Microsatellite Instability in Russian Patients with Colorectal Cancer
Abstract
:1. Introduction
2. Results
2.1. Clinicopathological Features According to MSI Status
2.2. MSI Status and Patients Survival
2.3. Comparison of Lynch Syndrome and Non-Lynch Syndrome with MSI
2.4. Survival in Lynch Syndrome/Non-Lynch Patients
2.5. Analysis of Risk Factors of Patients with MSI Status
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. DNA Extractions
4.3. MSI Analysis
4.4. NGS
4.5. MLPA
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsukanov, A.S.; Shelygin, Y.A.; Shubin, V.P. Microsatellite instability in colorectal cancer (review). Koloproktologia 2017, 2, 100–104. [Google Scholar] [CrossRef]
- Boland, C.R.; Goel, A. Microsatellite Instability in Colorectal Cancer. Gastroenterology 2010, 138, 2073–2087.e3. [Google Scholar] [CrossRef] [PubMed]
- Luchini, C.; Bibeau, F.; Ligtenberg, M.; Singh, N.; Nottegar, A.; Bosse, T.; Miller, R.; Riaz, N.; Douillard, J.-Y.; Andre, F.; et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: A systematic review-based approach. Ann. Oncol. 2019, 30, 1232–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goel, A.; Nagasaka, T.; Hamelin, R.; Boland, C.R. An Optimized Pentaplex PCR for Detecting DNA Mismatch Repair-Deficient Colorectal Cancers. PLoS ONE 2010, 5, e9393. [Google Scholar] [CrossRef]
- Sargent, D.J.; Marsoni, S.; Monges, G.; Thibodeau, S.N.; Labianca, R.; Hamilton, S.R.; French, A.J.; Kabat, B.; Foster, N.R.; Torri, V.; et al. Defective Mismatch Repair As a Predictive Marker for Lack of Efficacy of Fluorouracil-Based Adjuvant Therapy in Colon Cancer. J. Clin. Oncol. 2010, 28, 3219–3226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oiseth, S.J.; Aziz, M.S. Cancer immunotherapy: A brief review of the history, possibilities, and challenges ahead. J. Cancer Metastasis Treat. 2017, 3, 250. [Google Scholar] [CrossRef]
- Bakry, D.; Aronson, M.; Durno, C.; Rimawi, H.; Farah, R.; Alharbi, Q.K.; Alharbi, M.; Shamvil, A.; Ben-Shachar, S.; Mistry, M.; et al. Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: Report from the constitutional mismatch repair deficiency consortium. Eur. J. Cancer 2014, 50, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Fujiyoshi, K.; Yamamoto, G.; Takenoya, T.; Takahashi, A.; Arai, Y.; Yamada, M.; Kakuta, M.; Yamaguchi, K.; Akagi, Y.; Nishimura, Y.; et al. Metastatic Pattern of Stage IV Colorectal Cancer with High-Frequency Microsatellite Instability as a Prognostic Factor. Anticancer Res. 2017, 37, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Jover, R.; Zapater, P.; Castells, A.; Llor, X.; Andreu, M.; Cubiella, J.; Piñol, V.; Xicola, R.M.; Bujanda, L.; Reñé, J.M.; et al. Mismatch repair status in the prediction of benefit from adjuvant fluorouracil chemotherapy in colorectal cancer. Gut 2006, 55, 848–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bläker, H.; Alwers, E.; Arnold, A.; Herpel, E.; Tagscherer, K.E.; Roth, W.; Jansen, L.; Walter, V.; Kloor, M.; Chang-Claude, J.; et al. The Association Between Mutations in {BRAF} and Colorectal Cancer Specific Survival Depends on Microsatellite Status and Tumor Stage. Clin. Gastroenterol. Hepatol. 2019, 17, 455–462.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barault, L.; Charon-Barra, C.; Jooste, V.; de la Vega, M.F.; Martin, L.; Roignot, P.; Rat, P.; Bouvier, A.-M.; Laurent-Puig, P.; Faivre, J.; et al. Hypermethylator Phenotype in Sporadic Colon Cancer: Study on a Population-Based Series of 582 Cases. Cancer Res. 2008, 68, 8541–8546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, W.; Ma, J.; Liu, Y.; Liang, J.; Wu, Y.; Yang, X.; Xu, E.; Li, Y.; Xi, Y. Screening of MSI detection loci and their heterogeneity in East Asian colorectal cancer patients. Cancer Med. 2019, 8, 2157–2166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lochhead, P.; Kuchiba, A.; Imamura, Y.; Liao, X.; Yamauchi, M.; Nishihara, R.; Qian, Z.R.; Morikawa, T.; Shen, J.; Meyerhardt, J.A.; et al. Microsatellite Instability and BRAF Mutation Testing in Colorectal Cancer Prognostication. JNCI J. Natl. Cancer Inst. 2013, 105, 1151–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benatti, P.; Gafà, R.; Barana, D.; Marino, M.; Scarselli, A.; Pedroni, M.; Maestri, I.; Guerzoni, L.; Roncucci, L.; Menigatti, M.; et al. Microsatellite Instability and Colorectal Cancer Prognosis. Clin. Cancer Res. 2005, 11, 8332–8340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perucho, M. A National Cancer Institute Workshop on Microsatellite Instability for Cancer Detection and Familial Predisposition: Development of International Criteria for the Determination of Microsatellite Instability in Color. Cancer Res. 1999, 59, 249–256. [Google Scholar] [PubMed]
- Kaprin, A.D.; Starinsky, V.V.; Shahzadova, A.O. The State of Oncological Care for the Population of Russia in 2020. MNIOI im. P.A.; Herzen—Branch of the Federal State Budgetary Institution “NMITs Radiology” Ministry of Health of Russia: Moscow, Russia, 2021; p. 239. ISBN 978-5-85502-262-9. [Google Scholar]
- Velayos, F.S.; Lee, S.-H.; Qiu, H.; Dykes, S.; Yiu, R.; Terdiman, J.P.; Garcia-Aguilar, J. The Mechanism of Microsatellite Instability Is Different in Synchronous and Metachronous Colorectal Cancer. J. Gastrointest Surg. 2005, 9, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Toh, J.W.T.; Phan, K.; Reza, F.; Chapuis, P.; Spring, K.J. Rate of dissemination and prognosis in early and advanced stage colorectal cancer based on microsatellite instability status: Systematic review and meta-analysis. Int. J. Colorectal. Dis. 2021, 36, 1573–1596. [Google Scholar] [CrossRef] [PubMed]
- Tsukanov, A.S.; Shubin, V.P.; Kuzminov, A.M.; Toboeva, M.K.; Savelyeva, T.A.; Kashnikov, V.N.; Shelygin, Y.A. Differential Diagnosis of MutYH-Associated Polyposis from Sporadic Colon Polyps. Russ. J. Gastroenterol. Hepatol. Coloproctol. 2019, 28, 51–57. [Google Scholar] [CrossRef]
- Fedyanin, M.Y.; Gladkov, O.A.; Gordeev, S.S.; Rykov, I.V.; Tryakin, A.A. Practical recommendations for drug treatment of colon cancer and rectosigmoid junction. Malig. Tumors RUSSCO Pract. Guidel. 2019, 3, 324–364. [Google Scholar] [CrossRef]
Total n = 514 | MSS n = 433 | MSI n = 81 | p-Value | |
---|---|---|---|---|
Age, mean ± SD, years | 55 ± 14 | 56 ± 13 | 49 ± 15 | p < 0.001 |
Gender | ||||
Male | 221 (43%) | 183 (42%) | 38 (47%) | 0.44 |
Female | 293 (57%) | 250 (58%) | 43 (53%) | |
Localization | ||||
Right colon | 118 (23%) | 81 (19%) | 37 (46%) | p < 0.001 |
Left colon | 220 (43%) | 193 (44%) | 27 (33%) | |
Rectum | 170 (33%) | 155 (36%) | 15 (19%) | |
Right and left colon | 6 (1%) | 4 (1%) | 2 (2%) | |
Time of tumor onset | ||||
Primary | 430 (83%) | 375 (87%) | 55 (68%) | p < 0.001 |
Metachronous * | 55 (11%) | 32 (7%) | 23 (28%) | |
Synchronous ** | 29 (6%) | 26 (6%) | 3 (4%) | |
Stage | ||||
I | 48 (10%) | 39 (9%) | 9 (11%) | p < 0.001 |
II | 213 (41%) | 169 (39%) | 44 (54%) | |
III | 160 (31%) | 134 (31%) | 26 (32%) | |
IV | 93 (18%) | 91 (21%) | 2 (2%) |
MSI n = 81 | Lynch Syndrome n = 36 | Non-Lynch Syndrome n = 45 | p-Value | |
---|---|---|---|---|
Age, mean ± SD, years | 49 ± 15 | 43 ± 13 | 53 ± 14 | p < 0.001 |
Gender | ||||
Male | 38 (47%) | 20 (56%) | 27 (60%) | 0.69 |
Female | 43 (53%) | 16 (44%) | 18 (40%) | |
Localization | ||||
Right colon | 37 (46%) | 16 (44%) | 21 (47%) | 0.88 |
Left colon | 27 (33%) | 11 (31%) | 16 (36%) | |
Rectum | 15 (19%) | 8 (22%) | 7 (15%) | |
Right and left colon | 2 (2%) | 1 (3%) | 1 (2%) | |
Time of tumor onset | ||||
Primary | 55 (68%) | 27 (75%) | 28 (63%) | 0.47 |
Metachronous * | 23 (28%) | 8 (22%) | 15 (33%) | |
Synchronous ** | 3 (4%) | 1 (3%) | 2 (4%) | |
Stage | ||||
I | 9 (11%) | 4 (11%) | 5 (11%) | 0.3 |
II | 44 (54%) | 23 (64%) | 21 (47%) | |
III | 26 (32%) | 9 (25%) | 17 (38% | |
IV | 2 (2%) | 0 | 2 (4%) |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
Factor | OR | [95% CI] | p | OR | [95% CI] | p |
Age | 0.96 | [0.94–0.98] | <0.001 | 0.91 | [0.89–0.94] | <0.001 |
Gender | ||||||
Male | 1 | 1 | ||||
Female | 0.83 | [0.51–1.33] | 0.44 | |||
Localization | ||||||
Rectum | 1 | 1 | ||||
Right | 4.72 | [2.45–9.11] | <0.001 | 9.14 | [4.0–20.87] | <0.001 |
Left | 1.45 | [0.74–2.81] | 0.28 | |||
Right and left colon | 5.17 | [0.87–30.58] | 0.07 | |||
Time of tumor onset | ||||||
Primary | 1 | 1 | ||||
Metachronous * | 4.9 | [2.67–8.98] | <0.001 | 20.36 | [8.15–50.87] | <0.001 |
Synchronous ** | 0.79 | [0.23–2.69] | 0.70 | |||
T (tumor) | ||||||
1 | 1 | 1 | ||||
2 | 1.14 | [0.26–4.89] | 0.86 | |||
3 | 1.10 | [0.31–3.90] | 0.88 | |||
4 | 1.34 | [0.37–4.81] | 0.65 | |||
N (nodes) | ||||||
0 | 1 | 1 | ||||
1 | 0.73 | [0.40–1.34] | 0.31 | |||
2 | 0.36 | [0.18–0.71] | <0.001 | 0.06 | 0.002–1.45 | 0.08 |
Stage (I–IV) | ||||||
I | 1 | 1 | ||||
II | 1.13 | [0.51–2.50] | 0.77 | |||
III | 0.84 | [0.36–1.94] | 0.68 | |||
IV | 0.10 | [0.02–0.46] | <0.001 | 0.91 | [0.07–11.54] | 0.94 |
n = 514 | |
---|---|
Age, mean ± SD, years | 55 ± 14 |
Gender | |
Male | 221 (43%) |
Female | 293 (57%) |
Localization | |
Right colon | 118 (23%) |
Left colon | 220 (43%) |
Rectum | 170 (33%) |
Right and left colon | 6 (1%) |
Time of tumor onset | |
Primary | 430 (84%) |
Metachronous * | 55 (11%) |
Synchronous ** | 29 (5%) |
Stage | |
I | 48 (9%) |
II | 213 (42%) |
III | 160 (31%) |
IV | 93 (18%) |
T (tumor) | |
T1 | 22 (4%) |
T2 | 46 (9%) |
T3 | 263 (51%) |
T4 | 183 (36%) |
N (lymph node) | |
N0 | 273 (53%) |
N1 | 105 (21%) |
N2 | 136 (26%) |
Distant metastases | |
No | 421 (82%) |
Yes | 93 (18%) |
Marker | Gene | Cytogenetic Location | Genomic Coordinates (GRCh38) | Primers 5′–3′ | Fragment Length |
---|---|---|---|---|---|
NR21 | SLC7A8 | 14q11.2 | 14:23,125,294–23,183,659 | FAM–GAGTCGCTGGCACAGTTCTA R–CTGGTCACTCGCGTTTACAA | 110 |
NR24 | ZNF2 | 2q11.1 | 2:95,165,808–95,184,316 | FAM–GCTGAATTTTACCTCCTGAC R–ATTGTGCCATTGCATTCCAA | 129 |
BAT25 | KIT | 4q12 | 4:54,657,927–54,740,714 | FAM–TCGCCTCCAAGAATGTAAGT R–TCTGCATTTTAACTATGGCTC | 124 |
BAT26 | MSH2 | 2p21–p16 | 2:47,403,066–47,634,500 | FAM–TGACTACTTTTGACTTCAGCC R–AACCATTCAACATTTTTAACCC | 122 |
NR27 | MAP4K3 | 2p22.1 | 2:39,248,940–39,437,311 | FAM–AACCATGCTTGCAAACCACT R–CGATAATACTAGCAATGACC | 90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shubin, V.; Shelygin, Y.; Achkasov, S.; Sushkov, O.; Nazarov, I.; Ponomarenko, A.; Alimova, I.; Loginova, A.; Tsukanov, A. Microsatellite Instability in Russian Patients with Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 7062. https://doi.org/10.3390/ijms23137062
Shubin V, Shelygin Y, Achkasov S, Sushkov O, Nazarov I, Ponomarenko A, Alimova I, Loginova A, Tsukanov A. Microsatellite Instability in Russian Patients with Colorectal Cancer. International Journal of Molecular Sciences. 2022; 23(13):7062. https://doi.org/10.3390/ijms23137062
Chicago/Turabian StyleShubin, Vitaly, Yury Shelygin, Sergey Achkasov, Oleg Sushkov, Ilya Nazarov, Alexey Ponomarenko, Iuliia Alimova, Anna Loginova, and Aleksey Tsukanov. 2022. "Microsatellite Instability in Russian Patients with Colorectal Cancer" International Journal of Molecular Sciences 23, no. 13: 7062. https://doi.org/10.3390/ijms23137062
APA StyleShubin, V., Shelygin, Y., Achkasov, S., Sushkov, O., Nazarov, I., Ponomarenko, A., Alimova, I., Loginova, A., & Tsukanov, A. (2022). Microsatellite Instability in Russian Patients with Colorectal Cancer. International Journal of Molecular Sciences, 23(13), 7062. https://doi.org/10.3390/ijms23137062