Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fractional Derivative Modeling in Mechanics and Engineering

  • Textbook
  • © 2022

Overview

  • Focuses on the application of fractional calculus in mechanics and physics
  • Emphasizes the physical and mechanical background of concepts in fractional calculus modeling
  • Presents mathematics in the simplest form in a readable manner

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

This textbook highlights the theory of fractional calculus and its wide applications in mechanics and engineering. It describes in details the research findings in using fractional calculus methods for modeling and numerical simulation of complex mechanical behavior. It covers the mathematical basis of fractional calculus, the relationship between fractal and fractional calculus, unconventional statistics and anomalous diffusion, typical applications of fractional calculus, and the numerical solution of the fractional differential equation. It also includes latest findings, such as variable order derivative, distributed order derivative and its applications. Different from other textbooks in this subject, the book avoids lengthy mathematical demonstrations, and presents the theories in close connection to the applications in an easily readable manner. This textbook is intended for students, researchers and professionals in applied physics, engineering mechanics, and applied mathematics. It is also of high reference value for those in environmental mechanics, geotechnical mechanics, biomechanics, and rheology.

Similar content being viewed by others

Keywords

Table of contents (7 chapters)

Authors and Affiliations

  • College of Mechanics and Materials, Hohai University, Nanjing, China

    Wen Chen, HongGuang Sun

  • School of Mathematical Sciences, University of Jinan, Jinan, China

    Xicheng Li

About the authors

Dr. Wen Chen is a Distinguished Professor and former Dean of the College of Mechanics and Materials at Hohai University, China. His research covers computational mechanics, hydrodynamics, and acoustics. His research interests include RBF-based numerical simulation, anomalous diffusion, and non-local statistics of soft matter mechanics. He also serves as Associate Director of the Chinese Society of Environmental Mechanics and the TC member on Linear Control Systems of the International Federation of Automatic Control. He is former TC Chair of the sector in computational mechanics software, China Mechanics Society.

Dr. Hongguang Sun works as a Professor in the College of Mechanics and Materials, Director of Sino-US Joint Research Center of Groundwater and Environmental Fluid Mechanics, and Deputy Director of the Institute of Hydraulics and Fluid Mechanics, Hohai University, China. His main research interests include simulation and remediation of groundwater and soil pollution,sediment transport, and high-precision computational mechanics.

Dr. Xicheng Li works as an Associate Professor at the School of Mathematical Sciences, the University of Jinan, China. He has been engaged in theoretical and applied research of fractional calculus, especially fractional derivative modeling of anomalous diffusion. He is also done much exploration in modeling heat and mass transfer and solving fractional differential equations.

Bibliographic Information

Publish with us