Satellite-Borne Optical Remote Sensing Image Registration Based on Point Features
Abstract
:1. Introduction
2. Remote Sensing Image Matching
2.1. Remote Sensing Image Preprocessing
2.2. Feature Point Extraction
2.2.1. Harris Feature Points Extraction
2.2.2. SIFT Feature Point Description
2.3. Rough Matching Strategy
2.3.1. BBF Search Strategy
2.3.2. Similarity Measure
2.4. Fine Matching Strategy
2.5. Elimilation of Fales Matches
- Constructing KNN-TAR operators. Supposing that the nearest neighbors of the outliers have more structural dissimilarity, the TAR value is used to construct an affine invariant variable, which is calculated by the K nearest neighbor (KNN) in order to find outliers.
- Dealing with candidate outliers. Whether the suspected outliers sifted by KNN-TAR are real false matches is determined by the local structure of the single matching pair and the global transform error.
- Removing false matches. Adjust the parameter setting of KNN-TAR, so as to eliminate the outliers with the same KNN.
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gu, Y.; Chen, H.Y. A Remote sensing image registration algorithm based on multiple constraints and a variational Bayesian framework. Remote Sens. Lett. 2021, 12, 296–305. [Google Scholar]
- Zhang, Q.; Cao, Z.G.; Hu, Z.W.; Jia, Y.H.; Wu, X.L. Joint image registration and fusion for panchromatic and multispectral images. IEEE Trans. Geosci. Remote Sens. 2015, 12, 467–471. [Google Scholar] [CrossRef]
- Öfverstedt, J.; Lindblad, J.; Sladoje, N. Fast and robust symmetric image registration based on distances combining intensity and spatial information. IEEE Trans. Image Process. 2019, 28, 3584–3597. [Google Scholar] [CrossRef]
- Ma, W.P.; Zhang, J.; Wu, Y.; Jiao, L.C.; Zhu, H.; Zhao, W. A novel two-step registration method for remote sensing images based on deep and local features. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4834–4843. [Google Scholar] [CrossRef]
- Li, Y.S.; Xu, J.J.; Xia, R.J.; Huang, Q.H.; Xie, W.X.; Li, X.L. Extreme-constrained spatial-spectral corner detector for image-level hyperspectral image classification. Pattern Recognit. Lett. 2018, 109, 110–119. [Google Scholar] [CrossRef]
- Ma, W.P.; Wen, Z.L.; Wu, Y.; Jiao, L.C.; Gong, M.G.; Zheng, Y.F.; Liu, L. Remote sensing image registration with modified sift and enhanced feature matching. IEEE Geosci. Remote Sens. Lett. 2017, 14, 3–7. [Google Scholar] [CrossRef]
- Fernández, F.J.; Gonzalez, E.A.; Llanos, D.R. Distributed programming of a hyperspectral image registration algorithm for heterogeneous GPU clusters. J. Parallel Distrib. Comput. 2021, 151, 86–93. [Google Scholar] [CrossRef]
- Sedaghat, A.; Mohammadi, N. Uniform competency-based local feature extraction for remote sensing images. ISPRS J. Photogram. Remote Sens. 2018, 135, 142–157. [Google Scholar] [CrossRef]
- Li, Z.G.; Zheng, J.H.; Zhu, Z.J.; Yao, W.; Wu, S.Q. Weighted guided image filtering. IEEE Trans. Image Process. 2015, 24, 120–129. [Google Scholar]
- Versaci, M.; Morabito, F.C. Image edge detection: A new approach based on fuzzy entropy and fuzzy divergence. Int. J. Fuzzy Syst. 2021, 1–10. [Google Scholar] [CrossRef]
- Dhanachandra, N.; Chanu, Y.J. An image segmentation approach based on fuzzy c-means and dynamic particle swarm optimization algorithm. Multimed. Tools Appl. 2020, 79, 18839–18858. [Google Scholar] [CrossRef]
- Xiang, Y.; Wang, F.; You, H.J. OS-SIFT: A Robust SIFT-like algorithm for high-resolution optical-to-SAR image registration in suburban areas. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3078–3090. [Google Scholar] [CrossRef]
- Etezadifar, P.; Farsi, H. A new sample consensus based on sparse coding for improved matching of SIFT features on remote sensing images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5254–5263. [Google Scholar] [CrossRef]
- Liu, G.; Gousseau, Y.; Tupin, F. A contrario comparison of local descriptors for change detection in very high spatial resolution satellite images of urban areas. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3904–3918. [Google Scholar] [CrossRef]
- Fan, J.W.; Wu, Y.; Wang, F.; Zhang, Q.; Liao, G.S.; Li, M. SAR Image registration using phase congruency and nonlinear diffusion-based SIFT. IEEE Geosci. Remote Sens. Lett. 2015, 12, 562–566. [Google Scholar]
- Yu, W.; Sun, X.S.; Yang, K.Y.; Rui, Y.; Yao, H.X. Hierarchical semantic image matching using CNN feature pyramid. Comput. Vis. Image Understand. 2018, 169, 40–51. [Google Scholar] [CrossRef]
- Qian, X.L.; Lin, S.; Cheng, G.; Yao, X.W.; Ren, H.L.; Wang, W. Object detection in remote sensing images based on improved bounding box regression and multi-level features fusion. Remote Sens. 2020, 12, 143. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Du, Q.; Li, X.; Shen, H. Robust registration for remote sensing images by combining and localizing feature-and area-based methods. ISPRS J. Photogramm. Remote Sens. 2019, 151, 15–26. [Google Scholar] [CrossRef]
- Lv, X.; Ming, D.; Chen, Y.Y.; Wang, M. Very high resolution remote sensing image classification with SEEDS-CNN and scale effect analysis for superpixel CNN classification. Int. J. Remote Sens. 2018, 40, 506–531. [Google Scholar] [CrossRef]
- Du, J.; Bian, F. A Privacy-Preserving and Efficient k-nearest neighbor query and classification scheme based on k-dimensional tree for outsourced data. IEEE Access 2020, 8, 69333–69345. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Liang, Z.; Su, L. Tree point clouds registration using an improved ICP algorithm based on kd-tree. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 4545–4548. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, W.P.; Wu, Y.; Jiao, L.C. Multimodal remote sensing image registration based on image transfer and local features. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1210–1214. [Google Scholar] [CrossRef]
- Xie, Y.H.; Shen, J.; Wu, C.D. Affine geometrical region CNN for object tracking. IEEE Access 2020, 8, 68638–68648. [Google Scholar] [CrossRef]
- Tran, N.T.; Tan, D.K.L.; Doan, A.D.; Do, T.T.; Bui, T.A.; Tan, M.X.; Cheung, N.M. On-device scalable image-based localization via prioritized cascade search and fast one-many RANSAC. IEEE Trans. Image Process. 2019, 28, 1675–1690. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zhao, H.Q.; Zakharov, Y.; Chen, B.D.; Yang, Y.R. Variable step-size widely linear complex-valued affine projection algorithm and performance analysis. IEEE Trans. Signal Process. 2020, 68, 5940–5953. [Google Scholar] [CrossRef]
- Ferrer, M.; Gonzalez, A.; Diego, M.D.; Pinero, G. Distributed affine projection algorithm over acoustically coupled sensor networks. IEEE Trans. Signal Process. 2017, 65, 6423–6434. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Qin, J.H.; Xiang, X.Y.; Pan, L.L.; Ma, W.T.; Xiong, N.N. An efficient image matching algorithm based on adaptive threshold and RANSAC. IEEE Access 2018, 6, 66963–66971. [Google Scholar] [CrossRef]
- Tong, X.H.; Ye, Z.; Xu, Y.S.; Liu, S.J.; Li, L.Y.; Xie, H.; Li, T.P. A novel subpixel phase correlation method using singular value decomposition and unified random sample consensus. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4143–4156. [Google Scholar] [CrossRef]
- Morley, D.; Foroosh, H. Improving RANSAC-based segmentation through CNN encapsulation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2661–2670. [Google Scholar] [CrossRef]
- Zhang, K.; Li, X.Z.; Zhang, J.X. A robust point-matching algorithm for remote sensing image registration. IEEE Geosci. Remote Sens. Lett. 2014, 11, 469–473. [Google Scholar] [CrossRef]
- Wang, X.; Lv, X.; Li, L.; Cui, G.; Zhang, Z. A new method of speeded up robust features image registration based on image preprocessing. In Proceedings of the 2018 International Conference on Information Systems and Computer Aided Education (ICISCAE), Changchun, China, 6–8 July 2018; pp. 317–321. [Google Scholar] [CrossRef]
- Yeh, C.; Chang, Y.; Hsu, P.; Hsien, C. GPU Acceleration of UAV image splicing using oriented fast and rotated brief combined with PCA. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 5700–5703. [Google Scholar] [CrossRef]
Match Methods | Number of Pairs by Rough Matching | Number of Pairs by Fine Matching | Time (ms) | RMSE (Pixels) |
---|---|---|---|---|
RANSAC | 251 | 250 | 44 | 0.8818 |
KNN-TAR | 235 | 51 | 0.8619 |
Match Methods | Number of Pairs by Rough Matching | Number of Pairs by Fine Matching | Time (ms) | RMSE (Pixels) |
---|---|---|---|---|
RANSAC | 1150 | 1150 | 96 | 5.8743 |
KNN-TAR | 1135 | 123 | 5.7423 |
Match Methods | Number of Pairs by Rough Matching | Number of Pairs by Fine Matching | Time (ms) | RMSE (Pixels) |
---|---|---|---|---|
RANSAC | 111 | 111 | 20 | 0.5666 |
KNN-TAR | 103 | 23 | 0.5362 |
Match Methods | Number of Pairs by Rough Matching | Number of Pairs by Fine Matching | Time (ms) | RMSE (Pixels) |
---|---|---|---|---|
RANSAC | 26 | 25 | 33 | 3.0044 |
KNN-TAR | 24 | 28 | 2.9001 |
Image Sensors | SIFT | SURF [31] | ORB [32] | Proposed Algorithm | ||||
---|---|---|---|---|---|---|---|---|
Matched Point Pairs | RMSE (Pixels) | Matched Point Pairs | RMSE (Pixels) | Matched Point Pairs | RMSE (Pixels) | Matched Point Pairs | RMSE (Pixels) | |
GF-1 | 250 | 0.8818 | 114 | 1.0976 | 41 | 1.2530 | 235 | 0.8619 |
GF-2 | 1150 | 5.8743 | 1221 | 5.5924 | 63 | 1.6358 | 1135 | 5.8423 |
ASTER | 111 | 0.5666 | 64 | 0.7330 | 17 | 1.3132 | 103 | 0.5362 |
GF-1 & GF-2 | 23 | 3.0044 | 70 | 5.2689 | 47 | 3.6736 | 24 | 2.9001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, X.; Gao, Q.; Wang, R.; Luo, X. Satellite-Borne Optical Remote Sensing Image Registration Based on Point Features. Sensors 2021, 21, 2695. https://doi.org/10.3390/s21082695
Hou X, Gao Q, Wang R, Luo X. Satellite-Borne Optical Remote Sensing Image Registration Based on Point Features. Sensors. 2021; 21(8):2695. https://doi.org/10.3390/s21082695
Chicago/Turabian StyleHou, Xinan, Quanxue Gao, Rong Wang, and Xin Luo. 2021. "Satellite-Borne Optical Remote Sensing Image Registration Based on Point Features" Sensors 21, no. 8: 2695. https://doi.org/10.3390/s21082695