Mathematical Physics Analysis of Nozzle Shaping at the Gas Outlet from the Aperture to the Differentially Pumped Chamber in Environmental Scanning Electron Microscopy (ESEM)
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Measuring
2.2. Analyzed Variants
2.2.1. Calculated Cross-Section Variant
2.2.2. Under-Expanded Variant
2.2.3. OPEN TOTAL Variant
2.2.4. OPEN Variant
2.2.5. Angle 45° Variant
2.3. Tuning of Calculations in Ansys Fluent System
3. Results
Evaluation of Electron Dispersion for Each Variant
- M < 0.05: there is a minimum beam dispersion of up to 5%;
- M = 0.05–3: there is partial dispersion in the range of 5–95%;
- M > 3: there is complete dispersion above 95%.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Maxa, J.; Šabacká, P.; Mazal, J.; Neděla, V.; Binar, T.; Bača, P.; Talár, J.; Bayer, R.; Čudek, P. The Impact of Nozzle Opening Thickness on Flow Characteristics and Primary Electron Beam Scattering in an Environmental Scanning Electron Microscope. Sensors 2024, 24, 2166. [Google Scholar] [CrossRef] [PubMed]
- Šabacká, P.; Neděla, V.; Maxa, J.; Bayer, R. Application of Prandtl’s Theory in the Design of an Experimental Chamber for Static Pressure Measurements. Sensors 2021, 21, 6849. [Google Scholar] [CrossRef] [PubMed]
- Danilatos, G.D. Electron scattering cross-section measurements in ESEM. Micron 2013, 45, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Stelate, A.; Tihlaříková, E.; Schwarzerová, K.; Neděla, V.; Petrášek, J. Correlative Light-Environmental Scanning Electron Microscopy of Plasma Membrane Efflux Carriers of Plant Hormone Auxin. Biomolecules 2021, 11, 1407. [Google Scholar] [CrossRef] [PubMed]
- Vaněk, J.; Mach, R. Electrical conductivity of reduced graphene oxide thin-film layers. ECS Trans. 2018, 87, 253. [Google Scholar] [CrossRef]
- Dordevic, B.; Neděla, V.; Tihlaříková, E.; Trojan, V.; Havel, L. Effects of copper and arsenic stress on the development of Norway spruce somatic embryos and their visualization with the environmental scanning electron microscope. New Biotechnol. 2019, 48, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Neděla, V.; Tihlaříková, E.; Maxa, J.; Imrichová, K.; Bučko, M.; Gemeiner, P. Simulation-based optimisation of thermodynamic conditions in the ESEM for dynamical in-situ study of spherical polyelectrolyte complex particles in their native state. Ultramicroscopy 2020, 211, 112954. [Google Scholar] [CrossRef] [PubMed]
- Rybár, R.; Kudelas, D.; Beer, M.; Horodníková, J. Elimination of Thermal Bridges in the Construction of a Flat Low-Pressure Solar Collector by Means of a Vacuum Thermal Insulation Bushing. ASME J. Sol. Energy Eng. 2015, 137, 054501. [Google Scholar] [CrossRef]
- Li, T.; Song, Q.; He, G.; Xia, H.; Li, H.; Gui, J.; Dang, H. A Method for Detecting the Vacuum Degree of Vacuum Glass Based on Digital Holography. Sensors 2023, 23, 2468. [Google Scholar] [CrossRef]
- Dutta, P.P.; Benken, A.C.; Li, T.; Ordonez-Varela, J.R.; Gianchandani, Y.B. Passive Wireless Pressure Gradient Measurement System for Fluid Flow Analysis. Sensors 2023, 23, 2525. [Google Scholar] [CrossRef]
- Danilatos, G.D. ESEM modifications to LEO SUPRA 35 VP FESEM. Micron 2013, 44, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Danilatos, G.D. Velocity and ejector-jet assisted differential pumping: Novel design stages for environmental SEM. Micron 2012, 43, 600–611. [Google Scholar] [CrossRef]
- Danilatos, G.D. Gas-flow field in the environmental SEM. In Proceedings of the Annual Meeting of the Electron Microscopy Society of America, Boston, MA, USA, 16–21 August 1992; p. 50. [Google Scholar]
- Danilatos, G.D. Electron beam current loss at the high-vacuum-high-pressure boundary in the environmental scanning electron microscope. Microsc. Microanal. 2001, 7, 397–406. [Google Scholar] [CrossRef]
- Danilatos, G.D. Electron Beam Loss in Commercial Esem. In Proceedings of the 16th Australian Conference on Electron Microscopy, Canberra, Australia, 6–11 February 2000; pp. 1–18. [Google Scholar]
- Danilatos, G.D.; Rattenberger, J.; Dracopoulos, V. Beam transfer characteristics of a commercial environmental SEM and a low vacuum SEM. J. Microsc. 2010, 242, 166–180. [Google Scholar] [CrossRef]
- Danilatos, G.D. Figure of merit for environmental SEM and its implications. J. Microsc. 2011, 244, 159–169. [Google Scholar] [CrossRef]
- Danilatos, G.D. Optimum beam transfer in the environmental scanning electron microscope. J. Microsc. 2009, 234, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Nie, S.; Ji, H.; Wang, Y.; Lin, L.; Yin, F. Effect of multi-parameter optimization of water-laser coupling device and nozzle geometry on the stability of water-guided laser beam. Phys. Fluids 2024, 36, 013620. [Google Scholar] [CrossRef]
- Gong, C.; Ou, M.; Jia, W. The effect of nozzle configuration on the evolution of jet surface structure. Results Phys. 2019, 15, 102572. [Google Scholar] [CrossRef]
- Afkhami, S.; Fouladi, N. Gas dynamics at starting and terminating phase of a supersonic exhaust diffuser with a conical nozzle. Phys. Fluids 2024, 36, 036123. [Google Scholar] [CrossRef]
- Nasuti, F.; Onofri, M. Shock structure in separated nozzle flows. Shock Waves 2008, 19, 229–237. [Google Scholar] [CrossRef]
- Danilatos, G.D. Optimising the beam transfer in ESEM. In Proceedings of the 21st Australian Conference on Microscopy & Microanalysis, Brisbane, Australia, 11–15 July 2010. [Google Scholar]
- Sorbo, S.; Basile, A.; Castaldo Cobianchi, R. Applications of Environmental Scanning Electron Microscopy (ESEM) in botanical research. Plant Biosyst. 2008, 142, 355–359. [Google Scholar] [CrossRef]
- Pereira, J.D. Pressure Sensors: Working Principles of Static and Dynamic Calibration. Sensors 2024, 24, 629. [Google Scholar] [CrossRef] [PubMed]
- Salga, J.; Hoření, B. Tabulky Proudění Plynu; UNOB: Brno, Czech Republic, 1997. [Google Scholar]
- Yuan, T.-F.; Zhang, P.-J.-Y.; Liao, Z.-M.; Wan, Z.-H.; Liu, N.-S.; Lu, X.-Y. Effects of inflow Mach numbers on shock train dynamics and turbulence features in a backpressured supersonic channel flow. Phys. Fluids 2024, 36, 026126. [Google Scholar] [CrossRef]
- Zhu, Q.; Yin, Q.; Xiong, F.; Jing, H.; Pu, H.; Zhu, C. Numerical investigation of fluid flowing through rough fractures subject to shear. Phys. Fluids 2024, 36, 036608. [Google Scholar] [CrossRef]
- Daněk, M. Aerodynamika a Mechanika Letu; VVLŠ SNP: Košice, Slovakia, 1990. [Google Scholar]
- Muscariello, L.; Rosso, F.; Marino, G.; Giordano, A.; Barbarisi, M.; Cafiero, G.; Barbarisi, A. A critical overview of ESEM applications in the biological field. J. Cell. Physiol. 2005, 205, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Thevenin, D.; Janiga, D. Optimization and Computational Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Kadkhodazadeh, S.; Ihamouten, A.; Souriou, D.; Dérobert, X.; Guilbert, D. Parametric Study to Evaluate the Geometry and Coupling Effect on the Efficiency of a Novel FMM Tool Embedded in Cover Concrete for Corrosion Monitoring. Remote Sens. 2022, 14, 5593. [Google Scholar] [CrossRef]
- Guo, Q.; Ye, P.; Zhang, Z.; Xu, Q. Optimization Mechanism of Nozzle Parameters and Characterization of Nanofibers in Centrifugal Spinning. Nanomaterials 2023, 13, 3057. [Google Scholar] [CrossRef]
- Škorpík, J. Proudění Plynů a Par Tryskami, Transformační Technologie; Last Updated 10 April 2018; Jiří Škorpík: Brno, Czech Republic, 2006. [Google Scholar]
- Baehr, H.D.; Kabelac, S. Thermodynamik, 14th ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Beer, M.; Kudelas, D.; Rybár, R. A Numerical Analysis of the Thermal Energy Storage Based on Porous Gyroid Structure Filled with Sodium Acetate Trihydrate. Energies 2023, 16, 309. [Google Scholar] [CrossRef]
- Kalawa, W.; Sztekler, K.; Kozaczuk, J.; Mika, Ł.; Radomska, E.; Nowak, W.; Gołdasz, A. The Effect of Nozzle Configuration on Adsorption-Chiller Performance. Energies 2024, 17, 1181. [Google Scholar] [CrossRef]
- Ansys Fluent Theory Guide. Available online: www.ansys.com (accessed on 21 October 2022).
- Barth, T.; Jespersen, D. The design and application of upwind schemes on unstructured meshes. In Proceedings of the 27th Aerospace Sciences Meeting, Reno, NV, USA, 9–12 January 1989. [Google Scholar]
- Yang, Y.; Li, M.; Shu, S.; Xiao, A. High order schemes based on upwind schemes with modified coefficients. J. Comput. Appl. Math. 2006, 195, 242–251. [Google Scholar] [CrossRef]
- Gabániová, Ľ.; Kudelas, D.; Prčík, M. Modelling Ground Collectors and Determination of the Influence of Technical Parameters, Installation and Geometry on the Soil. Energies 2021, 14, 7153. [Google Scholar] [CrossRef]
- Xiao, L.; Hao, X.; Lei, D.; Tiezhi, S. Flow structure and parameter evaluation of conical convergent–divergent nozzle supersonic jet flows. Phys. Fluids 2023, 35, 066109. [Google Scholar]
- Šabacká, P.; Maxa, J.; Bayer, R.; Vyroubal, P.; Binar, T. Slip Flow Analysis in an Experimental Chamber Simulating Differential Pumping in an Environmental Scanning Electron Microscope. Sensors 2022, 22, 9033. [Google Scholar] [CrossRef] [PubMed]
- Drexler, P.; Čáp, M.; Fiala, P.; Steinbauer, M.; Kadlec, R.; Kaška, M.; Kočiš, L. A Sensor System for Detecting and Localizing Partial Discharges in Power Transformers with Improved Immunity to Interferences. Sensors 2019, 19, 923. [Google Scholar] [CrossRef]
- Danilatos, G.D. Foundations of Environmental Scanning Electron Microscopy. Adv. Electron. Electron Phys. 1988, 71, 109–250. [Google Scholar]
- Reimer, L. Scanning Elektron Microscopy: Physics of Image Formation and Microanalysis; Springer: Berlin/Heidelberg, Germany, 1985; ISBN 3540135308. [Google Scholar]
- Frank, L.; Král, J. Metody Analýzy Povrchů: Iontové, Sondové a Speciální Metody; Academia: Praha, Czech Republic, 2002; 489p, ISBN 80-200-0594-3. [Google Scholar]
Pfeiffer CMR 361 | Pfeiffer CMR 362 | |
---|---|---|
Measuring range [Pa] | 10–11,000 | 10–110 |
Precision: % of measurement [%] | 0.2 | 0.2 |
Pressure max. [hPa] | 3000 | 2000 |
Response time [ms] | 30 | 30 |
Pressure [Pa] | |
---|---|
Specimen Chamber | Differentially Pumped Chamber |
p0 | pv |
50 | 1.25 |
100 | 2.20 |
200 | 3.80 |
300 | 5.20 |
400 | 6.70 |
500 | 8.10 |
600 | 9.40 |
700 | 10.80 |
800 | 12.10 |
900 | 13.40 |
1000 | 14.70 |
1100 | 15.90 |
1200 | 17.10 |
1300 | 18.30 |
1400 | 19.50 |
1500 | 20.75 |
1600 | 22.10 |
1700 | 23.20 |
1800 | 24.30 |
1900 | 25.20 |
2000 | 26.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maxa, J.; Neděla, V.; Šabacká, P.; Binar, T. Mathematical Physics Analysis of Nozzle Shaping at the Gas Outlet from the Aperture to the Differentially Pumped Chamber in Environmental Scanning Electron Microscopy (ESEM). Sensors 2024, 24, 3243. https://doi.org/10.3390/s24103243
Maxa J, Neděla V, Šabacká P, Binar T. Mathematical Physics Analysis of Nozzle Shaping at the Gas Outlet from the Aperture to the Differentially Pumped Chamber in Environmental Scanning Electron Microscopy (ESEM). Sensors. 2024; 24(10):3243. https://doi.org/10.3390/s24103243
Chicago/Turabian StyleMaxa, Jiří, Vilém Neděla, Pavla Šabacká, and Tomáš Binar. 2024. "Mathematical Physics Analysis of Nozzle Shaping at the Gas Outlet from the Aperture to the Differentially Pumped Chamber in Environmental Scanning Electron Microscopy (ESEM)" Sensors 24, no. 10: 3243. https://doi.org/10.3390/s24103243
APA StyleMaxa, J., Neděla, V., Šabacká, P., & Binar, T. (2024). Mathematical Physics Analysis of Nozzle Shaping at the Gas Outlet from the Aperture to the Differentially Pumped Chamber in Environmental Scanning Electron Microscopy (ESEM). Sensors, 24(10), 3243. https://doi.org/10.3390/s24103243