Design Optimization of Piezocomposites Using a Homogenization Model: From Analytical Model to Experimentation
Abstract
:1. Introduction
2. Model
2.1. Variable Definitions
2.2. Composite Association Assumptions
2.3. Model Matrix Assembly and Resolution
- The equality relations between physical quantities of the and phases resulting from their continuity throughout the piezocomposite are assembled in Equation (9) into one matrix , defined as:
- The relation between the load on each piezocomposite materials and the global homogenized load is summarized by matrix :
- The matrix is composed similarly to the matrix . It summarizes the homogenized composite strain and electric displacement as a function of each phase.
- Material state Equation (2) can be written for both phase as follows:
- Equations (9), (11), (16) and (17) can finally be assembled as shown below:
2.4. Modeling and Experimental Data Processing
3. Sample Fabrication and Characterizations
3.1. Sample Preparation
3.2. Sample Batches Definition
3.3. Measurements
4. Results and Discussion
4.1. Model Input Adjustment
4.2. Results Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Badel, A. Récupération D’énergie et Contrôle Vibratoire par Éléments Piézoélectriques Suivant une Approche non Linéaire. Ph.D. Thesis, Université de Savoie, Chambéry, France, 2005. [Google Scholar]
- Lefeuvre, E.; Badel, A.; Petit, L.; Richard, C.; Guyomar, D. Semi-passive Piezoelectric Structural Damping by Synchronized Switching on Voltage Sources. J. Intell. Mater. Syst. Struct. 2006, 17, 653–660. [Google Scholar] [CrossRef]
- Newnham, R.E.; Skinner, D.P.; Cross, L.E. Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 1978, 13, 525–536. [Google Scholar] [CrossRef]
- Banno, H. Recent developments of piezoelectric ceramic products and composites of synthetic rubber and piezoelectric ceramic particles. Ferroelectrics 1983, 50, 3–12. [Google Scholar] [CrossRef]
- Smith, W.A. Modeling 1–3 composite piezoelectrics: Hydrostatic response. IEEE Trans. Ultrason. Ferroelect. Freq. Control 1993, 40, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.A.; Auld, B.A. Modeling 1–3 composite piezoelectrics: Thickness-mode oscillations. IEEE Trans. Ultrason. Ferroelect. Freq. Control 1991, 38, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.Y.; Yamaguchi, M. Elastic, Piezoelectric and Dielectric Properties of Composite Materials. In Proceedings of the IEEE 1986 Ultrasonics Symposium, Williamsburg, VA, USA, 17–19 November 1986; IEEE: Williamsburg, VA, USA, 1986; pp. 697–702. [Google Scholar]
- Levassort, F.; Lethiecq, M.; Certon, D.; Patat, F. A matrix method for modeling electroelastic moduli of 0-3 piezo-composites. IEEE Trans. Ultrason. Ferroelect. Freq. Control 1997, 44, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Tize Mha, P.; Maréchal, P.; Ntamack, G.E.; Kenmeugne, B. Phenomenological model for predicting thermoelectromechanical response of 2-2 piezocomposite. J. Compos. Mater. 2023, 57, 2145–2159. [Google Scholar] [CrossRef]
- Almusallam, A.; Yang, K.; Zhu, D.; Torah, R.N.; Komolafe, A.; Tudor, J.; Beeby, S.P. Clamping effect on the piezoelectric responses of screen-printed low temperature PZT/Polymer films on flexible substrates. Smart Mater. Struct. 2015, 24, 115030. [Google Scholar] [CrossRef]
- Torah, R.N.; Beeby, S.P.; White, N.M. Experimental investigation into the effect of substrate clamping on the piezoelectric behaviour of thick-film PZT elements. J. Phys. D Appl. Phys. 2004, 37, 1074–1078. [Google Scholar] [CrossRef]
- Al Ahmad, M.; Coccetti, F.; Plana, R. The Effect of Substrate Clamping on Piezoelectric Thin-Film Parameters. In Proceedings of the 2007 Asia-Pacific Microwave Conference, Bangkok, Thailand, 11–14 December 2007; IEEE: Bangkok, Thailand, 2007; pp. 1–4. [Google Scholar]
- MATLAB Version: 9.13.0 (R2022b), The MathWorks Inc.: Natick, MA, USA, 2022. Available online: https://www.mathworks.com (accessed on 7 December 2022).
- Goujon, L. Etude Des Composites Piezo-Electriques 1.3 Pour Applications Electroacoustiques Sous-Marines. Ph.D. Thesis, 1999. Available online: https://theses.fr/1999ISAL0098 (accessed on 20 January 2024).
- BS EN 1652:1998; Copper and Copper Alloys. Plate, Sheet, Strip and Circles for General Purposes. British Standards Institution (BSI): London, UK, 1998.
- Lebrun, L. Etude de Moteurs Piézoélectriques Ultrasonores. Ph.D. Thesis, Doctoral School of Mechanics, Energy, Civil Engineering, Acoustics (MEGA), Lyon, France, 1995. Available online: http://www.theses.fr/1995ISAL0066 (accessed on 30 January 2024).
- Kristiansen, H.; Gulliksen, M.; Haugerud, H.; Friberg, R. Characterisation of electrical contacts made by non-conductive adhesive. In Proceedings of the 3rd International Conference on Adhesive Joining and Coating Technology in Electronics Manufacturing 1998 (Cat. No.98EX180), Binghamton, NY, USA, 30 September 1998; IEEE: Binghamton, NY, USA, 1998; pp. 345–350. [Google Scholar]
- ANSI/IEEE Std 176-1987; An American National Standard IEEE Standard on Piezoelectricity. IEEE: New York, NY, USA, 1987.
Ceramic (Navy II) | ||
---|---|---|
Brass (CZ108/CW508L) | ||
Density |
Brass Thickness (μm) | Ceramic Thickness (μm) | Additional Brass Electrode Ratio () |
---|---|---|
Brass Thickness (μm) | Ceramic Thickness (μm) | Additional Brass Electrode Ratio () |
---|---|---|
Material Properties | Nominal Value (Saint-Gobain) | Measurement |
---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camus, C.; Cottinet, P.-J.; Richard, C. Design Optimization of Piezocomposites Using a Homogenization Model: From Analytical Model to Experimentation. Sensors 2024, 24, 1957. https://doi.org/10.3390/s24061957
Camus C, Cottinet P-J, Richard C. Design Optimization of Piezocomposites Using a Homogenization Model: From Analytical Model to Experimentation. Sensors. 2024; 24(6):1957. https://doi.org/10.3390/s24061957
Chicago/Turabian StyleCamus, Corentin, Pierre-Jean Cottinet, and Claude Richard. 2024. "Design Optimization of Piezocomposites Using a Homogenization Model: From Analytical Model to Experimentation" Sensors 24, no. 6: 1957. https://doi.org/10.3390/s24061957
APA StyleCamus, C., Cottinet, P. -J., & Richard, C. (2024). Design Optimization of Piezocomposites Using a Homogenization Model: From Analytical Model to Experimentation. Sensors, 24(6), 1957. https://doi.org/10.3390/s24061957