A Proposed Non-Destructive Method Based on Sphere Launching and Piezoelectric Diaphragm
Abstract
:1. Introduction
- A method for characterization and frequency response evaluation of piezoelectric transducers as an alternative to the PLB method for CFRP structures;
- A new approach for structural damage evaluation in CFRP as a potential acoustic technology for various NDT applications, contributing to the further knowledge of damage mechanisms and acoustic propagation in CFRP;
- A simple and low-cost methodology using a piezoelectric transducer and inexpensive apparatus, which enables flexibility compared to other SHM approaches;
- The non-destructive evaluation method can monitor the structure through sphere launching without causing any permanent damage to the CFRP specimen.
2. State of the Art
2.1. CFRP Composites
2.2. The PLB Method
2.3. Damage Indices
3. Material and Methods
3.1. Experimental Setup
3.2. PLB Tests
3.3. Plastic Deformation Evaluation in Sphere Launch Tests
3.4. CFRP Launch Tests for Height Variation Study
3.5. Aluminum Launch Tests to Verify the Effect of Sphere Damage
3.6. SHM Tests
4. Results and Discussion
4.1. Results of SHM Tests
4.2. Results from PLB Tests on CFRP
4.3. Results from PLB Tests on Aluminum
4.4. Results from CFRP Launch Tests
4.5. Results from Aluminum Launch Tests
4.6. Results from NDT Tests
4.7. Results from NDT PLB Tests
4.8. Coherence between Launch and PLB Tests
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lints, M.; Salupere, A.; Dos Santos, S. Numerical simulation of ultrasonic time reversal on defects in carbon fibre reinforced polymer. Wave Motion 2020, 94, 102526. [Google Scholar] [CrossRef]
- Karataş, M.A.; Gökkaya, H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Def. Technol. 2018, 14, 318–326. [Google Scholar] [CrossRef]
- Suriani, M.J.; Rapi, H.Z.; Ilyas, R.A.; Petrů, M.; Sapuan, S.M. Delamination and Manufacturing Defects in Natural Fiber-Reinforced Hybrid Composite: A Review. Polymers 2021, 13, 1323. [Google Scholar] [CrossRef]
- Barile, C. Innovative mechanical characterization of CFRP by using acoustic emission technique. Eng. Fract. Mech. 2019, 210, 414–421. [Google Scholar] [CrossRef]
- Patel, P.; Chaudhary, V. Delamination evaluation in drilling of composite materials—A review. Mater. Today Proc. 2021, 56, 2690–2695. [Google Scholar] [CrossRef]
- Pereira, R.B.D.; Brandão, L.C.; de Paiva, A.P.; Ferreira, J.R.; Davim, J.P. A review of helical milling process. Int. J. Mach. Tools Manuf. 2017, 120, 27–48. [Google Scholar] [CrossRef]
- Pawlak, A.M.; Górny, T.; Dopierała, Ł.; Paczos, P. The Use of CFRP for Structural Reinforcement—Literature Review. Metals 2022, 12, 1470. [Google Scholar] [CrossRef]
- Sun, W. Development of a testing methodology for the design and quality control of carbon fiber reinforced polymer (CFRP) anchors. Constr. Build. Mater. 2018, 164, 150–163. [Google Scholar] [CrossRef]
- Lee, S.W.; Han, S.; Kim, S.-I.; Choi, S. Influence of elevated temperature on the microhardness and microstructure of carbon fiber reinforced polymers. J. Reinf. Plast. Compos. 2023, 42, 1220–1228. [Google Scholar] [CrossRef]
- Cui, J.; Liu, W.; Zhang, Y.; Han, L.; Yin, P.; Li, Y.; Zhou, M.; Wang, P. A visual inspection method for delamination extraction and quantification of carbon fiber reinforced plastic (CFRP). Measurement 2022, 196, 111252. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, K.; Zhu, S.; Xu, H.; Cao, D.; Zhao, L.; Zhang, R.; Yin, W. Review on the Electrical Resistance/Conductivity of Carbon Fiber Reinforced Polymer. Appl. Sci. 2019, 9, 2390. [Google Scholar] [CrossRef]
- Swiderski, W. Non-destructive testing of CFRP by laser excited thermography. Compos. Struct. 2018, 209, 710–714. [Google Scholar] [CrossRef]
- Pimenov, D.Y.; Gupta, M.K.; da Silva, L.R.; Kiran, M.; Khanna, N.; Krolczyk, G.M. Application of measurement systems in tool condition monitoring of Milling: A review of measurement science approach. Measurement 2022, 199, 111503. [Google Scholar] [CrossRef]
- He, Z.; Li, W.; Salehi, H.; Zhang, H.; Zhou, H.; Jiao, P. Integrated structural health monitoring in bridge engineering. Autom. Constr. 2022, 136, 104168. [Google Scholar] [CrossRef]
- Abbas, S.; Li, F.; Qiu, J. A Review on SHM Techniques and Current Challenges for Characteristic Investigation of Damage in Composite Material Components of Aviation Industry. Mater. Perform. Charact. 2018, 7, 224–258. [Google Scholar] [CrossRef]
- Abbas, M.; Shafiee, M. Structural Health Monitoring (SHM) and Determination of Surface Defects in Large Metallic Structures using Ultrasonic Guided Waves. Sensors 2018, 18, 3958. [Google Scholar] [CrossRef]
- Xu, J.; Wang, W.; Han, Q.; Liu, X. Damage pattern recognition and damage evolution analysis of unidirectional CFRP tendons under tensile loading using acoustic emission technology. Compos. Struct. 2020, 238, 111948. [Google Scholar] [CrossRef]
- Ghadarah, N.; Ayre, D. A Review on Acoustic Emission Testing for Structural Health Monitoring of Polymer-Based Composites. Sensors 2023, 23, 6945. [Google Scholar] [CrossRef]
- Venturini Autieri, M.R. Acoustic Emission Characterisation of Damage in CFRP Composites. Ph.D. Thesis, University of Southampton, Southampton, UK, 2007. [Google Scholar]
- Fotouhi, M.; Saeedifar, M.; Sadeghi, S.; Najafabadi, M.A.; Minak, G. Investigation of the damage mechanisms for mode I delamination growth in foam core sandwich composites using acoustic emission. Struct. Health Monit. 2015, 14, 265–280. [Google Scholar] [CrossRef]
- Michalcová, L.; Kadlec, M. Carbon/epoxy composite delamination analysis by acoustic emission method under various environmental conditions. Eng. Fail. Anal. 2016, 69, 88–96. [Google Scholar] [CrossRef]
- Fotouhi, M.; Najafabadi, M.A. Acoustic emission-based study to characterize the initiation of delamination in composite materials. J. Thermoplast. Compos. Mater. 2014, 29, 519–537. [Google Scholar] [CrossRef]
- Barile, C.; Casavola, C.; Pappalettera, G.; Kannan, V.P. Damage monitoring of carbon fibre reinforced polymer composites using acoustic emission technique and deep learning. Compos. Struct. 2022, 292, 115629. [Google Scholar] [CrossRef]
- Wandowski, T.; Malinowski, P.; Ostachowicz, W. Delamination detection in CFRP panels using EMI method with temperature compensation. Compos. Struct. 2016, 151, 99–107. [Google Scholar] [CrossRef]
- Feng, B.; Ribeiro, A.L.; Ramos, H.G. A new method to detect delamination in composites using chirp-excited Lamb wave and wavelet analysis. NDT E Int. 2018, 100, 64–73. [Google Scholar] [CrossRef]
- Shoja, S.; Berbyuk, V.; Boström, A. Delamination detection in composite laminates using low frequency guided waves: Numerical simulations. Compos. Struct. 2018, 203, 826–834. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, H.; Tian, T.; Deng, D.; Hu, M.; Ma, J.; Gao, D.; Zhang, J.; Ma, S.; Yang, L.; et al. A review on guided-ultrasonic-wave-based structural health monitoring: From fundamental theory to machine learning techniques. Ultrasonics 2023, 133, 107014. [Google Scholar] [CrossRef]
- Raghavan, A.; Cesnik, C.E.S. The Shock and Vibration Digest Review of Guided-wave Structural Health Monitoring. Shock Vib. Dig. 2007, 39, 91–114. [Google Scholar] [CrossRef]
- Vieira, M.A.A.; Gotz, R.; de Aguiar, P.R.; Alexandre, F.A.; Fernandez, B.O.; Oliveira Junior, P. A Low-Cost Acoustic Emission Sensor Based on Piezoelectric Diaphragm. IEEE Sens. J. 2020, 16, 9377–9784. [Google Scholar] [CrossRef]
- Uhlmann, E.; Holznagel, T.; Clemens, R. Practical Approaches for Acoustic Emission Attenuation Modelling to Enable the Process Monitoring of CFRP Machining. J. Manuf. Mater. Process. 2022, 6, 118. [Google Scholar] [CrossRef]
- McLaskey, G.C.; Lockner, D.A.; Kilgore, B.D.; Beeler, N.M. A Robust Calibration Technique for Acoustic Emission Systems Based on Momentum Transfer from a Ball Drop. Bull. Seism. Soc. Am. 2015, 105, 257–271. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, M.; Tan, H.; Ridha, M.; Tay, T. Hybrid woven carbon-Dyneema composites under drop-weight and steel ball impact. Compos. Struct. 2019, 236, 111811. [Google Scholar] [CrossRef]
- Dashtkar, A.; Hadavinia, H.; Barros-Rodriguez, J.; Williams, N.A.; Turner, M.; Vahid, S. Quantifying damping coefficient and attenuation at different frequencies for graphene modified polyurethane by drop ball test. Polym. Test. 2021, 100, 107267. [Google Scholar] [CrossRef]
- Zhang, W.; Jia, H.; Gao, G.; Cheng, X.; Du, P.; Xu, D. Backing layers on electroacoustic properties of the acoustic emission sensors. Appl. Acoust. 2019, 156, 387–393. [Google Scholar] [CrossRef]
- Xu, J.; Yin, Y.; Davim, J.P.; Li, L.; Ji, M.; Geier, N.; Chen, M. A critical review addressing drilling-induced damage of CFRP composites. Compos. Struct. 2022, 294, 115594. [Google Scholar] [CrossRef]
- Ahmad, H.; Markina, A.A.; Porotnikov, M.V.; Ahmad, F. A review of carbon fiber materials in automotive industry. IOP Conf. Ser. Mater. Sci. Eng. 2020, 971, 032011. [Google Scholar] [CrossRef]
- Amirkhanlou, S.; Ji, S. A review on high stiffness aluminum-based composites and bimetallics. Crit. Rev. Solid State Mater. Sci. 2019, 45, 1–21. [Google Scholar] [CrossRef]
- Joshi, S.J.; Patel, K.S.; Shah, D.B.; Mawandiya, B.K. Development and performance analysis of out-of-autoclave curing process for CFRP composites. Adv. Mater. Process. Technol. 2022, 8, 1593–1603. [Google Scholar] [CrossRef]
- Sause, M.G.R. Investigation of pencil-lead breaks as acoustic emission sources. J. Acoust. Emiss. 2011, 29, 184–196. [Google Scholar]
- Yao, X.; Vien, B.S.; Rajic, N.; Rosalie, C.; Rose, L.R.F.; Davies, C.; Chiu, W.K. Modal Decomposition of Acoustic Emissions from Pencil-Lead Breaks in an Isotropic Thin Plate. Sensors 2023, 23, 1988. [Google Scholar] [CrossRef] [PubMed]
- Ghadarah, N.S.; Ayre, D. A comparative analysis of acoustic emission sensor embedding in glass fibre composite. Compos. Sci. Technol. 2024, 247, 110392. [Google Scholar] [CrossRef]
- Mahajan, H.; Banerjee, S. Acoustic emission source localisation for structural health monitoring of rail sections based on a deep learning approach. Meas. Sci. Technol. 2023, 34, 044010. [Google Scholar] [CrossRef]
- de Almeida, V.A.D.; Baptista, F.G.; de Aguiar, P.R. Piezoelectric Transducers Assessed by the Pencil Lead Break for Impedance-Based Structural Health Monitoring. IEEE Sens. J. 2014, 15, 693–702. [Google Scholar] [CrossRef]
- Ribeiro, D.M.; Aguiar, P.R.; Fabiano, L.F.; D’Addona, D.M.; Baptista, F.G.; Bianchi, E.C. Spectra Measurements Using Piezoelectric Diaphragms to Detect Burn in Grinding Process. IEEE Trans. Instrum. Meas. 2017, 66, 3052–3063. [Google Scholar] [CrossRef]
- Ferreira, F.I.; de Aguiar, P.R.; da Silva, R.B.; Jackson, M.J.; Baptista, F.G.; Bianchi, E.C. Monitoring of Cylindrical Plunge Grinding Process by Electromechanical Impedance. IEEE Sens. J. 2022, 22, 12314–12322. [Google Scholar] [CrossRef]
- Dereshgi, H.A.; Yildiz, M.Z.; Parlak, N. Performance Comparison of Novel Single and Bi-Diaphragm PZT Based Valveless Micropumps. J. Appl. Fluid Mech. 2020, 13, 401–412. [Google Scholar] [CrossRef]
- Binotto, A.; de Castro, B.A.; dos Santos, V.V.; Rey, J.A.A.; Andreoli, A.L. A Comparison between Piezoelectric Sensors Applied to Multiple Partial Discharge Detection by Advanced Signal Processing Analysis. Eng. Proc. 2020, 2, 55. [Google Scholar] [CrossRef]
- Batista, M.F.; Basso, I.; Toti, F.d.A.; Rodrigues, A.R.; Tarpani, J.R. Cryogenic drilling of carbon fibre reinforced thermoplastic and thermoset polymers. Compos. Struct. 2020, 251, 112625. [Google Scholar] [CrossRef]
- de Castro, B.A.; Brunini, D.d.M.; Baptista, F.G.; Andreoli, A.L.; Ulson, J.A.C. Assessment of Macro Fiber Composite Sensors for Measurement of Acoustic Partial Discharge Signals in Power Transformers. IEEE Sens. J. 2017, 17, 6090–6099. [Google Scholar] [CrossRef]
- Verbis, J.T.; Kattis, S.E.; Tsinopoulos, S.V.; Polyzos, D. Wave dispersion and attenuation in fiber composites. Comput. Mech. 2001, 27, 244–252. [Google Scholar] [CrossRef]
- Gupta, A.; Duke, J.C. Identifying the arrival of extensional and flexural wave modes using wavelet decomposition of ultrasonic signals. Ultrasonics 2018, 82, 261–271. [Google Scholar] [CrossRef]
- Fernandez, B.O.; Aguiar, P.R.; Alexandre, F.A.; Viera, M.A.A.; Bianchi, E.C. Study of Knock Sensors as Low-Cost Alternatives to Acoustic Emission Sensors. IEEE Sens. J. 2020, 20, 6038–6045. [Google Scholar] [CrossRef]
Feature | CFRC | Aluminum |
---|---|---|
Density | Variable (around 1.5 g/cm3) | Around 2.7 g/cm3 |
Materials | Carbon fibers embedded in a plastic (polymer) matrix | Pure or alloy (copper, magnesium, silicon, or zinc) |
Cost | More expansive | Cheaper |
Thermal and Electrical Conductivity | Lower | Higher |
Strength and Stiffness | Higher | Lower |
Positions | Average | Standard Deviation |
---|---|---|
Position 1 (70 mm) | 0.9269 | 0.0480 |
Position 2 (210 mm) | 0.9250 | 0.0543 |
Positions | Correlation Coefficient |
---|---|
Test 1 and test 2 | 0.9934 |
Test 1 and test 3 | 0.9851 |
Test 2 and test 3 | 0.9918 |
Launch Height (mm) | Average Correlation Coefficient | Standard Deviation |
---|---|---|
38 mm | 0.9972 | 0.00240 |
76 mm | 0.9994 | 0.00014 |
114 mm | 0.9997 | 0.00003 |
152 mm | 0.9995 | 0.00026 |
190 mm | 0.9995 | 0.00027 |
490 mm | 0.9990 | 0.00073 |
Launches | Correlation Coefficient |
---|---|
Launch 1 and launch 3 | 0.9945 |
Launch 1 and launch 5 | 0.9968 |
Launch 1 and launch 7 | 0.9914 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junior, C.S.; Aguiar, P.R.; D’Addona, D.M.; Junior, P.O.C.; Junior, R.G.O. A Proposed Non-Destructive Method Based on Sphere Launching and Piezoelectric Diaphragm. Sensors 2024, 24, 5874. https://doi.org/10.3390/s24185874
Junior CS, Aguiar PR, D’Addona DM, Junior POC, Junior RGO. A Proposed Non-Destructive Method Based on Sphere Launching and Piezoelectric Diaphragm. Sensors. 2024; 24(18):5874. https://doi.org/10.3390/s24185874
Chicago/Turabian StyleJunior, Cristiano Soares, Paulo Roberto Aguiar, Doriana M. D’Addona, Pedro Oliveira Conceição Junior, and Reinaldo Götz Oliveira Junior. 2024. "A Proposed Non-Destructive Method Based on Sphere Launching and Piezoelectric Diaphragm" Sensors 24, no. 18: 5874. https://doi.org/10.3390/s24185874