disturbance rejection of interval type-2 fuzzy systems based on equivalence-input-disturbance approach. J. Dynamic Syst. Meas. Control Trans. ASME 139(10), 101006 (2017). https://doi.org/10.1115/1.4036564

    Article  Google Scholar 

  5. Zhou, Z.; Ji, H.; Zhu, Z.: Online sequential fuzzy dropout extreme learning machine compensate for sliding-mode control system errors of uncertain robot manipulator. Int. J. Mach. Learn. Cybernet. 13, 2171–2187 (2022). https://doi.org/10.1007/s13042-022-01513-x

    Article  Google Scholar 

  6. Aslmostafa, E.; MirzaeiM, J.; Asadollahi, M.: Stabilization problem for a class of nonlinear MIMO systems based on prescribed-time sliding mode control. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-022-06974-4(EarlyAccess)

    Article  Google Scholar 

  7. Yang, C.; Jiang, Y.; Wei, H.: Adaptive parameter estimation and control design for robot manipulators with finite-time convergence. IEEE Trans. Industr. Electron. 65(10), 8112–8123 (2018). https://doi.org/10.1109/TIE.2018.2803773

    Article  Google Scholar 

  8. Suarez, A.; Heredia, G.; Ollero, A.: Physical-virtual impedance control in ultra-lightweight and compliant dual arm aerial manipulators. IEEE Robot. Autom. Lett. 3(3), 2553–2560 (2018). https://doi.org/10.1109/LRA.2018.2809964

    Article  Google Scholar 

  9. Lin, C.K.: Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks. IEEE Trans. Fuzzy Syst. 14(6), 849–859 (2006). https://doi.org/10.1109/TFUZZ.2006.879982

    Article  Google Scholar 

  10. Tao, Y.; Zheng, J.; Lin, Y.: A sliding mode control-based on an RBF neural network for deburring industry robotic systems. Int. J. Adv. Robot. Syst. (2016). https://doi.org/10.5772/62002

    Article  Google Scholar 

  11. Tran, M.D.; Kang, H.J.: A novel adaptive finite-time tracking control for robotic manipulators using nonsingular terminal sliding mode and RBF neural networks. Int. J. Precis. Eng. Manuf. 17(7), 863–870 (2016). https://doi.org/10.1007/S12541-016-0105-X

    Article  Google Scholar 

  12. Sai, H.; Xu, Z.; Li, Y.: Adaptive nonsingular fast terminal sliding mode impedance control for uncertainty robotic manipulators. Int. J. Precis. Eng. Manuf. 22(12), 1947–1961 (2021). https://doi.org/10.1007/s12541-021-00589-9

    Article  Google Scholar 

  13. Wang, L.; Chai, T.; Zhai, L.: Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans. Industr. Electron. 56(9), 3296–3304 (2009). https://doi.org/10.1109/TIE.2008.2011350

    Article  Google Scholar 

  14. Ak, A.G.; Cansever, G.; Delibasi, A.: Robot trajectory tracking with adaptive RBFNN-based fuzzy sliding mode control. Inf. Technol. Control 40(2), 151–156 (2011). https://doi.org/10.5755/j01.itc.40.2.430

    Article  Google Scholar 

  15. Lian, R.J.: Adaptive self-organizing fuzzy sliding-mode radial basis-function neural-network controller for robotic systems. IEEE Trans. Industr. Electron. 61(3), 1493–1503 (2014). https://doi.org/10.1109/TIE.2013.2258299

    Article  Google Scholar 

  16. Zhang, R.; Xu, B.; Wei, Q.: Serial-parallel estimation model-based sliding mode control of mems gyroscopes. IEEE Trans. Syst. Man Cybernet. Syst. 51(12), 7764–7775 (2021). https://doi.org/10.1109/TSMC.2020.2981807

    Article  Google Scholar 

  17. Yang, T.; Gao, X.S.: Adaptive neural sliding-mode controller for alternative control strategies in lower limb rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 28(1), 238–247 (2020). https://doi.org/10.1109/TNSRE.2019.2946407

    Article  Google Scholar 

  18. Huang, G.B.; Zhu, Q.Y.; Siew, C.K.: Extreme learning machine: Theory and applications. Neurocomputing 70(1/3), 489–501 (2006). https://doi.org/10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  19. Ding, X.J.; Yang, F.; Jin, S.; Cao, J.: An efficient alpha seeding method for optimized extreme learning machine-based feature selection algorithm. Comput. Biol. Med. (2021). https://doi.org/10.1016/j.compbiomed.2021.104505

    Article  Google Scholar 

  20. Li, S.; Jiang, H.; Pang, W.: Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading. Comput. Biol. Med. 84, 156–167 (2017). https://doi.org/10.1016/j.compbiomed.2017.03.017

    Article  Google Scholar 

  21. Malar, E.; Kandaswamy, A.; Chakravarthy, D.; Dharan, A.G.: A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine. Comput. Biol. Med. 42(9), 898–905 (2012). https://doi.org/10.1016/j.compbiomed.2012.07.001

    Article  Google Scholar 

  22. Hu, J.; Han, Z.; Heidari, A.A.; Shou, Y.; Ye, H.; Wang, L.; Huang, X.; Chen, H.; Chen, Y.; Wu, P.: Detection of COVID-19 severity using blood gas analysis parameters and Harris hawks optimized extreme learning machine. Comput. Biol. Med. (2022). https://doi.org/10.1016/j.compbiomed.2021.105166

    Article  Google Scholar 

  23. Xia, J.; Yang, D.; Zhou, H.; Chen, Y.; Zhang, H.; Liu, T.; Heidari, A.A.; Chen, H.; Pan, Z.: Evolving kernel extreme learning machine for medical diagnosis via a disperse foraging sine cosine algorithm. Comput. Biol. Med. (2022). https://doi.org/10.1016/j.compbiomed.2021.105137

    Article  Google Scholar 

  24. Zhou, Z.; Wang, C.; Zhu, Z.; Wang, Y.M.; Yang, D.H.: Sliding mode control based on a hybrid grey-wolf-optimized extreme learning machine for robot manipulators. Optik 185, 364–380 (2019). https://doi.org/10.1016/j.ijleo.2019.01.105

    Article  Google Scholar 

  25. Gao, M.M.; Jin, X.Z.; Ding, L.J.: Robust adaptive backstepping INTSM control for robotic manipulators based on ELM. Neural Comput. Appl. 34, 5029–5039 (2022). https://doi.org/10.1007/s00521-021-05824-y

    Article  Google Scholar 

  26. Ye M.; Wang H.; Cao Z.: Extreme-learning-machine-based robust AITSM control for steer-by-wire systems. In: 2019 Chinese Control Conference (CCC), (2019) 2629–2634. https://doi.org/10.23919/ChiCC.2019.8865823

  27. Rong, H.J.; Zhao, G.S.: Direct adaptive neural control of nonlinear systems with extreme learning machine. Neural Comput. Appl. 22(3–4), 577–586 (2013). https://doi.org/10.1007/s00521-011-0805-1

    Article  Google Scholar 

  28. Niu, H.; Lan, Q.; Liu, Y.: A continuous integral terminal sliding mode control approach for a class of uncertain nonlinear systems. Meas. Control 52(5–6), 720–728 (2019). https://doi.org/10.1177/0020294019836113

    Article  Google Scholar 

  29. Gao, Q.; Liu, L.; Feng, G.: Universal fuzzy integral sliding-mode controllers for stochastic nonlinear systems. IEEE Trans. Cybernet. 44(12), 2658–2669 (2014). https://doi.org/10.1007/978-981-10-1974-6_6

    Article  Google Scholar 

  30. Zhang, Q.; Yu, H.; Wang, X.: Integral terminal sliding mode control for a class of nonaffine nonlinear systems with uncertainty. Math. Probl. Eng. 2013, 636494 (2013). https://doi.org/10.1155/2013/636494

    Article  MathSciNet  Google Scholar 

  31. Rahmani, M.; Ghanbari, A.; Ettefagh, M.M.: Hybrid neural network fraction integral terminal sliding mode control of an Inchworm robot manipulator. Mech. Syst. Signal Process. 80, 117–136 (2016). https://doi.org/10.1016/j.ymssp.2016.04.004

    Article  Google Scholar 

  32. Zhang, Y.; Cao, G.; Li, W.: A self-adaptive-coefficient-double-power sliding mode control method for lower limb rehabilitation exoskeleton robot. Appl. Sci. -Basel (2021). https://doi.org/10.3390/app112110329

    Article  Google Scholar 

  33. Liu, W.; Chen, S.Y.; Huang, H.X.: Double closed-loop integral terminal sliding mode for a class of under-actuated systems based on sliding mode observer. Int. J. Control Autom. Syst. 18(2), 339–350 (2020). https://doi.org/10.1007/s12555-019-0184-4

    Article  Google Scholar 

  34. Zhou, Z.; Wu, B.: Adaptive sliding mode control of manipulators based on fuzzy random vector function links for friction compensation. Optik 227, 166055 (2021). https://doi.org/10.1016/j.ijleo.2020.166055

    Article  Google Scholar 

  35. Babar, M.; Khan, M.S.; Habib, U.; Shah, B.; Ali, F.; Song, D.: Scalable edge computing for IoT and multimedia applications using machine learning. Human-Centric Comput. Inf. Sci. 11, 41 (2021). https://doi.org/10.22967/HCIS.2021.11.041

    Article  Google Scholar 

  36. Pu, B.; Li, K.; Li, S.; Zhu, N.: Automatic fetal ultrasound standard plane recognition based on deep learning and IIoT. IEEE Trans. Industr. Inf. 17(11), 7771–7780 (2021). https://doi.org/10.1109/TII.2021.3069470

    Article  Google Scholar 

  37. Min, H.; Xu, S.; Zhang, Z.: Adaptive finite-time stabilization of stochastic nonlinear systems subject to full-state constraints and input saturation. IEEE Trans. Autom. Control 66(3), 1306–1313 (2021). https://doi.org/10.1109/TAC.2020.2990173

    Article  MathSciNet  MATH  Google Scholar 

  38. Lan-Huong, N.T.; Hien, L.V.: Robust stabilization of nonlinear stochastic 2-D systems: LaSalle-type theorem approach. Int. J. Robust Nonlinear Control 30(13), 4839–4862 (2020). https://doi.org/10.1002/rnc.5016

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Key R&D Program of Zhejiang Province (No. 2021C03013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junyi Yang or Zhiyu Zhou.

Appendix

Appendix

Here, we describe the symbols used in this paper.

Table 6 List of symbols

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zhou, Z. & Ji, J. Nonlinear Integral Sliding Mode Control with Adaptive Extreme Learning Machine and Robust Control Term for Anti-External Disturbance Robotic Manipulator. Arab J Sci Eng 48, 2375–2397 (2023). https://doi.org/10.1007/s13369-022-07246-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07246-x

Keywords