Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

TS-Bert: Time Series Anomaly Detection via Pre-training Model Bert

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12743))

Included in the following conference series:

Abstract

Anomaly detection of time series is of great importance in data mining research. Current state of the art suffer from scalability, over reliance on labels and high false positives. To this end, a novel framework, named TS-Bert, is proposed in this paper. TS-Bert is based on pre-training model Bert and consists of two phases, accordingly. In the pre-training phase, the model learns the behavior features of the time series from massive unlabeled data. In the fine-tuning phase, the model is fine-tuned based on the target dataset. Since the Bert model is not designed for the time series anomaly detection task, we have made some modifications thus to improve the detection accuracy. Furthermore, we have removed the dependency of the model on labeled data so that TS-Bert is unsupervised. Experiments on the public data set KPI and yahoo demonstrate that TS-Bert has significantly improved the f1 value compared to the current state-of-the-art unsupervised learning models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. http://iops.ai/dataset_detail/?id=10/

  2. https://yahooresearch.tumblr.com/post/114590420346/a-benchmark-dataset-for-time-series-anomaly

  3. https://github.com/alibaba/clusterdata/blob/v2018/cluster-trace-v2018/trace_2018.md

  4. Canizo, M., Triguero, I., Conde, A., Onieva, E.: Multi-head CNN-RNN for multi-time series anomaly detection: an industrial case study. Neurocomputing 363, 246–260 (2019)

    Article  Google Scholar 

  5. Chatfield, C.: The holt-winters forecasting procedure. J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) 27(3), 264–279 (1978)

    Google Scholar 

  6. Chen, Q., Zhuo, Z., Wang, W.: Bert for joint intent classification and slot filling. arXiv preprint arXiv:1902.10909 (2019)

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  8. Görnitz, N., Kloft, M., Rieck, K., Brefeld, U.: Toward supervised anomaly detection. J. Artif. Intell. Res. 46, 235–262 (2013)

    Article  MathSciNet  Google Scholar 

  9. Laptev, N., Amizadeh, S., Flint, I.: Generic and scalable framework for automated time-series anomaly detection. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1939–1947 (2015)

    Google Scholar 

  10. Liu, D., et al.: Opprentice: Towards practical and automatic anomaly detection through machine learning. In: Proceedings of the 2015 Internet Measurement Conference, pp. 211–224 (2015)

    Google Scholar 

  11. Lu, W., Ghorbani, A.A.: Network anomaly detection based on wavelet analysis. EURASIP J. Adv. Signal Process. 2009, 1–16 (2008)

    Article  Google Scholar 

  12. Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., Shroff, G.: LSTM-based encoder-decoder for multi-sensor anomaly detection. arXiv preprint arXiv:1607.00148 (2016)

  13. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

    Google Scholar 

  14. Rasheed, F., Peng, P., Alhajj, R., Rokne, J.: Fourier transform based spatial outlier mining. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 317–324. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04394-9_39

    Chapter  Google Scholar 

  15. Ren, H., et al.: Time-series anomaly detection service at microsoft. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3009–3017 (2019)

    Google Scholar 

  16. Said, S.E., Dickey, D.A.: Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika 71(3), 599–607 (1984)

    Article  MathSciNet  Google Scholar 

  17. Shipmon, D., Gurevitch, J., Piselli, P.M., Edwards, S.: Time series anomaly detection: detection of anomalous drops with limited features and sparse examples in noisy periodic data (2017)

    Google Scholar 

  18. Vig, J., Ramea, K.: Comparison of transfer-learning approaches for response selection in multi-turn conversations. In: Workshop on DSTC7 (2019)

    Google Scholar 

  19. Wu, X., Lv, S., Zang, L., Han, J., Hu, S.: Conditional BERT Contextual Augmentation. In: Rodrigues, J.M.F., et al. (eds.) ICCS 2019. LNCS, vol. 11539, pp. 84–95. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22747-0_7

    Chapter  Google Scholar 

  20. Xu, H., et al.: Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications. In: Proceedings of the 2018 World Wide Web Conference, pp. 187–196 (2018)

    Google Scholar 

  21. Yang, W., Zhang, H., Lin, J.: Simple applications of bert for ad hoc document retrieval. arXiv preprint arXiv:1903.10972 (2019)

  22. Zhang, C., et al.: A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1409–1416 (2019)

    Google Scholar 

  23. Zhang, Y., Ge, Z., Greenberg, A., Roughan, M.: Network anomography. In: Proceedings of the 5th ACM SIGCOMM Conference on Internet Measurement, p. 30 (2005)

    Google Scholar 

Download references

Acknowledgements

Supported by the National Key Research and Development Program of China 2017YFB1010001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biyu Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dang, W., Zhou, B., Wei, L., Zhang, W., Yang, Z., Hu, S. (2021). TS-Bert: Time Series Anomaly Detection via Pre-training Model Bert. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12743. Springer, Cham. https://doi.org/10.1007/978-3-030-77964-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77964-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77963-4

  • Online ISBN: 978-3-030-77964-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics