Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (823)

Search Parameters:
Keywords = piezoelectric transducers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 11089 KiB  
Article
Acoustoelectric Effect due to an In-Depth Inhomogeneous Conductivity Change in ZnO/Fused Silica Substrates
by Cinzia Caliendo, Massimiliano Benetti, Domenico Cannatà and Farouk Laidoudi
Sensors 2024, 24(19), 6399; https://doi.org/10.3390/s24196399 (registering DOI) - 2 Oct 2024
Abstract
The acoustoelectric (AE) effect induced by the absorption of ultraviolet (UV) light at 365 nm in piezoelectric ZnO films was theoretically and experimentally studied. c-ZnO films 4.0 µm thick were grown by the RF reactive magnetron sputtering technique onto fused silica substrates at [...] Read more.
The acoustoelectric (AE) effect induced by the absorption of ultraviolet (UV) light at 365 nm in piezoelectric ZnO films was theoretically and experimentally studied. c-ZnO films 4.0 µm thick were grown by the RF reactive magnetron sputtering technique onto fused silica substrates at 200 °C. A surface acoustic wave (SAW) delay line was fabricated with two split-finger Al interdigital transducers (IDTs) photolithographically implemented onto the ZnO-free surface to excite and reveal the propagation of the fundamental Rayleigh wave and its third harmonic at about 39 and 104 MHz. A small area of a few square millimeters on the surface of the ZnO layer, in between the two IDTs, was illuminated by UV light at different light power values (from about 10 mW up to 1.2 W) through the back surface of the SiO2 substrate, which is optically transparent. The UV absorption caused a change of the ZnO electrical conductivity, which in turn affected the velocity and insertion loss (IL) of the two waves. It was experimentally observed that the phase velocity of the fundamental and third harmonic waves decreased with an increase in the UV power, while the IL vs. UV power behavior differed at large UV power values: the Rayleigh wave underwent a single peak in attenuation, while its third harmonic underwent a further peak. A two-dimensional finite element study was performed to simulate the waves IL and phase velocity vs. the ZnO electrical conductivity, under the assumption that the ZnO layer conductivity undergoes an in-depth inhomogeneous change according to an exponential decay law, with a penetration depth of 325 nm. The theoretical results predicted single- and double-peak IL behavior for the fundamental and harmonic wave due to volume conductivity changes, as opposed to the AE effect induced by surface conductivity changes for which a single-peak IL behavior is expected. The phenomena predicted by the theoretical models were confirmed by the experimental results. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

22 pages, 11573 KiB  
Article
Graphene-Doped Piezoelectric Transducers by Kriging Optimal Model for Detecting Various Types of Laryngeal Movements
by Ming-Chan Lee, Cheng-Tang Pan, Shuo-Yu Juan, Zhi-Hong Wen, Jin-Hao Xu, Uyanahewa Gamage Shashini Janesha and Fan-Min Lin
Micromachines 2024, 15(10), 1213; https://doi.org/10.3390/mi15101213 - 29 Sep 2024
Viewed by 276
Abstract
This study fabricated piezoelectric fibers of polyvinylidene fluoride (PVDF) with graphene using near-field electrospinning (NFES) technology. A uniform experimental design table U*774 was applied, considering weight percentage (1–13 wt%), the distance between needle and disk collector (2.1–3.9 mm), and [...] Read more.
This study fabricated piezoelectric fibers of polyvinylidene fluoride (PVDF) with graphene using near-field electrospinning (NFES) technology. A uniform experimental design table U*774 was applied, considering weight percentage (1–13 wt%), the distance between needle and disk collector (2.1–3.9 mm), and applied voltage (14.5–17.5 kV). We optimized the parameters using electrical property measurements and the Kriging response surface method. Adding 13 wt% graphene significantly improved electrical conductivity, increasing from 17.7 µS/cm for pure PVDF to 187.5 µS/cm. The fiber diameter decreased from 21.4 µm in PVDF/1% graphene to 9.1 µm in PVDF/13% graphene. Adding 5 wt% graphene increased the β-phase content by 6.9%, reaching 65.4% compared to pure PVDF fibers. Material characteristics were investigated using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), contact angle measurements, and tensile testing. Optimal parameters included 3.47 wt% graphene, yielding 15.82 mV voltage at 5 Hz and 5 N force (2.04 times pure PVDF). Force testing showed a sensitivity (S) of 7.67 log(mV/N). Fibers were attached to electrodes for piezoelectric sensor applications. The results affirmed enhanced electrical conductivity, piezoelectric performance, and mechanical strength. The optimized piezoelectric sensor could be applied to measure physiological signals, such as attaching it to the throat under different conditions to measure the output voltage. The force-to-voltage conversion facilitated subsequent analysis. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

16 pages, 8186 KiB  
Article
On the Dynamics of a Novel Liquid-Coupled Piezoelectric Micromachined Ultrasonic Transducer Designed to Have a Reduced Resonant Frequency and Enhanced Ultrasonic Reception Capabilities
by Stephen Sammut, Edward Gatt and Ruben P. Borg
Micromachines 2024, 15(10), 1210; https://doi.org/10.3390/mi15101210 - 29 Sep 2024
Viewed by 472
Abstract
This paper introduces a novel design for a liquid-deployed Piezoelectric Micromachined Ultrasonic Transducer (PMUT). This design was specifically developed to resonate at a lower ultrasonic frequency than a PMUT with a circular, fully clamped diaphragm with the same diameter. Furthermore, the novel design [...] Read more.
This paper introduces a novel design for a liquid-deployed Piezoelectric Micromachined Ultrasonic Transducer (PMUT). This design was specifically developed to resonate at a lower ultrasonic frequency than a PMUT with a circular, fully clamped diaphragm with the same diameter. Furthermore, the novel design was also optimised to enhance its ultrasonic radiation reception capabilities. These parametric enhancements were necessary to develop a PMUT device that could form part of an eventual microscale sensory device used for the Structural Health Monitoring (SHM) of reinforced concrete (RC) structures. Through these two enhancements, an eventual microscale sensor can be made smaller, thus taking up a smaller die footprint and also be able to be deployed further apart from each other. Eventually, this would reduce the developed distributed sensor system’s cost. The innovative design employed a configuration where the diaphragm was only pinned at particular points along its circumference. This paper presents results from Finite Element Modelling (FEM), as well as experimental work that was conducted to develop and test this novel PMUT. The experimental work presented involved both laser vibrometry and ultrasonic radiation lab work. The results show that when compared to a clamped diaphragm design, the novel device managed to achieve the required reduction in resonant frequency and presented an enhanced sensitivity to incoming ultrasonic radiation. Full article
(This article belongs to the Special Issue MEMS Ultrasonic Transducers)
Show Figures

Figure 1

17 pages, 5913 KiB  
Article
Dynamic Analysis and Energy Harvesting Potential of Slitted Cantilever Beam Fitted with Piezoelectric Transducer
by Saad F. Almokmesh, Bashar B. Alzuwayer, Abdulrahman S. Almutairi and Abdulwahab Alhashem
Appl. Sci. 2024, 14(19), 8758; https://doi.org/10.3390/app14198758 - 28 Sep 2024
Viewed by 516
Abstract
This research investigates how slitted beams fitted with piezoelectric transducers (PZTs) behave when generating energy from environmental vibrations. By changing slit widths, slit lengths, and tip masses, we investigated the frequency response of these beams using analytical methods and finite element analysis (FEA). [...] Read more.
This research investigates how slitted beams fitted with piezoelectric transducers (PZTs) behave when generating energy from environmental vibrations. By changing slit widths, slit lengths, and tip masses, we investigated the frequency response of these beams using analytical methods and finite element analysis (FEA). The obtained results demonstrate that resonance peaks are brought closer together, and coupling between vibrational modes is enhanced by larger slit spacing, whether or not anti-resonance dips are present, though the magnitudes of these peaks are affected by the width of the slits. The possibility of energy harvesting can be enhanced when resonance peaks are shifted and amplified by heavier tip masses. The FEA results support the analytical model, showing other characteristics such as sharp dips or anti-resonance troughs. This work provides valuable information for future design improvements by highlighting the significance of optimizing slit parameters and tip masses to enhance the efficiency of piezoelectric energy harvesters. This study demonstrates the benefits of using slitted beams with piezoelectric energy harvesting and provides recommendations for their efficient design. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

18 pages, 7017 KiB  
Article
A Universal Model for Ultrasonic Energy Transmission in Various Media
by Yufei Ma, Yunan Jiang and Chong Li
Sensors 2024, 24(19), 6230; https://doi.org/10.3390/s24196230 - 26 Sep 2024
Viewed by 264
Abstract
This study presents a comprehensive model for ultrasonic energy transfer (UET) using a 33-mode piezoelectric transducer to advance wireless sensor powering in challenging environments. One of the advantages of UET is that it is not stoppable by electromagnetic shielding and can penetrate metal. [...] Read more.
This study presents a comprehensive model for ultrasonic energy transfer (UET) using a 33-mode piezoelectric transducer to advance wireless sensor powering in challenging environments. One of the advantages of UET is that it is not stoppable by electromagnetic shielding and can penetrate metal. Existing models focus on feasibility and numerical analysis but lack an effective link between input and output power in different media applications. The proposed model fills this gap by incorporating key factors of link loss, including resonant frequency, impedance matching, acoustic coupling, and boundary conditions, to predict energy transfer efficiency more accurately. The model is validated through numerical simulations and experimental tests in air, metal, and underwater environments. An error analysis has shown that the maximum error between theoretical and experimental responses is 3.11% (air), 27.37% (water), and 1.76% (aluminum). This research provides valuable insights into UET dynamics and offers practical guidelines for developing efficient wireless powering solutions for sensors in difficult-to-access or electromagnetically shielded conditions. Full article
(This article belongs to the Topic Advanced Wireless Charging Technology)
Show Figures

Figure 1

18 pages, 4912 KiB  
Article
Piezoelectrically and Capacitively Transduced Hybrid MEMS Resonator with Superior RF Performance and Enhanced Parasitic Mitigation by Low-Temperature Batch Fabrication
by Adnan Zaman, Ugur Guneroglu, Abdulrahman Alsolami and Jing Wang
Appl. Sci. 2024, 14(18), 8166; https://doi.org/10.3390/app14188166 - 11 Sep 2024
Viewed by 380
Abstract
This study investigates a hybrid microelectromechanical system (MEMS) acoustic resonator through a hybrid approach to combine capacitive and piezoelectric transduction mechanisms, thus harnessing the advantages of both transducer technologies within a single device. By seamlessly integrating both piezoelectric and capacitive transducers, the newly [...] Read more.
This study investigates a hybrid microelectromechanical system (MEMS) acoustic resonator through a hybrid approach to combine capacitive and piezoelectric transduction mechanisms, thus harnessing the advantages of both transducer technologies within a single device. By seamlessly integrating both piezoelectric and capacitive transducers, the newly designed hybrid resonators mitigate the limitations of capacitive and piezoelectric resonators. The unique hybrid configuration holds promise to significantly enhance overall device performance, particularly in terms of quality factor (Q-factor), insertion loss, and motional impedance. Moreover, the dual-transduction approach improves the signal-to-noise ratio and reduces feedthrough noise levels at higher frequencies. In this paper, the detailed design, complex fabrication processes, and thorough experimental validation are presented, demonstrating substantial performance enhancement potentials. A hybrid disk resonator with a single side-supporting anchor achieved an outstanding loaded Q-factor higher than 28,000 when operating under a capacitive drive and piezoelectric sense configuration. This is comparably higher than the measured Q-factor of 7600 for another disk resonator with two side-supporting anchors. The hybrid resonator exhibits a high Q-factor at its resonance frequency at 20 MHz, representing 2-fold improvement over the highest reported Q-factor for similar MEMS resonators in the literature. Also, the dual-transduction approach resulted in a more than 30 dB improvement in feedthrough suppression for devices with a 500 nm-thick ZnO layer, while hybrid resonators with a thicker piezoelectric layer of 1300 nm realized an even greater feedthrough suppression of more than 50 dB. The hybrid resonator integration strategy discussed offers an innovative solution for current and future advanced RF front-end applications, providing a versatile platform for future innovations in on-chip resonator technology. This work has the potential to lead to advancements in MEMS resonator technology, facilitating some significant improvements in multi-frequency and frequency agile RF applications through the original designs equipped with integrated capacitive and piezoelectric transduction mechanisms. The hybrid design also results in remarkable performance metrics, making it an ideal candidate for integrating next-generation wireless communication devices where size, cost, and energy efficiency are critical. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

22 pages, 14713 KiB  
Article
A Proposed Non-Destructive Method Based on Sphere Launching and Piezoelectric Diaphragm
by Cristiano Soares Junior, Paulo Roberto Aguiar, Doriana M. D’Addona, Pedro Oliveira Conceição Junior and Reinaldo Götz Oliveira Junior
Sensors 2024, 24(18), 5874; https://doi.org/10.3390/s24185874 - 10 Sep 2024
Viewed by 290
Abstract
This work presents the study of a reproducible acoustic emission method based on the launching of a metallic sphere and low-cost piezoelectric diaphragm. For this purpose, tests were first conducted on a carbon fiber-reinforced polymer structure, and then on an aluminum structure for [...] Read more.
This work presents the study of a reproducible acoustic emission method based on the launching of a metallic sphere and low-cost piezoelectric diaphragm. For this purpose, tests were first conducted on a carbon fiber-reinforced polymer structure, and then on an aluminum structure for comparative analysis. The pencil-lead break (PLB) tests were also conducted for comparisons with the proposed method. Different launching heights and elastic deformations of the structures were investigated. The results show higher repeatability for the sphere impact method, as the PLB is more affected by human inaccuracy, and it was also effective in damage detection. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2024)
Show Figures

Figure 1

18 pages, 9398 KiB  
Article
Radiation Impedance of Rectangular CMUTs
by Shayan Khorassany, Eric B. Dew, Mohammad Rahim Sobhani and Roger J. Zemp
Sensors 2024, 24(17), 5823; https://doi.org/10.3390/s24175823 - 7 Sep 2024
Viewed by 423
Abstract
Recently, capacitive micromachined ultrasound transducers (CMUTs) with long rectangular membranes have demonstrated performance advantages over conventional piezoelectric transducers; however, modeling these CMUT geometries has been limited to computationally burdensome numerical methods. Improved fast modeling methods, such as equivalent circuit models, could help achieve [...] Read more.
Recently, capacitive micromachined ultrasound transducers (CMUTs) with long rectangular membranes have demonstrated performance advantages over conventional piezoelectric transducers; however, modeling these CMUT geometries has been limited to computationally burdensome numerical methods. Improved fast modeling methods, such as equivalent circuit models, could help achieve designs with even better performance. The primary obstacle in developing such methods is the lack of tractable methods for computing the radiation impedance of clamped rectangular radiators. This paper presents a method that approximates the velocity profile using a polynomial shape model to rapidly and accurately estimate radiation impedance. The validity of the approximate velocity profile and corresponding radiation impedance calculation was assessed using finite element simulations for a variety of membrane aspect ratios and bias voltages. Our method was evaluated for rectangular radiators with width:length ratios from 1:1 up to 1:25. At all aspect ratios, the radiation resistance was closely modeled. However, when calculating the radiation reactance, our initial approach was only accurate for low aspect ratios. This motivated us to consider an alternative shape model for high aspect ratios, which was more accurate when compared with FEM. To facilitate the development of future rectangular CMUTs, we provide a MATLAB script that quickly calculates radiation impedance using both methods. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

12 pages, 6318 KiB  
Article
Enhancing Ultrasonic Echo Response of AlN Thin Film Transducer Deposited by RF Magnetron Sputtering
by Fengqi Wang, Qinyan Ye, Kun Luo, Xulin He, Xiaolong Ran, Xingping Zheng and Cheng Liao
Sensors 2024, 24(17), 5820; https://doi.org/10.3390/s24175820 - 7 Sep 2024
Viewed by 427
Abstract
Accurate measurement of the pretightening stress for bolts has great significance for improving the assembly quality and safety, especially in severe environments. In this study, AlN thin film transducers were deposited on GH4169 nickel base alloy bolts using the RF magnetron sputtering, enabling [...] Read more.
Accurate measurement of the pretightening stress for bolts has great significance for improving the assembly quality and safety, especially in severe environments. In this study, AlN thin film transducers were deposited on GH4169 nickel base alloy bolts using the RF magnetron sputtering, enabling a systematic investigation into the correlation between structures and the intensity of ultrasonic echo signals. Employing the finite element method resulted in consistency with the experimental data, enabling further exploration of the enhancement mechanism. With the increasing thickness of both the piezoelectric layer and the electrode layer, the intensity of the ultrasonic echo signals saw a great enhancement. The maximum-intensity observed increase is 14.7 times greater than that of the thinnest layers. Specifically, the thicker piezoelectric layer improves its mechanical displacement, while the increased thickness of the electrode layer contributes to better densification. An electrode diameter of nearly 4 mm is optimal for an AlN thin film transducer of M8 bolts. For pretightening the stress measurement, the sample with a strong and stable echo signal shows a low measurement error of pretightening below ±2.50%. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

20 pages, 5074 KiB  
Article
A Study on the Mechanical Resonance Frequency of a Piezo Element: Analysis of Resonance Characteristics and Frequency Estimation Using a Long Short-Term Memory Model
by Jeonghoon Moon, Sangkil Lim, Jinhong Kim, Geonil Kang and Beomhun Kim
Appl. Sci. 2024, 14(17), 7833; https://doi.org/10.3390/app14177833 - 4 Sep 2024
Viewed by 374
Abstract
In an ultrasonic system, a piezoelectric transducer (PT) is a key component and contains a piezo element inside. In order to design and operate a system that uses a piezo element for its intended purpose, resonance analysis of the piezo element and an [...] Read more.
In an ultrasonic system, a piezoelectric transducer (PT) is a key component and contains a piezo element inside. In order to design and operate a system that uses a piezo element for its intended purpose, resonance analysis of the piezo element and an equivalent circuit analysis of the output stage of the ultrasonic system generator are required. Due to the characteristics of the equivalent circuit, a piezo element has multiple resonance points. Therefore, the system must be operated at the corresponding frequency by tracking the resonance frequency that suits the purpose of the system. In this study, the mechanical resonance frequency of the piezo element was analyzed and a method for operating the system at the corresponding frequency was studied. In order to operate a piezo element, a voltage-type inverter is used to apply a high-frequency AC (Alternating Current). Then, an LC filter is inserted into the output stage of the inverter, and the piezo element is finally located at the output stage of the LC filter. Therefore, when designing an LC filter, a design is required to optimize the performance of the piezo element. In this paper, we analyzed the resonance of a piezo element and the equivalent circuit of the generator output stage of an ultrasonic system for effective operation of an ultrasonic system. In addition, we proposed a method to estimate the characteristics of the entire mechanical resonance frequency range of a piezo element by using an LSTM (Long Short-Term Memory) model suitable for analyzing the nonlinear characteristics of a piezo element. The study on estimating the mechanical resonance frequency of a piezo element using an LSTM model was verified through MATLAB 2021b simulation and ultrasonic system experiments. Full article
Show Figures

Figure 1

27 pages, 8451 KiB  
Article
A Proof-of-Concept Study of Stability Monitoring of Implant Structure by Deep Learning of Local Vibrational Characteristics
by Manh-Hung Tran, Nhat-Duc Hoang, Jeong-Tae Kim, Hoang-Khanh Le, Ngoc-Loi Dang, Ngoc-Tuong-Vy Phan, Duc-Duy Ho and Thanh-Canh Huynh
J. Sens. Actuator Netw. 2024, 13(5), 52; https://doi.org/10.3390/jsan13050052 - 3 Sep 2024
Viewed by 519
Abstract
This study develops a structural stability monitoring method for an implant structure (i.e., a single-tooth dental implant) through deep learning of local vibrational modes. Firstly, the local vibrations of the implant structure are identified from the conductance spectrum, achieved by driving the structure [...] Read more.
This study develops a structural stability monitoring method for an implant structure (i.e., a single-tooth dental implant) through deep learning of local vibrational modes. Firstly, the local vibrations of the implant structure are identified from the conductance spectrum, achieved by driving the structure using a piezoelectric transducer within a pre-defined high-frequency band. Secondly, deep learning models based on a convolutional neural network (CNN) are designed to process the obtained conductance data of local vibrational modes. Thirdly, the CNN models are trained to autonomously extract optimal vibration features for structural stability assessment of the implant structure. We employ a validated predictive 3D numerical modeling approach to demonstrate the feasibility of the proposed approach. The proposed method achieved promising results for predicting material loss surrounding the implant, with the best CNN model demonstrating training and testing errors of 3.7% and 4.0%, respectively. The implementation of deep learning allows optimal feature extraction in a lower frequency band, facilitating the use of low-cost active sensing devices. This research introduces a novel approach for assessing the implant’s stability, offering promise for developing future radiation-free stability assessment tools. Full article
(This article belongs to the Section Actuators, Sensors and Devices)
Show Figures

Figure 1

10 pages, 5603 KiB  
Communication
A Unique Time-Reversal Algorithm-Enabled Flexible Ultrasound Transducer with a Controllable Acoustic Field
by Lu Jia, Yingzhan Yan, Jing Xu and Yuan Gao
Sensors 2024, 24(17), 5635; https://doi.org/10.3390/s24175635 - 30 Aug 2024
Viewed by 513
Abstract
Flexible ultrasonic devices represent a feasible technology for providing timely signal detection and even a non-invasive disease treatment for the human brain. However, the deformation of the devices is always accompanied by a change in the acoustic field, making it hard for accurate [...] Read more.
Flexible ultrasonic devices represent a feasible technology for providing timely signal detection and even a non-invasive disease treatment for the human brain. However, the deformation of the devices is always accompanied by a change in the acoustic field, making it hard for accurate focusing. Herein, we report a stable and flexible transducer. This device can generate a high-intensity acoustic signal with a controllable acoustic field even when the device is bent. The key is to use a low-impedance piezoelectric material and an island-bridge device structure, as well as to design a unique time-reversal algorithm to correct the deviation of signals after transcranial propagation. To provide an in-depth study of the acoustic field of flexible devices, we also analyze the effects of mechanical deformation and structural parameters on the corresponding acoustic response. Full article
Show Figures

Figure 1

14 pages, 3988 KiB  
Article
Study on the Detection of Single and Dual Partial Discharge Sources in Transformers Using Fiber-Optic Ultrasonic Sensors
by Feng Liu, Yansheng Shi, Shuainan Zhang and Wei Wang
Photonics 2024, 11(9), 815; https://doi.org/10.3390/photonics11090815 - 29 Aug 2024
Viewed by 512
Abstract
Partial discharge is a fault that occurs at the site of insulation defects within a transformer. Dual instances of partial discharge origination discharging simultaneously embody a more intricate form of discharge, where the interaction between the discharge sources leads to more intricate and [...] Read more.
Partial discharge is a fault that occurs at the site of insulation defects within a transformer. Dual instances of partial discharge origination discharging simultaneously embody a more intricate form of discharge, where the interaction between the discharge sources leads to more intricate and unpredictable insulation damage. Conventional piezoelectric transducers are magnetically affixed to the exterior metal tank of transformers. The ultrasonic signals emanating from partial discharge undergo deflection and reverberation upon traversing the windings, insulation paperboards, and the outer shell, resulting in signal attenuation and thus making it difficult to detect such faults. Furthermore, it is challenging to distinguish between simultaneous discharges from dual partial discharge sources and continuous discharges from a single source, often leading to missed detection and repairs of fault points, which increase the maintenance difficulty and cost of power equipment. With the advancement of MEMS (Micro-Electro-Mechanical System) technology, fiber-optic ultrasonic sensors have surfaced as an innovative technique for optically detecting partial discharges. These sensors are distinguished by their minute dimensions, heightened sensitivity, and robust immunity to electromagnetic disturbances. and excellent insulation properties, allowing for internal installation within power equipment for partial discharge monitoring. In this study, we developed an EFPI (Extrinsic Fabry Perot Interferometer) optical fiber ultrasonic sensor that can be installed inside transformers. Based on this sensor array, we also created a partial discharge ultrasonic detection system that estimates the directional information of single and dual partial discharge sources using the received signals from the sensor array. By utilizing the DOA (Direction of Arrival) as a feature recognition parameter, our system can effectively detect both simultaneous discharges from dual partial discharge sources and continuous discharges from a single source within transformer oil tanks, meeting practical application requirements. The detection methodology presented in this paper introduces an original strategy and resolution for pinpointing the types of partial discharges occurring under intricate conditions within power apparatus, effectively distinguishing between discharges from single and dual partial discharge sources. Full article
Show Figures

Figure 1

25 pages, 7119 KiB  
Article
Quantification of the Uncertainty in Ultrasonic Wave Speed in Concrete: Application to Temperature Monitoring with Embedded Transducers
by Rouba Hariri, Jean-Francois Chaix, Parisa Shokouhi, Vincent Garnier, Cécile Saïdi-Muret, Olivier Durand and Odile Abraham
Sensors 2024, 24(17), 5588; https://doi.org/10.3390/s24175588 - 29 Aug 2024
Viewed by 677
Abstract
This article presents an overall examination of how small temperature fluctuations affect P-wave velocity (Vp) measurements and their uncertainties in concrete using embedded piezoelectric transducers. This study highlights the fabrication of custom transducers tailored for long-term concrete monitoring. Accurate and [...] Read more.
This article presents an overall examination of how small temperature fluctuations affect P-wave velocity (Vp) measurements and their uncertainties in concrete using embedded piezoelectric transducers. This study highlights the fabrication of custom transducers tailored for long-term concrete monitoring. Accurate and reliable estimation of ultrasonic wave velocities is challenging, since they can be impacted by multiple experimental and environmental factors. In this work, a reliable methodology incorporating correction models is introduced for the quantification of uncertainties in ultrasonic absolute and relative velocity measurements. The study identifies significant influence quantities and suggests uncertainty estimation laws, enhancing measurement accuracy. Determining the onset time of the signal is very time-consuming if the onset is picked manually. After testing various methods to pinpoint the onset time, we selected the Akaike Information Criterion (AIC) due to its ability to produce sufficiently reliable results. Then, signal correlation was used to determine the influence of temperature (20 °C to 40 °C) on Vp in different concrete samples. This technique proved effective in evaluating velocity changes, revealing a persistent velocity decrease with temperature increases for various concrete compositions. The study demonstrated the capability of ultrasonic measurements to detect small variations in the state of concrete under the influence of environmental variables like temperature, underlining the importance of incorporating all influencing factors. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

21 pages, 2415 KiB  
Review
The Challenges of Piezoelectric Actuators and Motors Application in a Space Environment
by Laurynas Šišovas, Andrius Čeponis and Sergejus Borodinas
Actuators 2024, 13(8), 312; https://doi.org/10.3390/act13080312 - 14 Aug 2024
Viewed by 744
Abstract
Piezoelectric actuators and motors are increasingly essential for space applications due to their precision, compactness, and efficiency. This review explores their advantages over traditional actuators, emphasizing their minimal electromagnetic interference, high responsiveness, and operational reliability in harsh space environments. This study highlights the [...] Read more.
Piezoelectric actuators and motors are increasingly essential for space applications due to their precision, compactness, and efficiency. This review explores their advantages over traditional actuators, emphasizing their minimal electromagnetic interference, high responsiveness, and operational reliability in harsh space environments. This study highlights the challenges posed by space conditions such as vacuum, microgravity, extreme temperatures, and radiation, which require robust design and material considerations. A comprehensive review of missions using piezo actuators, including their operating principles, material advancements, and innovative designs tailored for space conditions. In addition, numerical calculations were performed by COMSOL Multiphysics 5.6 software with the aim of analyzing the impact of temperature variations typical of the low Earth orbit (LEO) on the electromechanical properties of the piezoelectric transducer. The results indicate significant variations in the characteristics of the resonant frequency, impedance, and phase frequency in a temperature range from −20 °C to 40 °C, emphasizing the importance of accounting for thermal effects in the design. The calculations show that advantages which are proposed by piezoelectric motion systems must be combined with adaptability to harsh environmental conditions and call for further research to enhance their robustness and performance for broader application in future space missions. Full article
(This article belongs to the Special Issue Actuators in 2024)
Show Figures

Figure 1

Back to TopTop