Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

WO2015039759A1 - Encoding of low-density parity check for different low-density parity check (ldpc) codes sharing common hardware resources - Google Patents

Encoding of low-density parity check for different low-density parity check (ldpc) codes sharing common hardware resources Download PDF

Info

Publication number
WO2015039759A1
WO2015039759A1 PCT/EP2014/002544 EP2014002544W WO2015039759A1 WO 2015039759 A1 WO2015039759 A1 WO 2015039759A1 EP 2014002544 W EP2014002544 W EP 2014002544W WO 2015039759 A1 WO2015039759 A1 WO 2015039759A1
Authority
WO
WIPO (PCT)
Prior art keywords
hardware resources
parity bits
matrix
sub
parity check
Prior art date
Application number
PCT/EP2014/002544
Other languages
French (fr)
Inventor
Ahmed S. MAHDI
Nikolaos L. KANISTRAS
Vassilis Paliouras
Original Assignee
U-Blox Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by U-Blox Ag filed Critical U-Blox Ag
Priority to JP2016515551A priority Critical patent/JP6472790B2/en
Priority to EP14786121.5A priority patent/EP3047575B1/en
Priority to CN201480051479.XA priority patent/CN105556852B/en
Publication of WO2015039759A1 publication Critical patent/WO2015039759A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/61Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
    • H03M13/611Specific encoding aspects, e.g. encoding by means of decoding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6502Reduction of hardware complexity or efficient processing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6508Flexibility, adaptability, parametrability and configurability of the implementation
    • H03M13/6516Support of multiple code parameters, e.g. generalized Reed-Solomon decoder for a variety of generator polynomials or Galois fields
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6522Intended application, e.g. transmission or communication standard
    • H03M13/6527IEEE 802.11 [WLAN]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6572Implementations using a tree structure, e.g. implementations in which the complexity is reduced by a tree structure from O(n) to O (log(n))
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/116Quasi-cyclic LDPC [QC-LDPC] codes, i.e. the parity-check matrix being composed of permutation or circulant sub-matrices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/61Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
    • H03M13/618Shortening and extension of codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • H03M13/6362Error control coding in combination with rate matching by puncturing

Definitions

  • the present invention relates to the field of error correction coding and decoding. More particularly, the present invention relates to Low Density Parity Check (LDPC) codes and to an LDPC encoder.
  • LDPC Low Density Parity Check
  • the process of transmitting digital data can introduce errors into the data.
  • errors are typically caused by noise that is present in the transmission channel.
  • the amount of errors is generally related to the transmission signal strength in relation to the amount of noise present.
  • Error correction coding is a technique by which redundancy is inserted into the data prior to transmission. Upon reception, this redundancy is used in an attempt to correct errors that were introduced during the transmission process.
  • Block coding is a type of error correction coding in which the digital data to be transmitted is broken into messages of fixed size. Prior to transmission, each message is encoded into a codeword (also referred to as a "block") by an encoder. Redundancy, referred to as parity data, is inserted during the encoding process so that the codewords are made larger than the messages. Each codeword includes both message bits and parity bits. Assume that the codewords each consist of n bits. Only certain patterns of n bits are valid codewords; the remaining patterns are invalid. The codewords are then transmitted, which may cause the codewords to become corrupted. Upon reception, a decoder attempts to infer the original messages from the received, and possibly corrupted, codewords.
  • a generator matrix can be used during the encoding process to encode the messages into valid codewords.
  • a parity check matrix can be used during the decoding process to generate an error vector, where the error vector indicates the presence of errors in the received codeword.
  • a linear block error correction code is one in which any linear combination of valid codewords is also a valid codeword.
  • Low Density Parity Check (LDPC) codes are a subcategory of linear block error correction codes characterized by a sparse parity check matrix. This means that the parity check matrix consists mainly of O's and a relatively small number of l's.
  • LDPC codes were first introduced in the 1960's but have more recently received increased attention. This is due at least in part to inherent parallelism in decoding which makes LDPC codes suitable for hardware implementation and due to flexibility in designing LDPC codes, which allows LDPC codes to be used in a variety of applications.
  • a number of telecommunications standards use a set of LDPC codes having a variety of block lengths and code rates. The code rate can be defined as the portion of non-redundant data contained in each block.
  • the generator matrix for LDPC codes is generally not sparse. This means that the encoding process for an LDPC code can have high complexity.
  • some encoding schemes use the parity check matrix to compute the codewords during the encoding process. This is possible because the parity check matrix is related to the generator matrix in that the parity check matrix for each particular LDPC code can be derived from the generator matrix for that code.
  • the parity check matrix can be partitioned into sub-matrices.
  • the parity bits for each codeword can be computed from the message bits using the sub-matrices.
  • Some LDPC encoders employ backward substitution. This approach is used to avoid inversion of the parity check sub-matrix in an effort to reduce complexity of the encoding computations.
  • parallelization of the backward substitution procedure introduces high complexity.
  • to implement the backward substitution procedure for LDPC codes having different of block lengths and code rates at least the non-zero elements for multiple sub-matrices need to be stored (i.e. one per code length, per code rate), which requires large memories. In addition to the storage requirements, implementation of these procedures tends to require complex hardware.
  • an encoder for error correction coding comprises: first hardware resources configured to receive a message bits vector and to compute an intermediate parity bits vector from the message bits vector wherein the intermediate parity bits vector is computed based on a sub-matrix of a parity check matrix; and second hardware resources configured to compute a parity bits vector from the intermediate parity bits vector, wherein the second hardware resources are configured to compute parity bits for multiple different codes, and wherein portions of the hardware resources that are configured to compute the parity bits for a particular one of the codes are commonly shared with portions of the hardware resources that are configured to compute the parity bits for another particular one of the codes.
  • a method of encoding an error correction code comprises: computing an intermediate parity bits vector from a message bits vector using a sub-matrix of a parity check matrix; and computing a parity bits vector from the intermediate parity bits vector using fixed hardware resources that are configured to compute parity bits for multiple different codes and wherein portions of the hardware resources that are configured to compute the parity bits for a particular one of the codes are commonly shared with portions of the hardware resources that are configured to compute the parity bits for another particular one of the codes.
  • Figure 1 illustrates a communication system in which embodiments of the present invention can be implemented
  • Figure 2 illustrates a parity check encoder in accordance with an embodiment of the present invention
  • Figure 3 illustrates partitioning of a parity check matrix in accordance with an embodiment of the present invention
  • Figure 4 illustrates a method of computing parity check bits in accordance with an embodiment of the present invention
  • Figure 5 illustrates the inverse of the transpose of a parity check sub-matrix for a particular error correction code in accordance with an embodiment of the present invention
  • Figure 6 illustrates the inverse of the transpose of a parity check sub-matrix for an alternative error correction code in accordance with an embodiment of the present invention
  • Figure 7 illustrates XOR hardware resources that are shared among different error correction codes in accordance with an embodiment of the present invention
  • Figure 8 illustrates an exemplary hardware implementation for generating the intermediate parity bits vector in accordance with an embodiment of the present invention
  • Figure 9 illustrates an exemplary hardware implementation for generating the parity bits vector in accordance with an embodiment of the present invention
  • Figure 10 illustrates exemplary hardware implementations for generating a parity bit for each of four error correction codes to which hardware resource sharing in accordance with embodiments of the present invention can be applied;
  • Figure 1 1 illustrates an exemplary hardware implementation in which hardware resources are shared among four different error correction codes in accordance with an embodiment of the present invention.
  • Figure 12 illustrates an exemplary hardware implementation in which hardware resources are shared among different parity bits of different error correction codes in accordance with an embodiment of the present invention.
  • the present invention exploits particular features of a set of error correction codes in order to reduce storage and hardware complexity requirements of an encoder.
  • Embodiments of the present invention allow the same encoder hardware to perform encoding for different block lengths and code rates.
  • hardware resources of the encoder can be shared among the different block lengths and code rates supported by the encoder.
  • Embodiments of the present invention are useful for encoding low density parity check (LDPC) codes.
  • LDPC low density parity check
  • Figure 1 illustrates a communication system 100 in which embodiments of the present invention can be implemented.
  • digital data 102 to be transmitted is input to a transmitter 104.
  • the transmitter 104 can include an encoder 106 and a modulator 108.
  • the encoder 106 performs error correction coding on the data, for example, by breaking the data 102 into messages of fixed size and encoding the messages into codewords. Redundancy, in the form of parity bits, is inserted during the encoding process so that the codewords are made larger than the messages.
  • the modulator 108 can then prepare the codewords for transmission by modulating one or more carrier signals in accordance with the codewords.
  • the modulation can be performed in accordance with orthogonal frequency division multiplexing (OFDM).
  • OFDM orthogonal frequency division multiplexing
  • Each modulated and encoded signal can then be transmitted via a communication channel 110.
  • the channel 1 10 can be, for example, a wireless communication channel which can be, for example, part of a wireless local area network (WLAN).
  • WLAN wireless local area network
  • a receiver 1 12 receives the transmitted signal from the channel 1 10.
  • the receiver 1 12 can include a demodulator 114 and a decoder 1 16.
  • the demodulator 1 14 demodulates the received signal to reconstruct the codewords.
  • the codewords can then be decoded by the decoder 116 in order to reconstruct the original data 102. While the decoder 1 16 can correct certain errors introduced by the communication process, the data 1 18 output from the decoder 112 can differ from the original data 102 due to uncorrected errors that remain.
  • Figure 2 illustrates a parity check encoder 200 in accordance with an embodiment of the present invention.
  • the parity check encoder 200 can be included in the encoder 106 of Figure 1.
  • the parity check encoder 200 receives an information bits vector s.
  • the information bits vector s contains message bits.
  • the parity check encoder 200 uses the message bits to produce a parity bits vector p.
  • the parity bits vector p contains parity bits that correspond to the message bits input to the encoder 200.
  • the encoder 106 of Figure 1 may perform functions that are in addition to that of the parity check encoder 200. For example, the encoder 106 may perform padding in which bits are added to the message bits prior to computing the parity check bits.
  • the encoder 106 may perform puncturing and repeating after computing the parity check bits.
  • the padding, puncturing and repeating can be, for example, performed in accordance with IEEE 802.1 l n/ac standards.
  • Portions of the encoder 106, including the parity check encoder 200, can be implemented in hardware using field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs) or other types of circuitry.
  • FPGAs field programmable gate arrays
  • ASICs application specific integrated circuits
  • parity bits of a codeword in accordance with LDPC encoding can be defined by the following Equation (1):
  • the parity check matrix H can be partitioned into two sub-matrices Hi and H2, which are transposed to form the matrices
  • Figure 3 illustrates partitioning of a parity check matrix H into two sub-matrices H ⁇ and H 2 in accordance with an embodiment of the present invention.
  • Equation (1) A two-step encoding algorithm can be used to implement Equation (1), according to Equations (2) and (3):
  • Figure 4 illustrates a method 400 of computing parity bits in accordance with an embodiment of the present invention.
  • the method 400 can be performed by the parity check encoder 200 of Figure 2.
  • a step 402 an intermediate parity bits vector p is computed.
  • the intermediate parity bits vector p ⁇ can be computed in step 302 in accordance with Equation (2) above.
  • the parity bits vector p is computed.
  • the parity bits vector p can be computed in accordance with Equation (3) above.
  • the steps 402 and 404 comprise the multiplication of a row-vector by two unique matrices.
  • the parity check matrices are binary also. Therefore, Equations (2) and (3) can be implemented in a GF(2) (i.e. a Galois field of two elements) and their computational complexity is proportional to the total number of ones in both matrices and (HJ) - 1 .
  • the sub-matrix is sparse; while due to the inversion operation, the inverted matrix ⁇ x is generally quite dense.
  • Equation (3) is more involved than that of Equation (2).
  • the different codes can have common parts among the columns of their parity check matrices.
  • the (Hz) -1 sub-matrices can have common parts among their columns also.
  • the parity check matrices namely,
  • parity check matrices are binary and QC
  • sub-matrices have dual-diagonal structure
  • Figure 5 illustrates a parity check sub-matrix for a particular LDPC error correction code having a block length of 648 and a rate of 5/6.
  • Figure 6 illustrates a parity check sub-matrix for a second LDPC error correction code having a block length of 648 and a rate of 1/2.
  • Figures 5 and 6 show where the marked rows of the (Hz) "1 sub-matrix for the first code are encountered at the (H ) -1 sub-matrix of the second code.
  • step 402 can be implemented with hardware, such as field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs) or other types of circuitry that performs vector matrix multiplication.
  • FPGAs field programmable gate arrays
  • ASICs application specific integrated circuits
  • Step 404 can be implemented in hardware using XOR-gate trees.
  • ) _1 sub-matrices of the supported codes correspond to common parts among the trees of XOR gates that implement the encoding of these codes.
  • This is a sub-expressions problem and is exploited by the invention to share hardware resources, resulting to reduction of the encoder hardware requirements. Therefore, step 404 is performed using shared XOR resources.
  • Such XOR resources can be implemented as field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs) or other types of circuitry.
  • Figure 7 illustrates XOR hardware resources 700 that are shared among different error correction codes in accordance with an embodiment of the present invention.
  • the XOR hardware resources that generate each parity bit include an array of XOR logic gates 702 and one or more multiplexers 704. As shown in Figure 7, the bits from the intermediate parity bits vector p ⁇ , are applied to inputs of the array of XOR logic gates 702. Outputs of the XOR logic gates 702 are coupled to inputs of a multiplexer 704. A select input to the multiplexer 704 controls which of the inputs of the multiplexer 704 is routed to the output of the multiplexer 704 to thereby form the corresponding parity bit. The select input value corresponds to the particular one of the multiple codes that the encoder is currently implementing.
  • the hardware resources 700 are shown in simplified form for single parity bit.
  • the particular arrangement of the XOR logic gates 702 and multiplexers 704 will depend upon each of the block lengths and code rates to be implemented by the encoder as well as the particular locations of the ones and zeros in the parity check sub-matrices for each such code.
  • Common sub-expression solving techniques can be used to generate the particular arrangement of the hardware resources 700.
  • the common sub-expression solving techniques can be performed using the corresponding (H ) '1 sub-matrices of the supported codes.
  • the arrangement can be fixed. Only the parity values applied as inputs and the select inputs to the multiplexers need to be changed so that the hardware resources are capable of encoding a different code having a different block length and/or a different rate.
  • Equation (3) The common parts of the columns of the XOR trees that implement Equation (3), for the case of multiple supported codes by a communication system, are commonly shared during encoding each of these codes, resulting in an overall reduction of the encoder hardware requirements. This contributes to non-negligible decrease of the complexity and area of the encoder architecture.
  • embodiments of the present invention may support encoding in accordance with IEEE standard 802.1 1, and thus the multiple supported codes may include LDPC codes with block lengths selected from 648, 1296, and 1944 bits and with code rates selected from 1/2, 2/3, 3/4 and 5/6.
  • Figure 8 illustrates an exemplary hardware implementation for generating the intermediate parity bits vector p ⁇ . It will be apparent that further logic-level optimizations are possible.
  • Equation (3) can be implemented in hardware. Initially, the transposed H 2 is inverted in the Galois field GF(2) to give
  • Figure 9 illustrates an exemplary hardware implementation for generating the parity bits vector in accordance with Equation (3).
  • PD(1) ⁇ 1 ( ⁇ ) ⁇ 8! ⁇ 1 (2)® ⁇ 1 (3)® ⁇ 1 (5) ⁇ 8> ⁇ 1 (6)® ⁇ 1 (7) .
  • the first column of each of the inverted transposed parity check sub-matrices, corresponding to each code can be
  • Figure 10 illustrates exemplary hardware implementations for generating a parity bit as in Equation (3) for each of four different error correction codes.
  • the hardware implementation of Figure 10 requires twelve (12) XOR gates.
  • the present invention reduces hardware by reusing partial results. We initially identify common sub-expressions in the equations that derive the parity bit values. In this example, we notice that the value of p A (1) can be reused per se in the computation of VB C 1 ) allowing us to write
  • Pc CO where 3 ⁇ 4 (n) denotes the n-th parity bit for the case of code X.
  • Figure 1 1 A possible hardware implementation of the modified equations that use common subexpression sharing is depicted in Figure 1 1.
  • Figure 1 1 illustrates an exemplary hardware implementation in which hardware resources are shared among four different error correction codes.
  • the circuit of Figure 1 1 can produce a parity bit for a code of choice at each instance.
  • the parity bits are generated by separate XOR trees.
  • the XOR gates may also be shared among different parity bits. It is possible to share XOR gates among different trees that compute parity bits for the same or a different supported code, as illustrated in the following example.
  • Figure 12 indicates the corresponding hardware portion sharing. More particularly, Figure 12 illustrates an exemplary hardware implementation in which hardware resources are shared among different parity bits of different error correction codes.
  • FIG 12 illustrates an exemplary hardware implementation in which hardware resources are shared among different parity bits of different error correction codes.
  • corresponding logic is required to select the appropriate output bit for each case, as shown in Figure 12.
  • some selection logic can be omitted. Thus, in the example above, if code B has only three parities, the selection logic for the sixth parity bit can be omitted.

Landscapes

  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Error Detection And Correction (AREA)

Abstract

The present invention is directed toward a parity check encoder for low density parity check (LDPC) codes and to an encoding method. In accordance with an embodiment, an encoder for error correction coding comprises: first hardware resources configured to receive a message bits vector and to compute an intermediate parity bits vector from the message bits vector wherein the intermediate parity bits vector is computed based on a sub-matrix of a parity check matrix corresponding to the message bits; and second hardware resources configured to compute a parity bits vector from the intermediate parity bits vector, wherein the second hardware resources are configured to compute parity bits for multiple different codes, and wherein portions of the hardware resources that are configured to compute the parity bits for a particular one of the codes are commonly shared with portions of the hardware resources that are configured to compute the parity bits for another particular one of the codes. Thus, the same encoder hardware can perform encoding for different block lengths and/or code rates using reduced storage and hardware complexity requirements.

Description

ENCODING OF LOW-DENSITY PARITY CHECK FOR DIFFERENT
LOW-DENSITY PARITY CHECK (LDPC) CODES
SHARING COMMON HARDWARE RESOURCES
Background of the Invention
[0001] The present invention relates to the field of error correction coding and decoding. More particularly, the present invention relates to Low Density Parity Check (LDPC) codes and to an LDPC encoder.
[0002] The process of transmitting digital data can introduce errors into the data. As a result, the received data can be different from the transmitted data. Such errors are typically caused by noise that is present in the transmission channel. The amount of errors is generally related to the transmission signal strength in relation to the amount of noise present. Error correction coding is a technique by which redundancy is inserted into the data prior to transmission. Upon reception, this redundancy is used in an attempt to correct errors that were introduced during the transmission process.
[0003] Block coding is a type of error correction coding in which the digital data to be transmitted is broken into messages of fixed size. Prior to transmission, each message is encoded into a codeword (also referred to as a "block") by an encoder. Redundancy, referred to as parity data, is inserted during the encoding process so that the codewords are made larger than the messages. Each codeword includes both message bits and parity bits. Assume that the codewords each consist of n bits. Only certain patterns of n bits are valid codewords; the remaining patterns are invalid. The codewords are then transmitted, which may cause the codewords to become corrupted. Upon reception, a decoder attempts to infer the original messages from the received, and possibly corrupted, codewords.
[0004] A generator matrix can be used during the encoding process to encode the messages into valid codewords. Upon reception, a parity check matrix can be used during the decoding process to generate an error vector, where the error vector indicates the presence of errors in the received codeword.
[0005] A linear block error correction code is one in which any linear combination of valid codewords is also a valid codeword. Low Density Parity Check (LDPC) codes are a subcategory of linear block error correction codes characterized by a sparse parity check matrix. This means that the parity check matrix consists mainly of O's and a relatively small number of l's. LDPC codes were first introduced in the 1960's but have more recently received increased attention. This is due at least in part to inherent parallelism in decoding which makes LDPC codes suitable for hardware implementation and due to flexibility in designing LDPC codes, which allows LDPC codes to be used in a variety of applications. A number of telecommunications standards use a set of LDPC codes having a variety of block lengths and code rates. The code rate can be defined as the portion of non-redundant data contained in each block.
[0006] The generator matrix for LDPC codes is generally not sparse. This means that the encoding process for an LDPC code can have high complexity. In an effort to reduce encoding complexity, some encoding schemes use the parity check matrix to compute the codewords during the encoding process. This is possible because the parity check matrix is related to the generator matrix in that the parity check matrix for each particular LDPC code can be derived from the generator matrix for that code. The parity check matrix can be partitioned into sub-matrices. The parity bits for each codeword can be computed from the message bits using the sub-matrices.
[0007] Some LDPC encoders employ backward substitution. This approach is used to avoid inversion of the parity check sub-matrix in an effort to reduce complexity of the encoding computations. However, parallelization of the backward substitution procedure introduces high complexity. Also, to implement the backward substitution procedure for LDPC codes having different of block lengths and code rates, at least the non-zero elements for multiple sub-matrices need to be stored (i.e. one per code length, per code rate), which requires large memories. In addition to the storage requirements, implementation of these procedures tends to require complex hardware.
Summary of the Invention
[0008] The present invention is directed toward a parity check encoder for low density error correction codes and to an encoding method. In accordance with an embodiment, an encoder for error correction coding comprises: first hardware resources configured to receive a message bits vector and to compute an intermediate parity bits vector from the message bits vector wherein the intermediate parity bits vector is computed based on a sub-matrix of a parity check matrix; and second hardware resources configured to compute a parity bits vector from the intermediate parity bits vector, wherein the second hardware resources are configured to compute parity bits for multiple different codes, and wherein portions of the hardware resources that are configured to compute the parity bits for a particular one of the codes are commonly shared with portions of the hardware resources that are configured to compute the parity bits for another particular one of the codes.
[0009] In accordance with a further embodiment, a method of encoding an error correction code comprises: computing an intermediate parity bits vector from a message bits vector using a sub-matrix of a parity check matrix; and computing a parity bits vector from the intermediate parity bits vector using fixed hardware resources that are configured to compute parity bits for multiple different codes and wherein portions of the hardware resources that are configured to compute the parity bits for a particular one of the codes are commonly shared with portions of the hardware resources that are configured to compute the parity bits for another particular one of the codes.
Brief Description of the Drawings
[0010] The present invention is described with respect to particular exemplary embodiments thereof and reference is accordingly made to the drawings in which:
[001 1] Figure 1 illustrates a communication system in which embodiments of the present invention can be implemented;
[0012] Figure 2 illustrates a parity check encoder in accordance with an embodiment of the present invention;
[0013] Figure 3 illustrates partitioning of a parity check matrix in accordance with an embodiment of the present invention;
[0014] Figure 4 illustrates a method of computing parity check bits in accordance with an embodiment of the present invention;
[0015] Figure 5 illustrates the inverse of the transpose of a parity check sub-matrix for a particular error correction code in accordance with an embodiment of the present invention; [0016] Figure 6 illustrates the inverse of the transpose of a parity check sub-matrix for an alternative error correction code in accordance with an embodiment of the present invention;
[0017] Figure 7 illustrates XOR hardware resources that are shared among different error correction codes in accordance with an embodiment of the present invention;
[0018] Figure 8 illustrates an exemplary hardware implementation for generating the intermediate parity bits vector in accordance with an embodiment of the present invention;
[0019] Figure 9 illustrates an exemplary hardware implementation for generating the parity bits vector in accordance with an embodiment of the present invention;
[0020] Figure 10 illustrates exemplary hardware implementations for generating a parity bit for each of four error correction codes to which hardware resource sharing in accordance with embodiments of the present invention can be applied;
[0021] Figure 1 1 illustrates an exemplary hardware implementation in which hardware resources are shared among four different error correction codes in accordance with an embodiment of the present invention; and
[0022] Figure 12 illustrates an exemplary hardware implementation in which hardware resources are shared among different parity bits of different error correction codes in accordance with an embodiment of the present invention.
Detailed Description of a Preferred Embodiment of the Invention
[0023] The present invention exploits particular features of a set of error correction codes in order to reduce storage and hardware complexity requirements of an encoder. Embodiments of the present invention allow the same encoder hardware to perform encoding for different block lengths and code rates. Thus, hardware resources of the encoder can be shared among the different block lengths and code rates supported by the encoder. Embodiments of the present invention are useful for encoding low density parity check (LDPC) codes.
[0024] Figure 1 illustrates a communication system 100 in which embodiments of the present invention can be implemented. As shown in Figure 1, digital data 102 to be transmitted is input to a transmitter 104. The transmitter 104 can include an encoder 106 and a modulator 108. The encoder 106 performs error correction coding on the data, for example, by breaking the data 102 into messages of fixed size and encoding the messages into codewords. Redundancy, in the form of parity bits, is inserted during the encoding process so that the codewords are made larger than the messages.
[0025] The modulator 108 can then prepare the codewords for transmission by modulating one or more carrier signals in accordance with the codewords. As an example, the modulation can be performed in accordance with orthogonal frequency division multiplexing (OFDM). Each modulated and encoded signal can then be transmitted via a communication channel 110. The channel 1 10 can be, for example, a wireless communication channel which can be, for example, part of a wireless local area network (WLAN).
[0026] A receiver 1 12 receives the transmitted signal from the channel 1 10. The receiver 1 12 can include a demodulator 114 and a decoder 1 16. The demodulator 1 14 demodulates the received signal to reconstruct the codewords. The codewords can then be decoded by the decoder 116 in order to reconstruct the original data 102. While the decoder 1 16 can correct certain errors introduced by the communication process, the data 1 18 output from the decoder 112 can differ from the original data 102 due to uncorrected errors that remain.
[0027] Figure 2 illustrates a parity check encoder 200 in accordance with an embodiment of the present invention. The parity check encoder 200 can be included in the encoder 106 of Figure 1. The parity check encoder 200 receives an information bits vector s. The information bits vector s contains message bits. The parity check encoder 200 uses the message bits to produce a parity bits vector p. The parity bits vector p contains parity bits that correspond to the message bits input to the encoder 200. The encoder 106 of Figure 1 may perform functions that are in addition to that of the parity check encoder 200. For example, the encoder 106 may perform padding in which bits are added to the message bits prior to computing the parity check bits. The encoder 106 may perform puncturing and repeating after computing the parity check bits. The padding, puncturing and repeating can be, for example, performed in accordance with IEEE 802.1 l n/ac standards. Portions of the encoder 106, including the parity check encoder 200, can be implemented in hardware using field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs) or other types of circuitry.
[0028] The parity bits of a codeword in accordance with LDPC encoding can be defined by the following Equation (1):
Figure imgf000007_0001
[0029] where s is the information bits vector, p is the parity bits vector,
Figure imgf000007_0002
are the transposed H\ and H2, which are two sub-matrices of the parity check matrix H of the code.
[0030] Thus, the parity check matrix H can be partitioned into two sub-matrices Hi and H2, which are transposed to form the matrices
Figure imgf000007_0003
Figure 3 illustrates partitioning of a parity check matrix H into two sub-matrices H\ and H2 in accordance with an embodiment of the present invention.
[0031] A two-step encoding algorithm can be used to implement Equation (1), according to Equations (2) and (3):
Figure imgf000007_0004
[0032] where p\ is an intermediate parity bits vector and (H-s)-1 is the inversion of sub-matrix
Figure imgf000007_0005
[0033] Figure 4 illustrates a method 400 of computing parity bits in accordance with an embodiment of the present invention. The method 400 can be performed by the parity check encoder 200 of Figure 2. In a step 402, an intermediate parity bits vector p is computed. The intermediate parity bits vector p\ can be computed in step 302 in accordance with Equation (2) above. In a step 404, the parity bits vector p is computed. The parity bits vector p can be computed in accordance with Equation (3) above.
[0034] The steps 402 and 404 comprise the multiplication of a row-vector by two unique matrices. For the case of binary codes, the parity check matrices are binary also. Therefore, Equations (2) and (3) can be implemented in a GF(2) (i.e. a Galois field of two elements) and their computational complexity is proportional to the total number of ones in both matrices
Figure imgf000007_0006
and (HJ) - 1. The sub-matrix is sparse; while due to the inversion operation, the inverted matrix
Figure imgf000007_0007
~x is generally quite dense. [0035] For the case that H is Quasi-Cyclic (QC), composed of z χ z circulant sub- matrices and z x z zero sub-matrices, the resulted inverted matrix (Hj)-1 is also composed of z x z circulant sub-matrices and z χ z zero sub-matrices; however, it is denser than the H J matrix.
Figure imgf000008_0001
is low because it is a sub-matrix of H, which is sparse. Therefore, the computation of Equation (3) is more involved than that of Equation (2).
[0036] In a system that supports several codes of different block lengths and/or different code rates, the different codes can have common parts among the columns of their parity check matrices. In this case, it has been found that the (Hz)-1 sub-matrices can have common parts among their columns also. Particularly, in the case the following two features are met by the structure of the parity check matrices, namely,
[0037] all of the parity check matrices are binary and QC, and
[0038] the H| sub-matrices have dual-diagonal structure,
[0039] then it has been observed that the overlap among the columns of the (H "1 sub-matrices is proportional to the overlap among the corresponding
Figure imgf000008_0002
sub-matrices. Codes having these two features are referred to as supported codes.
[0040] Figure 5 illustrates a parity check sub-matrix for a particular LDPC error correction code having a block length of 648 and a rate of 5/6. Figure 6 illustrates a parity check sub-matrix for a second LDPC error correction code having a block length of 648 and a rate of 1/2. Figures 5 and 6 show where the marked rows of the (Hz)"1 sub-matrix for the first code are encountered at the (H )-1 sub-matrix of the second code.
[0041] Referring again to Figure 4, step 402 can be implemented with hardware, such as field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs) or other types of circuitry that performs vector matrix multiplication.
[0042] Step 404 can be implemented in hardware using XOR-gate trees. In this case, the common parts among the (H|)_1 sub-matrices of the supported codes correspond to common parts among the trees of XOR gates that implement the encoding of these codes. This is a sub-expressions problem and is exploited by the invention to share hardware resources, resulting to reduction of the encoder hardware requirements. Therefore, step 404 is performed using shared XOR resources. Such XOR resources can be implemented as field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs) or other types of circuitry.
[0043] Figure 7 illustrates XOR hardware resources 700 that are shared among different error correction codes in accordance with an embodiment of the present invention. The XOR hardware resources that generate each parity bit include an array of XOR logic gates 702 and one or more multiplexers 704. As shown in Figure 7, the bits from the intermediate parity bits vector p\, are applied to inputs of the array of XOR logic gates 702. Outputs of the XOR logic gates 702 are coupled to inputs of a multiplexer 704. A select input to the multiplexer 704 controls which of the inputs of the multiplexer 704 is routed to the output of the multiplexer 704 to thereby form the corresponding parity bit. The select input value corresponds to the particular one of the multiple codes that the encoder is currently implementing.
[0044] For purposes of illustration, the hardware resources 700 are shown in simplified form for single parity bit. The particular arrangement of the XOR logic gates 702 and multiplexers 704 will depend upon each of the block lengths and code rates to be implemented by the encoder as well as the particular locations of the ones and zeros in the parity check sub-matrices for each such code. Common sub-expression solving techniques can be used to generate the particular arrangement of the hardware resources 700. The common sub-expression solving techniques can be performed using the corresponding (H )'1 sub-matrices of the supported codes. Once the particular arrangement of the hardware resources is determined, the arrangement can be fixed. Only the parity values applied as inputs and the select inputs to the multiplexers need to be changed so that the hardware resources are capable of encoding a different code having a different block length and/or a different rate.
[0045] The common parts of the columns of the XOR trees that implement Equation (3), for the case of multiple supported codes by a communication system, are commonly shared during encoding each of these codes, resulting in an overall reduction of the encoder hardware requirements. This contributes to non-negligible decrease of the complexity and area of the encoder architecture. Specifically, embodiments of the present invention may support encoding in accordance with IEEE standard 802.1 1, and thus the multiple supported codes may include LDPC codes with block lengths selected from 648, 1296, and 1944 bits and with code rates selected from 1/2, 2/3, 3/4 and 5/6.
[0046] As an illustrative example, assume the case of a code wherein the parity check matrix is
Figure imgf000010_0001
[0047] Matrix H is partitioned into two sub-matrices H = [tfj//,], where
Figure imgf000010_0002
[0048] Since the transposed Bt is
1 0 1
0 1 0
1 1 1J
the elements of the intermediate parity vector pt = [ptC Pi (2) Pi (3)] (given by Equation (2)) are computed by the following expressions
Pi CO = s1 ® s3 ;
pt (2) = s2 <g> 53 ,
Pi (3) = ¾ ® ¾ »
where == [st s2 s2] is the message vector and ® denotes the exclusive or (XOR) operation.
[0049] A possible hardware implementation of the above equations is depicted in Figure 8 and is obtained by mapping each XOR operation to a two-input XOR gate. Thus, Figure 8 illustrates an exemplary hardware implementation for generating the intermediate parity bits vector p\ . It will be apparent that further logic-level optimizations are possible.
[0050] Returning to the foregoing example, we show how Equation (3) can be implemented in hardware. Initially, the transposed H2 is inverted in the Galois field GF(2) to give
1
Figure imgf000010_0003
J and subsequently the row-vector by matrix product of Equation (3) is evaluated to give the elements of the parity vector p
p(l) = p1(l)g>p1(2)®p1(3),
p(2) = p1(2)®p1(3),
p(3)= Pl(3>.
[0051] The corresponding hardware implementation is depicted in Figure 9. Thus, Figure 9 illustrates an exemplary hardware implementation for generating the parity bits vector in accordance with Equation (3).
[0052] As an example of resource sharing, consider an architecture that supports four codes, namely A, B, C and D. Let the first parity bit p} (l), / = A, B, C, D of each code be computed according to
pA(l = p1(l)®p1(2),
ps(l) = Pl (l)<8>p1(2)® Vi (3),
Pc CO = Pi CO <¾ Pi C2) ® Pi (3) <g> Pl (4) ® Pl (5) ,
PD(1) = ρ1(ΐ)<8!ρ1(2)®ρ1(3)®ρ1(5)<8>ρ1(6)®ρ1(7) .
[0053] In this example, the first column of each of the inverted transposed parity check sub-matrices, corresponding to each code can be
Figure imgf000011_0001
Figure imgf000011_0002
where common rows can be identified as described herein. Using the design method described herein, four circuits, one for each code, are obtained and shown in Figure 10. Figure 10 illustrates exemplary hardware implementations for generating a parity bit as in Equation (3) for each of four different error correction codes. [0054] The hardware implementation of Figure 10 requires twelve (12) XOR gates. The present invention reduces hardware by reusing partial results. We initially identify common sub-expressions in the equations that derive the parity bit values. In this example, we notice that the value of pA (1) can be reused per se in the computation of VB C1) allowing us to write
pA (l) = Pi(l)€> Pi (2),
Ps CO = P_* C0 ® Pi (3).
[0055] Furthermore by defining g— pB (l) & pt (5) the computation of pc (1) and pD (1) is written as
Pc CO = where ¾ (n) denotes the n-th parity bit for the case of code X.
[0056] A possible hardware implementation of the modified equations that use common subexpression sharing is depicted in Figure 1 1. In this example it can be seen that only six (6) two-input XOR gates are required, compared to the twelve (12) gates required in Figure 10. Thus, Figure 1 1 illustrates an exemplary hardware implementation in which hardware resources are shared among four different error correction codes. The circuit of Figure 1 1 can produce a parity bit for a code of choice at each instance.
[0057] In the examples above, the parity bits are generated by separate XOR trees. In some embodiments, the XOR gates may also be shared among different parity bits. It is possible to share XOR gates among different trees that compute parity bits for the same or a different supported code, as illustrated in the following example.
[0058] Let the third parity bit for code B be pB (3) and the sixth parity bit for code C be Pc (6). Furthermore, assume that the particular parity bits are computed as
Ps (3) = P1(0 ® Pi (3) and
pc (6) = Pl (1) ® Pl (3) <g> Pl (6) = pB (3) ® Pl (6).
[0059] Notice that the first expression above is reused in the second expression.
Figure 12 indicates the corresponding hardware portion sharing. More particularly, Figure 12 illustrates an exemplary hardware implementation in which hardware resources are shared among different parity bits of different error correction codes. [0060] In case that hardware is shared among XOR trees for different parity bits and/or codes corresponding logic is required to select the appropriate output bit for each case, as shown in Figure 12. In case the codes are of different length some selection logic can be omitted. Thus, in the example above, if code B has only three parities, the selection logic for the sixth parity bit can be omitted.
[0061] The foregoing detailed description of the present invention is provided for the purpose of illustration and is not intended to be exhaustive or to limit the invention to the embodiments disclosed. Accordingly, the scope of the present invention is defined by the appended claims.

Claims

Claims
What is claimed is: 1. A method of encoding an error correction code, comprising steps of:
computing an intermediate parity bits vector from a message bits vector using a sub-matrix of a parity check matrix; and
computing a parity bits vector from the intermediate parity bits vector using fixed hardware resources that are configured to compute parity bits for multiple different codes and wherein portions of the hardware resources that are configured to compute the parity bits for a particular one of the codes are commonly shared with portions of the hardware resources that are configured to compute the parity bits for another particular one of the codes.
2. The method according to claim 1, further comprising determining an arrangement for the hardware resources using common sub-expression solving techniques.
3. The method according to claim 1, wherein the parity check matrix is partitioned and transposed to form the sub-matrix.
4. The method according to claim 1, wherein the sub-matrix used for said computing the intermediate parity bits vector comprises a first sub-matrix of the parity check matrix and wherein the common sub-expression solving techniques are performed using an inversion of a second sub-matrix of the parity check matrix.
5. The method according to claim 1, wherein the parity check matrix is partitioned and transposed to form the second sub-matrix.
6. The method according to claim 1, wherein hardware resources are shared among different parity bits of different error correction codes.
7. The method according to claim 1, wherein the hardware resources comprise an array of logic XOR gates.
8. The method according to claim 7, wherein the commonly shared portions of the hardware resources comprise commonly shared XOR logic gates.
9. The method according to claim 7, wherein the hardware resources comprise multiplexers, one for each of the parity bits of the parity bits vector.
10. The method according to claim 1, wherein the multiple different codes differ in at least their block lengths or code rates.
1 1. The method according to claim 1, generating a codeword in accordance with an error correction code from the parity bits vector and the message bits vector.
12. The method according to claim 1 1 , wherein the error correction code is a low density parity check (LDPC) code.
13. An encoder for error correction coding, comprising:
first hardware resources configured to receive a message bits vector and to compute an intermediate parity bits vector from the message bits vector wherein the intermediate parity bits vector is computed based on a sub-matrix of a parity check matrix; and
second hardware resources configured to compute a parity bits vector from the intermediate parity bits vector, wherein the second hardware resources are configured to compute parity bits for multiple different codes and wherein portions of the hardware resources that are configured to compute the parity bits for a particular one of the codes are commonly shared with portions of the hardware resources that are configured to compute the parity bits for another particular one of the codes.
14. The encoder according to claim 13, wherein an arrangement for the hardware resources is determined from a common sub-expression solution.
15. The encoder according to claim 13, wherein the parity check matrix is partitioned and transposed to form the sub-matrix.
16. The encoder according to claim 13, wherein the sub-matrix comprises a first sub- matrix of the parity check matrix and wherein the common sub-expression solution is based on an inversion of a second sub-matrix of the parity check matrix.
17. The encoder according to claim 13, wherein the parity check matrix is partitioned and transposed to form the second sub-matrix.
18. The encoder according to claim 13, wherein portions of the hardware resources are shared among different parity bits of different error correction codes.
19. The encoder according to claim 13, wherein the second hardware resources comprise an array of logic XOR gates.
20. The encoder according to claim 19, wherein the commonly shared portions of the second hardware resources comprise commonly shared XOR logic gates.
21. The encoder according to claim 19, wherein the second hardware resources comprise multiplexers, one for each of the parity bits of the parity bits vector.
22. The encoder according to claim 13, wherein the multiple different codes differ in at least their block lengths or code rates.
23. The encoder according to claim 13, wherein the encoder is configured to generate a codeword in accordance with an error correction code from the parity bits vector and the message bits vector.
24. The encoder according to claim 23, wherein the error correction code is a low density parity check (LDPC) code.
PCT/EP2014/002544 2013-09-19 2014-09-18 Encoding of low-density parity check for different low-density parity check (ldpc) codes sharing common hardware resources WO2015039759A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016515551A JP6472790B2 (en) 2013-09-19 2014-09-18 Low density parity check encoding for different low density parity check (LDPC) codes sharing common hardware resources
EP14786121.5A EP3047575B1 (en) 2013-09-19 2014-09-18 Encoding of multiple different quasi-cyclic low-density parity check (qc-ldpc) codes sharing common hardware resources
CN201480051479.XA CN105556852B (en) 2013-09-19 2014-09-18 The method and encoder encoded to error correcting code

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/031,505 US9003257B1 (en) 2013-09-19 2013-09-19 Low density parity check encoder and encoding method
US14/031,505 2013-09-19

Publications (1)

Publication Number Publication Date
WO2015039759A1 true WO2015039759A1 (en) 2015-03-26

Family

ID=51743398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/002544 WO2015039759A1 (en) 2013-09-19 2014-09-18 Encoding of low-density parity check for different low-density parity check (ldpc) codes sharing common hardware resources

Country Status (5)

Country Link
US (1) US9003257B1 (en)
EP (1) EP3047575B1 (en)
JP (1) JP6472790B2 (en)
CN (1) CN105556852B (en)
WO (1) WO2015039759A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112655152A (en) * 2018-08-03 2021-04-13 科得鲁西达股份有限公司 Method and apparatus for encoding quasi-cyclic low density parity check code

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3054600A4 (en) * 2013-10-03 2016-10-05 Fujitsu Ltd Program, encoding device, and encoding method
CN109728825A (en) * 2018-01-16 2019-05-07 电子科技大学 A kind of check matrix extended method of novel m-sequence intercept error correcting code
CN109802687B (en) * 2018-12-25 2023-05-02 西安空间无线电技术研究所 High-speed code rate compatible LDPC encoder of QC-LDPC code based on FPGA
CN118337224B (en) * 2024-06-13 2024-08-30 华中科技大学 QC-LDPC encoder, communication equipment and storage product based on high-level synthesis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090164762A1 (en) * 2007-12-20 2009-06-25 Microsoft Corporation Optimizing xor-based codes
US20100281330A1 (en) * 2009-04-29 2010-11-04 Broadcom Corporation Low complexity communication device employing in-place constructed LDPC (Low Density Parity Check) code
US8347169B1 (en) * 2010-03-01 2013-01-01 Applied Micro Circuits Corporation System and method for encoding using common partial parity products

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050123336A (en) * 2004-06-24 2005-12-29 엘지전자 주식회사 Encoding method for variable code rate by using ldpc code
EP1784919A4 (en) * 2004-08-09 2011-08-10 Lg Electronics Inc Method of encoding and decoding using low density parity check matrix
EP1641128A1 (en) * 2004-09-22 2006-03-29 STMicroelectronics N.V. Method and device for delivering punctured code words encoded with a LDPC code.
JP4856605B2 (en) * 2006-08-31 2012-01-18 パナソニック株式会社 Encoding method, encoding apparatus, and transmission apparatus
US8489962B2 (en) * 2007-07-04 2013-07-16 St-Ericsson Sa Shuffled LDPC decoding
US8392787B2 (en) * 2008-10-31 2013-03-05 Broadcom Corporation Selective merge and partial reuse LDPC (Low Density Parity Check) code construction for limited number of layers Belief Propagation (BP) decoding
JP5442024B2 (en) * 2009-11-17 2014-03-12 三菱電機株式会社 Error correction coding method and apparatus, and communication system using the same
US8352847B2 (en) * 2009-12-02 2013-01-08 Lsi Corporation Matrix vector multiplication for error-correction encoding and the like
US8448041B1 (en) * 2010-02-01 2013-05-21 Sk Hynix Memory Solutions Inc. Multistage LDPC encoding
US8539304B1 (en) * 2010-04-27 2013-09-17 Marvell International Ltd. Parallel encoder for low-density parity-check (LDPC) codes
CN101951264B (en) * 2010-08-31 2014-03-12 宁波大学 Multiple-rate, quasi-cycling and low density decoder for parity check codes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090164762A1 (en) * 2007-12-20 2009-06-25 Microsoft Corporation Optimizing xor-based codes
US20100281330A1 (en) * 2009-04-29 2010-11-04 Broadcom Corporation Low complexity communication device employing in-place constructed LDPC (Low Density Parity Check) code
US8347169B1 (en) * 2010-03-01 2013-01-01 Applied Micro Circuits Corporation System and method for encoding using common partial parity products

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112655152A (en) * 2018-08-03 2021-04-13 科得鲁西达股份有限公司 Method and apparatus for encoding quasi-cyclic low density parity check code

Also Published As

Publication number Publication date
US9003257B1 (en) 2015-04-07
EP3047575B1 (en) 2020-01-01
CN105556852B (en) 2019-05-17
JP6472790B2 (en) 2019-02-20
EP3047575A1 (en) 2016-07-27
JP2016530744A (en) 2016-09-29
US20150082112A1 (en) 2015-03-19
CN105556852A (en) 2016-05-04

Similar Documents

Publication Publication Date Title
JP4856605B2 (en) Encoding method, encoding apparatus, and transmission apparatus
KR100695380B1 (en) Method and apparatus for providing reduced memory low density parity checkldpc codes
JP5875713B2 (en) Transmitter and receiver, and coding rate variable method
US8812930B1 (en) Parallel encoder for low-density parity-check (LDPC) codes
JP5506878B2 (en) Parity check matrix generation method for low density parity check code
US20110289375A1 (en) Method for constructing an ldpc code, transmitter, and receiver
JP2019536341A (en) Method and apparatus for encoding and decoding LDPC codes
JP2016507200A (en) Design for lifted LDPC codes with high parallelism, low error floor, and simple coding principles
KR20050040116A (en) Method and system for providing long and short block length low density parity check(ldpc) codes
CN104917536B (en) A kind of method and device for supporting Low Bit-rate Coding
EP2510623A2 (en) Method and apparatus for channel encoding and decoding in a communication system using a low-density parity check code
EP3047575B1 (en) Encoding of multiple different quasi-cyclic low-density parity check (qc-ldpc) codes sharing common hardware resources
AU2016226721A1 (en) Transmitter and parity permutation method thereof
AU2016226715A1 (en) Transmitter and shortening method thereof
CN107409011B (en) Transmitter and method for generating additional parity
KR101636965B1 (en) Method and device for communicating data across noisy media
KR20110102295A (en) Multiple input hardware reuse using ldpc codes
KR20170114406A (en) Receiver and signal processing method thereof
KR20190017594A (en) Apparatus and method for channel encoding/decoding in communication or broadcasting system
KR102059002B1 (en) Method for performing encoding based on parity check matrix of LDPC code in wireless communication system and terminal using same
CN111164897B (en) Generalized low density parity check code
US20140173374A1 (en) Methods and apparatus for error coding
KR20180122255A (en) Apparatus and method for channel encoding/decoding in communication or broadcasting system
JP5523064B2 (en) Decoding apparatus and method
KR20170130139A (en) Receiver and decoding method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051479.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14786121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016515551

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014786121

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014786121

Country of ref document: EP