Modeling, Design, and Optimization of Loop Heat Pipes
Abstract
:1. Introduction
2. Loop Heat Pipe Thermohydraulic Modeling
2.1. Steady-State Modeling
2.2. Transient Modeling
3. Loop Heat Pipe Evaporator, Compensation Chamber, and Wick Design
3.1. Evaporator and Compensation Chamber Structure Design
3.1.1. LHP with Single Evaporator
3.1.2. LHP with Multiple Evaporators
3.2. Wick Material Design
3.2.1. Metal-Based Wick
3.2.2. Polymer-Based Wick
3.2.3. Composite and Inorganic-Based Wick
3.2.4. Carbon-Based Wick
4. Loop Heat Pipe Working Fluid
4.1. Working Fluid Selection Criteria
4.1.1. Operating Temperature Range of Working Fluid
4.1.2. Heat Transfer Capability
4.1.3. Anti-Gravity/Acceleration Capability
4.1.4. Environmental, Safety, and Economic Considerations
4.1.5. Lifecycle Analysis for Sustainability of Working Fluid
4.2. Application of Different Working Fluids in Loop Heat Pipes
4.2.1. Organic and Inorganic Fluids as LHP Working Fluid
4.2.2. Nanofluids as LHP Working Fluid
4.3. The Effect of the Charge of Working Fluid
5. Optimization of Loop Heat Pipe Operational Characteristics
5.1. Start-Up Characteristics
5.2. Temperature Oscillation Phenomenon
5.3. The Effect of Non-Condensable Gas
6. Conclusions and Outlook
- (1)
- Research on LHP thermohydraulic behavior has advanced by establishing steady-state and transient models. Steady-state models improve computational efficiency and predict LHP performance, while transient models capture dynamic behavior for start-up and non-steady-state evaluations. Future research should refine these models to incorporate practical conditions and enhance accuracy. Additionally, developing more efficient transient models to reduce computational time is crucial.
- (2)
- Component design is crucial for enhancing LHP thermal performance. Research focuses on optimizing evaporators and compensation chambers, with single-evaporator designs emphasizing compactness and efficient start-up, while multi-evaporator designs offer flexibility for complex environments. Innovations in wick materials, including porous metals, composites, and 3D printing, improve capillary driving force and heat transfer. Future research should explore new materials and structures to increase efficiency and reduce thermal resistance, while also ensuring long-term stability and durability under extreme conditions.
- (3)
- The thermophysical properties of the working fluid significantly impact LHP performance. It is essential to evaluate factors like thermal properties, anti-gravity capability, environmental friendliness, safety, and economy when selecting the fluid. Water offers high efficiency due to its latent heat of vaporization, good thermal conductivity, and non-toxicity. Ammonia is ideal for low temperatures and performs well under microgravity. Nanofluids enhance heat transfer and stability. Future research should focus on exploring novel or mixed working fluids to further optimize LHP performance.
- (4)
- Research on the start-up performance and temperature oscillation phenomena of LHPs has highlighted the system’s complexity and optimization potential. Optimizing vapor/liquid distribution, heat load, and sink temperature can improve start-up efficiency and minimize temperature overshoot. Temperature oscillations arise from thermodynamic and fluid dynamic interactions. Enhancing capillary structures and optimizing working fluid properties significantly reduce these oscillations. Future research should focus on optimizing start-up processes and reducing temperature oscillations in multi-evaporator LHPs to enhance system stability.
- (5)
- NCGs affect LHP start-up and operating characteristics by increasing evaporator temperatures, causing temperature oscillations, and raising thermal resistance, thus reducing heat transfer efficiency. Selecting appropriate materials like titanium and using technical interventions such as thermoelectric coolers can mitigate these effects. Future research should focus on NCG generation and control mechanisms and develop efficient degassing techniques to ensure the long-term stability and reliability of LHPs.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dan, D.; Zhao, Y.; Wei, M.; Wang, X. Review of Thermal Management Technology for Electric Vehicles. Energies 2023, 16, 4693. [Google Scholar] [CrossRef]
- Maydanik, Y.; Pastukhov, V.; Chernysheva, M. Development and investigation of a loop heat pipe with a high heat-transfer capacity. Appl. Therm. Eng. 2018, 130, 1052–1061. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Liu, X.; Shen, C.; Zhang, H.; Xiong, K. Recent active thermal management technologies for the development of energy-optimized aerospace vehicles in China. Chin. J. Aeronaut. 2021, 34, 1–27. [Google Scholar] [CrossRef]
- Abdullah, M.F.; Mat Hussin, M.R.; Ismail, M.A.; Wan Sabli, S.K. Chip-level thermal management in GaN HEMT: Critical review on recent patents and inventions. Microelectron. Eng. 2023, 273, 111958. [Google Scholar] [CrossRef]
- El Kassar, R.; Al Takash, A.; Faraj, J.; Hammoud, M.; Khaled, M.; Ramadan, H.S. Recent advances in lithium-ion battery integration with thermal management systems for electric vehicles: A summary review. J. Energy Storage 2024, 91, 112061. [Google Scholar] [CrossRef]
- Zhao, Y.; Dan, D.; Zheng, S.; Wei, M.; Xie, Y. A two-stage eco-cooling control strategy for electric vehicle thermal management system considering multi-source information fusion. Energy 2023, 267, 126606. [Google Scholar] [CrossRef]
- Vikram, S.; Vashisht, S.; Rakshit, D.; Wan, M.P. Recent advancements and performance implications of hybrid battery thermal management systems for Electric Vehicles. J. Energy Storage 2024, 90, 111814. [Google Scholar] [CrossRef]
- Vasiliev, L.; Lossouarn, D.; Romestant, C.; Alexandre, A.; Bertin, Y.; Piatsiushyk, Y.; Romanenkov, V. Loop heat pipe for cooling of high-power electronic components. Int. J. Heat Mass Transf. 2009, 52, 301–308. [Google Scholar] [CrossRef]
- Putra, N.; Ariantara, B.; Pamungkas, R.A. Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application. Appl. Therm. Eng. 2016, 99, 784–789. [Google Scholar] [CrossRef]
- He, X.; Yan, W.; Wang, S. Study on heat transfer characteristics of a dual-evaporator ultra-thin loop heat pipe for laptop cooling. Appl. Therm. Eng. 2024, 241, 122395. [Google Scholar] [CrossRef]
- Maydanik, Y.F. Loop heat pipes. Appl. Therm. Eng. 2005, 25, 635–657. [Google Scholar] [CrossRef]
- Zhou, D.; Chen, Y.; Gao, W.; Xin, G. A novel thermal management scheme of 3D-IC based on loop heat pipe. Int. J. Therm. Sci. 2024, 199, 108906. [Google Scholar] [CrossRef]
- Nakamura, K.; Ueno, A.; Nagano, H. Experimental study on long-distance anti-gravity loop heat pipe with submicron-scale porous structure. Appl. Therm. Eng. 2022, 214, 118793. [Google Scholar] [CrossRef]
- Siedel, B.; Sartre, V.; Lefèvre, F. Literature review: Steady-state modelling of loop heat pipes. Appl. Therm. Eng. 2015, 75, 709–723. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, W. A review on loop heat pipe for use in solar water heating. Energy Build. 2014, 79, 143–154. [Google Scholar] [CrossRef]
- Launay, S.; Sartre, V.; Bonjour, J. Analytical Model for Characterization of Loop Heat Pipes. J. Thermophys. Heat Transf. 2008, 22, 623–631. [Google Scholar] [CrossRef]
- Qu, Y.; Wang, S.; Tian, Y. A review of thermal performance in multiple evaporators loop heat pipe. Appl. Therm. Eng. 2018, 143, 209–224. [Google Scholar] [CrossRef]
- Launay, S.; Sartre, V.; Bonjour, J. Parametric analysis of loop heat pipe operation: A literature review. Int. J. Therm. Sci. 2007, 46, 621–636. [Google Scholar] [CrossRef]
- Szymanski, P.; Mikielewicz, D.; Fooladpanjeh, S. Current Trends in Wick Structure Construction in Loop Heat Pipes Applications: A Review. Materials 2022, 15, 5765. [Google Scholar] [CrossRef]
- Ahmed, S.; Pandey, M.; Kawaji, M. Loop Heat Pipe Design: An Evaluation of Recent Research on the Selection of Evaporator, Wick, and Working Fluid. J. Therm. Sci. Eng. Appl. 2022, 14, 070801. [Google Scholar] [CrossRef]
- Mousa, M.M.; Abdel-Baky, M.A.; Eltantawy, I.M.; El-Sebaey, M.S. Proposing Novel Approach for Solar Still Performance Enhancement by Using Gravity Assisted Heat Pipes: Experimental and CFD Modeling. ERJ. Eng. Res. J. 2024, 47, 355–368. [Google Scholar] [CrossRef]
- Mousa, M.M.; Abdel-Baky, M.A.; Eltantawy, I.M.; El-Sebaey, M.S. Experimental Investigation on the Effect of Inclination Angle of Flat Plate Solar Collector Using Gravity Assisted Heat Pipes. ERJ. Eng. Res. J. 2023, 46, 311–321. [Google Scholar] [CrossRef]
- Riehl, R.R.; Mancin, S. Estimation of thermophysical properties for accurate numerical simulation of nanofluid heat transfer applied to a loop heat pipe. Int. J. Thermofluids 2022, 14, 100158. [Google Scholar] [CrossRef]
- Ambirajan, A.; Adoni, A.A.; Vaidya, J.S.; Rajendran, A.A.; Kumar, D.; Dutta, P. Loop Heat Pipes: A Review of Fundamentals, Operation, and Design. Heat Transf. Eng. 2012, 33, 387–405. [Google Scholar] [CrossRef]
- Huang, B.J.; Huang, H.H.; Liang, T.L. System dynamics model and startup behavior of loop heat pipe. Appl. Therm. Eng. 2009, 29, 2999–3005. [Google Scholar] [CrossRef]
- Adachi, T.; Fujita, K.; Nagai, H. Numerical study of temperature oscillation in loop heat pipe. Appl. Therm. Eng. 2019, 163, 114281. [Google Scholar] [CrossRef]
- He, J.; Miao, J.; Bai, L.; Lin, G.; Zhang, H.; Wen, D. Effect of non-condensable gas on the startup of a loop heat pipe. Appl. Therm. Eng. 2017, 111, 1507–1516. [Google Scholar] [CrossRef]
- Dickey, J.T.; Peterson, G.P. Experimental and analytical investigation of a capillary pumped loop. J. Thermophys. Heat Transf. 1994, 8, 602–607. [Google Scholar] [CrossRef]
- Kaya, T.; Hoang, T.T. Mathematical Modeling of Loop Heat Pipes and Experimental Validation. J. Thermophys. Heat Transf. 1999, 13, 314–320. [Google Scholar] [CrossRef]
- Kaya, T.; Hoang, T.; Ku, J.; Cheung, M. Mathematical modeling of loop heat pipes. In Proceedings of the 37th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 11–14 January 1999. [Google Scholar]
- Hamdan, M.; Gerner, F.M.; Henderson, H.T. Steady state model of a loop heat pipe (LHP) with coherent porous silicon (CPS) wick in the evaporator. In Proceedings of the Ninteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 11–13 March 2003; pp. 88–96. [Google Scholar]
- Gabsi, I.; Maalej, S.; Zaghdoudi, M.C. Thermal performance modeling of loop heat pipes with flat evaporator for electronics cooling. Microelectron. Reliab. 2018, 84, 37–47. [Google Scholar] [CrossRef]
- Bai, L.; Lin, G.; Zhang, H.; Wen, D. Mathematical modeling of steady-state operation of a loop heat pipe. Appl. Therm. Eng. 2009, 29, 2643–2654. [Google Scholar] [CrossRef]
- Bai, L.; Lin, G.; Mu, Z.; Wen, D. Theoretical analysis of steady-state performance of a loop heat pipe with a novel evaporator. Appl. Therm. Eng. 2014, 64, 233–241. [Google Scholar] [CrossRef]
- Bai, L.; Guo, J.; Lin, G.; He, J.; Wen, D. Steady-state modeling and analysis of a loop heat pipe under gravity-assisted operation. Appl. Therm. Eng. 2015, 83, 88–97. [Google Scholar] [CrossRef]
- Jazebizadeh, H.; Kaya, T. Numerical and experimental investigation of the steady-state performance characteristics of loop heat pipes. Appl. Therm. Eng. 2020, 181, 115577. [Google Scholar] [CrossRef]
- Qu, Y.; Qiao, S.; Zhou, D. Steady-state modelling of dual-evaporator loop heat pipe. Appl. Therm. Eng. 2021, 193, 116933. [Google Scholar] [CrossRef]
- Fanxi, M.; Zhang, Q.; Du, S.; Yue, C.; Ma, X. One-dimensional steady-state mathematical model of a novel loop heat pipe with liquid line capillary wick. Energy Explor. Exploit. 2019, 38, 253–273. [Google Scholar] [CrossRef]
- Du, S.; Zhang, Q.; Hou, P.; Yue, C.; Zou, S. Experimental study and steady-state model of a novel plate loop heat pipe without compensation chamber for CPU cooling. Sustain. Cities Soc. 2020, 53, 101894. [Google Scholar] [CrossRef]
- Li, C.; Liu, Z.; Zhang, X. Steady-state operating characteristics analysis of loop heat pipes with flat-plate evaporator. Therm. Sci. Eng. Prog. 2022, 28, 101070. [Google Scholar] [CrossRef]
- Xia, G.; Zhou, T.; Zhang, Y.; Jiao, G. Steady-state performance analysis of loop heat pipe radiator in space reactor. Ann. Nucl. Energy 2023, 193, 110053. [Google Scholar] [CrossRef]
- Li, J.; Peterson, G.P. 3D heat transfer analysis in a loop heat pipe evaporator with a fully saturated wick. Int. J. Heat Mass Transf. 2011, 54, 564–574. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Wang, S. Three-dimensional simulation on heat transfer in the flat evaporator of miniature loop heat pipe. Int. J. Therm. Sci. 2012, 54, 188–198. [Google Scholar] [CrossRef]
- Chernysheva, M.A.; Maydanik, Y.F. Simulation of thermal processes in a flat evaporator of a copper–water loop heat pipe under uniform and concentrated heating. Int. J. Heat Mass Transf. 2012, 55, 7385–7397. [Google Scholar] [CrossRef]
- Chernysheva, M.A.; Maydanik, Y.F. 3D-model for heat and mass transfer simulation in flat evaporator of copper-water loop heat pipe. Appl. Therm. Eng. 2012, 33–34, 124–134. [Google Scholar] [CrossRef]
- Chernysheva, M.A.; Pastukhov, V.G.; Maydanik, Y.F. Analysis of heat exchange in the compensation chamber of a loop heat pipe. Energy 2013, 55, 253–262. [Google Scholar] [CrossRef]
- Siedel, B.; Sartre, V.; Lefèvre, F. Complete analytical model of a loop heat pipe with a flat evaporator. Int. J. Therm. Sci. 2015, 89, 372–386. [Google Scholar] [CrossRef]
- Muraoka, I.; Ramos, F.M.; Vlassov, V.V. Experimental and theoretical investigation of a capillary pumped loop with a porous element in the condenser. Int. Commun. Heat Mass Transf. 1998, 25, 1085–1094. [Google Scholar] [CrossRef]
- Muraoka, I.; Ramos, F.M.; Vlassov, V.V. Analysis of the operational characteristics and limits of a loop heat pipe with porous element in the condenser. Int. J. Heat Mass Transf. 2001, 44, 2287–2297. [Google Scholar] [CrossRef]
- Launay, S.; Platel, V.; Dutour, S.; Joly, J.-L. Transient Modeling of Loop Heat Pipes for the Oscillating Behavior Study. J. Thermophys. Heat Transf. 2007, 21, 487–495. [Google Scholar] [CrossRef]
- Adachi, T.; Chang, X.; Nagai, H.; Takahashi, S. Numerical investigation on necessary condition for temperature oscillation in loop heat pipe. Int. J. Therm. Sci. 2024, 196, 108704. [Google Scholar] [CrossRef]
- Ren, C.; Wu, Q.-S.; Hu, M.-B. Heat transfer with flow and evaporation in loop heat pipe’s wick at low or moderate heat fluxes. Int. J. Heat Mass Transf. 2007, 50, 2296–2308. [Google Scholar] [CrossRef]
- Shukla, K.N. Thermo-fluid dynamics of Loop Heat Pipe operation. Int. Commun. Heat Mass Transf. 2008, 35, 916–920. [Google Scholar] [CrossRef]
- Kaya, T.; Pérez, R.; Gregori, C.; Torres, A. Numerical simulation of transient operation of loop heat pipes. Appl. Therm. Eng. 2008, 28, 967–974. [Google Scholar] [CrossRef]
- Vlassov, V.V.; Riehl, R.R. Mathematical model of a loop heat pipe with cylindrical evaporator and integrated reservoir. Appl. Therm. Eng. 2008, 28, 942–954. [Google Scholar] [CrossRef]
- Li, Y.Z.; Wang, Y.Y.; Lee, K.M. Dynamic Modeling and Transient Performance Analysis of a LHP-MEMS Thermal Management System for Spacecraft Electronics. IEEE Trans. Compon. Packag. Technol. 2010, 33, 597–606. [Google Scholar] [CrossRef]
- Boubaker, R.; Platel, V. Dynamic model of capillary pumped loop with unsaturated porous wick for terrestrial application. Energy 2016, 111, 402–413. [Google Scholar] [CrossRef]
- Bernagozzi, M.; Charmer, S.; Georgoulas, A.; Malavasi, I.; Michè, N.; Marengo, M. Lumped parameter network simulation of a Loop Heat Pipe for energy management systems in full electric vehicles. Appl. Therm. Eng. 2018, 141, 617–629. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Liu, L.; Jiang, H.; Luan, T. Numerical simulation and analysis of heat leakage reduction in loop heat pipe with carbon fiber capillary wick. Int. J. Therm. Sci. 2019, 146, 106100. [Google Scholar] [CrossRef]
- He, F.-L.; Du, W.-F.; Zhao, J.-F.; Li, J.-D.; Miao, J.-Y.; He, J. Numerical Simulation on the Effects of Component Layout Orientation on the Performance of a Neon-Charged Cryogenic Loop Heat Pipe. Microgravity Sci. Technol. 2020, 32, 179–188. [Google Scholar] [CrossRef]
- Hashimoto, M.; Akizuki, Y.; Sato, K.; Ueno, A.; Nagano, H. Proposal, transient model, and experimental verification of loop heat pipe as heating device for electric-vehicle batteries. Appl. Therm. Eng. 2022, 211, 118432. [Google Scholar] [CrossRef]
- Hoang, T.T.; Baldauff, R.W.; Mahony, D.R. Analytical Model for Transient Loop Heat Pipe Operation. In Proceedings of the 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 5–9 January 2015. [Google Scholar]
- Zhang, Z.; Cui, H.; Zhao, S.; Zhao, R.; Wu, T.; Liu, Z.; Liu, W. Simulation of heat and mass transfer process in a flat-plate loop heat pipe and experimental comparison. Appl. Therm. Eng. 2023, 220, 119705. [Google Scholar] [CrossRef]
- Li, J.; Wang, D.; Peterson, G.P. Experimental studies on a high performance compact loop heat pipe with a square flat evaporator. Appl. Therm. Eng. 2010, 30, 741–752. [Google Scholar] [CrossRef]
- Song, H.; Zhi-chun, L.; Jing, Z.; Chi, J.; Jin-guo, Y.; Wei, L. Experimental study of an ammonia loop heat pipe with a flat plate evaporator. Int. J. Heat Mass Transf. 2016, 102, 1050–1055. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Z.; Shen, J.; Jiang, C.; Chen, B.; Yang, J.; Tu, Z.; Liu, W. Experimental study of the loop heat pipe with a flat disk-shaped evaporator. Exp. Therm. Fluid Sci. 2014, 57, 157–164. [Google Scholar] [CrossRef]
- Hong, S.; Wang, S.; Zhang, Z. Multiple orientations research on heat transfer performances of Ultra-Thin Loop Heat Pipes with different evaporator structures. Int. J. Heat Mass Transf. 2016, 98, 415–425. [Google Scholar] [CrossRef]
- Zhou, G.; Li, J. Two-phase flow characteristics of a high performance loop heat pipe with flat evaporator under gravity. Int. J. Heat Mass Transf. 2018, 117, 1063–1074. [Google Scholar] [CrossRef]
- Tian, W.; He, S.; Liu, Z.; Liu, W. Experimental investigation of a miniature loop heat pipe with eccentric evaporator for cooling electronics. Appl. Therm. Eng. 2019, 159, 113982. [Google Scholar] [CrossRef]
- Odagiri, K.; Nagano, H. Heat transfer characteristics of flat evaporator loop heat pipe under high heat flux condition with different orientations. Appl. Therm. Eng. 2019, 153, 828–836. [Google Scholar] [CrossRef]
- Maydanik, Y.F.; Vershinin, S.V.; Chernysheva, M.A. The results of comparative analysis and tests of ammonia loop heat pipes with cylindrical and flat evaporators. Appl. Therm. Eng. 2018, 144, 479–487. [Google Scholar] [CrossRef]
- Wang, H.; Lin, G.; Shen, X.; Zhang, H. Three-Year Performance Test of a Dual Compensation Chamber Loop Heat Pipe. In Proceedings of the 2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering (ICMAE), Brussels, Belgium, 22–25 July 2019; pp. 502–506. [Google Scholar]
- Zhang, H.; Li, G.; Chen, L.; Man, G.; Miao, J.; Ren, X.; He, J.; Huo, Y. Development of Flat-Plate Loop Heat Pipes for Spacecraft Thermal Control. Microgravity Sci. Technol. 2019, 31, 435–443. [Google Scholar] [CrossRef]
- Li, X.; Zhu, K.; Li, H.; Chen, X.; Wang, Y. Performance comparison regarding loop heat pipes with different evaporator structures. Int. J. Therm. Sci. 2019, 136, 86–95. [Google Scholar] [CrossRef]
- Xiong, K.; Meng, L.; Wang, S. Design, fabrication, investigation and analysis of a novel flat evaporator loop heat pipe for cooling high heat flux server chips. Appl. Therm. Eng. 2022, 201, 117775. [Google Scholar] [CrossRef]
- Ku, J. Heat Load Sharing in Loop Heat Pipes with Multiple Evaporators and Multiple Condensers. In Proceedings of the 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, San Francisco, CA, USA, 5–8 June 2006. [Google Scholar]
- Chang, X.; Watanabe, N.; Nagano, H. Visualization study of a loop heat pipe with two evaporators and one condenser under gravity-assisted condition. Int. J. Heat Mass Transf. 2019, 135, 378–391. [Google Scholar] [CrossRef]
- Chang, X.; Watanabe, N.; Nagai, H.; Nagano, H. Visualization of thermo-fluid behavior of loop heat pipe with two evaporators and one condenser under various orientations with uneven heat loads. Int. J. Heat Mass Transf. 2024, 221, 125054. [Google Scholar] [CrossRef]
- Qu, Y.; Zhou, D.; Qiao, S.; Zhou, K.; Tian, Y. Experimental study on the startup performance of dual-evaporator loop heat pipes. Int. J. Therm. Sci. 2021, 170, 107168. [Google Scholar] [CrossRef]
- He, S.; Ma, Z.; Deng, W.; Zhang, Z.; Guo, Z.; Liu, W.; Liu, Z. Experimental investigation on the start-up performance of a novel flat loop heat pipe with dual evaporators. Energy Rep. 2022, 8, 7500–7507. [Google Scholar] [CrossRef]
- Wu, T.; Wang, T.; Ma, Z.; Zhang, Z.; Liu, W.; Liu, Z. Experimental investigation on the start-up performance of a loop heat pipe with three flat disk evaporators combined. Appl. Therm. Eng. 2022, 216, 119128. [Google Scholar] [CrossRef]
- Lu, D.; Xie, R.; Wen, J. Experimental Study on a Multi-Evaporator Loop Heat Pipe with a Dual-Layer Structure Condenser. J. Therm. Sci. 2023, 32, 1466–1476. [Google Scholar] [CrossRef]
- Giraudon, R.; Lips, S.; Fabrègue, D.; Gremillard, L.; Maire, E.; Sartre, V. Effect of surface properties of capillary structures on the thermal behaviour of a LHP flat disk-shaped evaporator. Int. J. Therm. Sci. 2019, 142, 163–175. [Google Scholar] [CrossRef]
- Yeh, C.-C.; Chen, C.-N.; Chen, Y.-M. Heat transfer analysis of a loop heat pipe with biporous wicks. Int. J. Heat Mass Transf. 2009, 52, 4426–4434. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, R.; Liu, Z.; Liu, W. Application of biporous wick in flat-plate loop heat pipe with long heat transfer distance. Appl. Therm. Eng. 2021, 184, 116283. [Google Scholar] [CrossRef]
- Ji, X.; Wang, Y.; Xu, J.; Huang, Y. Experimental study of heat transfer and start-up of loop heat pipe with multiscale porous wicks. Appl. Therm. Eng. 2017, 117, 782–798. [Google Scholar] [CrossRef]
- Ling, W.; Zhou, W.; Liu, R.; Qiu, Q.; Liu, J. Thermal performance of loop heat pipe with porous copper fiber sintered sheet as wick structure. Appl. Therm. Eng. 2016, 108, 251–260. [Google Scholar] [CrossRef]
- Ling, W.; Zhou, W.; Liu, R.; Qiu, Q.; Ke, Y. Operational characteristics of loop heat pipes with porous copper fiber sintered sheet as wick. Appl. Therm. Eng. 2017, 122, 398–408. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, D.; Xu, J.; Zhang, L. Development of a loop heat pipe with the 3D printed stainless steel wick in the application of thermal management. Int. J. Heat Mass Transf. 2020, 161, 120258. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, L.; Chen, G.; Tang, H.; Zeng, J.; Yuan, W.; Tang, Y. Experimental study on the capillary performance of aluminum micro-grooved wicks with reentrant cavity array. Int. J. Heat Mass Transf. 2019, 139, 917–927. [Google Scholar] [CrossRef]
- Deng, D.; Liang, D.; Tang, Y.; Peng, J.; Han, X.; Pan, M. Evaluation of capillary performance of sintered porous wicks for loop heat pipe. Exp. Therm. Fluid Sci. 2013, 50, 1–9. [Google Scholar] [CrossRef]
- Corrochano, J.; Prado-Montes, P.; Torres, A. Thermophysical and Mechanical Characterization of Nickel and Stainless Steel Sintered Wicks. J. Porous Media 2019, 22, 713–722. [Google Scholar] [CrossRef]
- Esarte, J.; Blanco, J.M.; Bernardini, A.; Sancibrián, R. Performance Assessment of a Three-Dimensional Printed Porous Media Produced by Selective Laser Melting Technology for the Optimization of Loop Heat Pipe Wicks. Appl. Sci. 2019, 9, 2905. [Google Scholar] [CrossRef]
- Wu, S.-C.; Gu, T.-W.; Wang, D.; Chen, Y.-M. Study of PTFE wick structure applied to loop heat pipe. Appl. Therm. Eng. 2015, 81, 51–57. [Google Scholar] [CrossRef]
- Wu, S.-C.; Lin, Z.-H.; Lo, S.; Lin, W.-J. Effect of PTFE wick thickness on Loop heat pipe performance. Therm. Sci. Eng. Prog. 2023, 42, 101911. [Google Scholar] [CrossRef]
- Wu, S.-C.; Lee, T.-J.; Lin, W.-J.; Chen, Y.-M. Study of self-rewetting fluid applied to loop heat pipe with PTFE wick. Appl. Therm. Eng. 2017, 119, 622–628. [Google Scholar] [CrossRef]
- Nishikawara, M.; Nagano, H. Parametric experiments on a miniature loop heat pipe with PTFE wicks. Int. J. Therm. Sci. 2014, 85, 29–39. [Google Scholar] [CrossRef]
- He, S.; Zhou, P.; Ma, Z.; Deng, W.; Zhang, H.; Chi, Z.; Liu, W.; Liu, Z. Experimental study on transient performance of the loop heat pipe with a pouring porous wick. Appl. Therm. Eng. 2020, 164, 114450. [Google Scholar] [CrossRef]
- Xu, J.; Wang, D.; Hu, Z.; Zhang, L.; Ye, L.; Zhou, Y. Effect of the working fluid transportation in the copper composite wick on the evaporation efficiency of a flat loop heat pipe. Appl. Therm. Eng. 2020, 178, 115515. [Google Scholar] [CrossRef]
- Wang, D.; Wang, J.; Bao, X.; Chen, G.; Chu, H. Experimental study on hydraulic and thermal characteristics of composite porous wick with spherical–dendritic powders. J. Therm. Anal. Calorim. 2020, 141, 107–117. [Google Scholar] [CrossRef]
- Yang, P.; Yang, T.; Gao, T.; Zhao, S.; Liu, J.; Zhang, P. Experimental study on a dual compensation chamber loop heat pipe with a ceramic wick. Appl. Therm. Eng. 2023, 230, 120750. [Google Scholar] [CrossRef]
- Zhou, W.; Ling, W.; Duan, L.; Hui, K.S.; Hui, K.N. Development and tests of loop heat pipe with multi-layer metal foams as wick structure. Appl. Therm. Eng. 2016, 94, 324–330. [Google Scholar] [CrossRef]
- Silk, E.A.; Myre, D. Fractal Loop Heat Pipe performance testing with a compressed carbon foam wick structure. Appl. Therm. Eng. 2013, 59, 290–297. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Feng, C.; Liu, L.; Luan, T. Study of copper chemical-plating modified polyacrylonitrile-based carbon fiber wick applied to compact loop heat pipe. Exp. Therm. Fluid Sci. 2019, 100, 104–113. [Google Scholar] [CrossRef]
- Guo, H.; Ji, X.; Xu, J. Enhancement of loop heat pipe heat transfer performance with superhydrophilic porous wick. Int. J. Therm. Sci. 2020, 156, 106466. [Google Scholar] [CrossRef]
- Guo, H.; Ji, X.; Gan, Y.; Xu, J. Experimental study on the heat transfer performance of loop heat pipe with different particle morphology and wettability of porous wick. Int. J. Therm. Sci. 2023, 186, 108134. [Google Scholar] [CrossRef]
- Solomon, A.B.; Mahto, A.K.; Joy, R.C.; Rajan, A.A.; Jayprakash, D.A.; Dixit, A.; Sahay, A. Application of bio-wick in compact loop heat pipe. Appl. Therm. Eng. 2020, 169, 114927. [Google Scholar] [CrossRef]
- Gregori, C.; Mishkinis, D.; Prado, P.; Torres, A.; Pérez, R. Loop Heat Pipe Technology for Aircraft Anti-Icing Applications; SAE Technical Paper 0148-7191; SAE International: Warrendale, PA, USA, 2007. [Google Scholar]
- Faghri, A. Heat Pipe Science and Technology; Global Digital Press: Jaipur, India, 1995. [Google Scholar]
- Anand, A.; Jaiswal, A.; Ambirajan, A.; Dutta, P. Performance assessment of loop heat pipe using modified figure of merit with correction factor. In Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Hyderabad, India, 27–30 December 2017. [Google Scholar]
- Singh, R.; Nguyen, T.; Mochizuki, M.; Akbarzadeh, A. Working fluid study for loop heat pipes. Therm. Sci. Eng. Prog. 2022, 35, 101451. [Google Scholar] [CrossRef]
- Liu, C.; Xie, R.; Li, N.; Lu, D.; Hong, F.; Wu, Y. Experimental study of loop heat pipes with different working fluids in 190–260 K. Appl. Therm. Eng. 2020, 178, 115530. [Google Scholar] [CrossRef]
- Xu, G.; Xie, R.; Li, N.; Liu, C. Experimental Investigation of a Loop Heat Pipe With R245fa and R1234ze(E) as Working Fluids. J. Therm. Sci. Eng. Appl. 2021, 14, 041014. [Google Scholar] [CrossRef]
- Szymański, P.; Mikielewicz, D. Challenges in operating and testing loop heat pipes in 500–700 K temperature ranges. Arch. Thermodyn. 2022, 43, 61–73. [Google Scholar] [CrossRef]
- Gakal, P.; Mishkinis, D.; Leilands, A.; Usakovs, I.; Orlov, R.; Rogoviy, Y. Analysis of working fluids applicable for high-temperature loop heat pipe applications. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1226, 012036. [Google Scholar] [CrossRef]
- Zini, A.; Socci, L.; Vaccaro, G.; Rocchetti, A.; Talluri, L. Working Fluid Selection for High-Temperature Heat Pumps: A Comprehensive Evaluation. Energies 2024, 17, 1556. [Google Scholar] [CrossRef]
- Durán-Sánchez, A.; Álvarez-García, J.; Del Río-Rama, M.D. Sustainable Water Resources Management: A Bibliometric Overview. Water 2018, 10, 1191. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, M.; Feng, X. Aromatics production from methanol and pentane: Conceptual process design, comparative energy and techno-economic analysis. Comput. Chem. Eng. 2019, 126, 178–188. [Google Scholar] [CrossRef]
- Yang, J.; Ye, Z.; Yu, B.; Ouyang, H.; Chen, J. Simultaneous experimental comparison of low-GWP refrigerants as drop-in replacements to R245fa for Organic Rankine cycle application: R1234ze(Z), R1233zd(E), and R1336mzz(E). Energy 2019, 173, 721–731. [Google Scholar] [CrossRef]
- Qyyum, M.A.; Khan, A.; Ali, S.; Khurram, M.S.; Mao, N.; Naquash, A.; Noon, A.A.; He, T.; Lee, M. Assessment of working fluids, thermal resources and cooling utilities for Organic Rankine Cycles: State-of-the-art comparison, challenges, commercial status, and future prospects. Energy Convers. Manag. 2022, 252, 115055. [Google Scholar] [CrossRef]
- Jafarinejad, S. Petroleum Waste Treatment and Pollution Control; Butterworth-Heinemann: Oxford, UK, 2016. [Google Scholar]
- Maydanik, Y.; Chernysheva, M.; Vershinin, S. High-Capacity Loop Heat Pipe with Flat Evaporator for Efficient Cooling Systems. J. Thermophys. Heat Transf. 2020, 34, 465–475. [Google Scholar] [CrossRef]
- Anand, A.R.; Jaiswal, A.; Ambirajan, A.; Dutta, P. Experimental studies on a miniature loop heat pipe with flat evaporator with various working fluids. Appl. Therm. Eng. 2018, 144, 495–503. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, C.; Zhang, Z.; Liu, Z.; Luo, X.; Liu, W. A study on thermal performance of a pump-assisted loop heat pipe with ammonia as working fluid. Appl. Therm. Eng. 2020, 175, 115342. [Google Scholar] [CrossRef]
- Jasvanth, V.S.; Adoni, A.A.; Jaikumar, V.; Ambirajan, A. Design and testing of an ammonia loop heat pipe. Appl. Therm. Eng. 2017, 111, 1655–1663. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, Z.; Zhao, S.; Cui, H.; Liu, Z.; Liu, W. Experimental study of flat-disk loop heat pipe with R1233zd(E) for cooling terrestrial electronics. Appl. Therm. Eng. 2021, 197, 117385. [Google Scholar] [CrossRef]
- Wang, H.; Lin, G.; Bai, L.; Tao, Y.; Wen, D. Comparative study of two loop heat pipes using R134a as the working fluid. Appl. Therm. Eng. 2020, 164, 114459. [Google Scholar] [CrossRef]
- Xiong, C.; Bai, L.; Li, H.; Guo, Y.; Yu, Y.; Lin, G. Experimental study on a R134a loop heat pipe with high heat transfer capacity. Heat Mass Transf. 2022, 58, 903–916. [Google Scholar] [CrossRef]
- Senthilkumar, C.; Krishnan, A.S.; Solomon, A.B. Effect of thin porous copper coating on the performance of wickless heat pipe with R134a as working fluid. J. Therm. Anal. Calorim. 2020, 139, 963–973. [Google Scholar] [CrossRef]
- Jose, J.; Baby, R. Enhancement of the thermal performance of a loop heat pipe using silica-water nanofluid. J. Phys. Conf. Ser. 2019, 1355, 012010. [Google Scholar] [CrossRef]
- Stephen, E.N.; Asirvatham, L.G.; Kandasamy, R.; Solomon, B.; Kondru, G.S. Heat transfer performance of a compact loop heat pipe with alumina and silver nanofluid. J. Therm. Anal. Calorim. 2019, 136, 211–222. [Google Scholar] [CrossRef]
- Zhao, T.; Ma, Z.; Zhang, Z.; Deng, W.; Long, R.; Liu, W.; Ma, L.; Liu, Z. Experimental investigation of a loop heat pipe with a flat evaporator and cupric oxide nanofluids as working fluid. Energy Rep. 2021, 7, 7693–7703. [Google Scholar] [CrossRef]
- Wan, Z.; Deng, J.; Li, B.; Xu, Y.; Wang, X.; Tang, Y. Thermal performance of a miniature loop heat pipe using water–copper nanofluid. Appl. Therm. Eng. 2015, 78, 712–719. [Google Scholar] [CrossRef]
- Harun, M.A.B.; Gunnasegaran, P.A.L.; Sidik, N.A.C.; Beriache, M.h.; Ghaderian, J. Experimental investigation and optimization of loop heat pipe performance with nanofluids. J. Therm. Anal. Calorim. 2021, 144, 1435–1449. [Google Scholar] [CrossRef]
- Aun, T.S.; Abdullah, M.Z.; Gunnasegaran, P. Influence of low concentration of diamond water nanofluid in loop heat pipe. Int. J. Heat Technol. 2017, 35, 539–548. [Google Scholar] [CrossRef]
- Gunnasegaran, P.; Abdullah, M.Z.; Shuaib, N.H. Influence of nanofluid on heat transfer in a loop heat pipe. Int. Commun. Heat Mass Transf. 2013, 47, 82–91. [Google Scholar] [CrossRef]
- Gunnasegaran, P.; Abdullah, M.Z.; Yusoff, M.Z.; Kanna, R. Heat Transfer in a Loop Heat Pipe using Diamond-H2O Nanofluid. Heat Transf. Eng. 2018, 39, 1117–1131. [Google Scholar] [CrossRef]
- Tharayil, T.; Asirvatham, L.G.; Ravindran, V.; Wongwises, S. Thermal performance of miniature loop heat pipe with graphene–water nanofluid. Int. J. Heat Mass Transf. 2016, 93, 957–968. [Google Scholar] [CrossRef]
- Adoni, A.A.; Ambirajan, A.; Jasvanth, V.; Kumar, D.; Dutta, P. Effects of mass of charge on loop heat pipe operational characteristics. J. Thermophys. Heat Transf. 2009, 23, 346–355. [Google Scholar] [CrossRef]
- Mo, Q.; Liang, J. Operational performance of a cryogenic loop heat pipe with insufficient working fluid inventory. Int. J. Refrig. 2006, 29, 519–527. [Google Scholar] [CrossRef]
- Nagano, H.; Onogawa, E.; Fukuyoshi, F.; Ogawa, H.; Nagai, H. Effect of amount of fluid charge in thermal performance of loop heat pipe. Heat Transf.—Asian Res. 2010, 39, 355–364. [Google Scholar] [CrossRef]
- Wang, S.; Huo, J.; Zhang, X.; Lin, Z. Experimental study on operating parameters of miniature loop heat pipe with flat evaporator. Appl. Therm. Eng. 2012, 40, 318–325. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, J.; Xu, H. Effect of inventory on the heat performance of copper–water loop heat pipe. Exp. Therm. Fluid Sci. 2013, 44, 875–882. [Google Scholar] [CrossRef]
- Smitka, M.; Kolková, Z.; Nemec, P.; Malcho, M. Impact of the amount of working fluid in loop heat pipe to remove waste heat from electronic component. EPJ Web Conf. 2014, 67, 02109. [Google Scholar] [CrossRef]
- Blauciak, K.; Szymanski, P.; Mikielewicz, D. The Influence of Loop Heat Pipe Evaporator Porous Structure Parameters and Charge on Its Effectiveness for Ethanol and Water as Working Fluids. Materials 2021, 14, 7029. [Google Scholar] [CrossRef] [PubMed]
- d’Entremont, B.; Ochterbeck, J. Charging considerations effects in ground testing loop heat pipes. In Proceedings of the 49th International Conference on Environmental Systems, Boston, MA, USA, 7–11 July 2019. [Google Scholar]
- Song, W.; Xu, Y.; Xue, L.; Li, H.; Guo, C. Visualization Experimental Study on Silicon-Based Ultra-Thin Loop Heat Pipe Using Deionized Water as Working Fluid. Micromachines 2021, 12, 1080. [Google Scholar] [CrossRef]
- Hongxing, Z.; Guiping, L.; Ting, D.; Wei, Y.; Xingguo, S.; Sudakov, R.G.; Maidanik, Y.F. Investigation On Startup Behaviors of a Loop Heat Pipe. J. Thermophys. Heat Transf. 2005, 19, 509–518. [Google Scholar] [CrossRef]
- Rodriguez, J.I.; Pauken, M.; Na-Nakornpanom, A. Transient Characterization of a Propylene Loop Heat Pipe during Startup and Shut-Down; SAE Technical Paper 0148-7191; SAE International: Warrendale, PA, USA, 2000. [Google Scholar]
- Lu, X.-Y.; Hua, T.-C.; Liu, M.-J.; Cheng, Y.-X. Thermal analysis of loop heat pipe used for high-power LED. Thermochim. Acta 2009, 493, 25–29. [Google Scholar] [CrossRef]
- Bai, L.; Lin, G.; Wen, D.; Feng, J. Experimental investigation of startup behaviors of a dual compensation chamber loop heat pipe with insufficient fluid inventory. Appl. Therm. Eng. 2009, 29, 1447–1456. [Google Scholar] [CrossRef]
- Bai, L.; Tao, Y.; Guo, Y.; Lin, G. Startup characteristics of a dual compensation chamber loop heat pipe with an extended bayonet tube. Int. J. Heat Mass Transf. 2020, 148, 119066. [Google Scholar] [CrossRef]
- Chernysheva, M.A.; Maydanik, Y.F.; Ochterbeck, J.M. Heat Transfer Investigation in Evaporator of Loop Heat Pipe During Startup. J. Thermophys. Heat Transf. 2008, 22, 617–622. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, W.; Zhang, X.; Chen, J. Study on start-up characteristics of loop heat pipe under low-power. Int. J. Heat Mass Transf. 2011, 54, 1002–1007. [Google Scholar] [CrossRef]
- Bai, L.; Yang, Z.; Shen, X.; Guo, Y.; Lin, G.; Wen, D. Startup characteristics of an ammonia loop heat pipe with a rectangular evaporator. Heat Mass Transf. 2022, 58, 813–831. [Google Scholar] [CrossRef]
- Hoang, T.; Baldauff, R.; Cheung, K. Start-Up Behavior of an Ammonia Loop Heat Pipe. In Proceedings of the 3rd International Energy Conversion Engineering Conference, San Francisco, CA, USA, 15–18 August 2005. [Google Scholar]
- Boo, J.H.; Jung, E.G. Bypass line assisted start-up of a loop heat pipe with a flat evaporator. J. Mech. Sci. Technol. 2009, 23, 1613–1619. [Google Scholar] [CrossRef]
- Wang, L.; Miao, J.; Gong, M.; Zhou, Q.; Liu, C.; Zhang, H.; Fan, H. Research on the Heat Transfer Characteristics of a Loop Heat Pipe Used as Mainline Heat Transfer Mode for Spacecraft. J. Therm. Sci. 2019, 28, 736–744. [Google Scholar] [CrossRef]
- Wang, X.; Wei, J. Visual investigation on startup characteristics of a novel loop heat pipe. Appl. Therm. Eng. 2016, 105, 198–208. [Google Scholar] [CrossRef]
- Nishikawara, M.; Otani, K.; Ueda, Y.; Yanada, H. Liquid–vapor phase behavior and operating characteristics of the capillary evaporator of a loop heat pipe at start-up. Int. J. Therm. Sci. 2018, 129, 426–433. [Google Scholar] [CrossRef]
- Ku, J.; Rodriguez, J.I. Low Frequency High Amplitude Temperature Oscillations in Loop Heat Pipe Operation; SAE Technical Paper 0148-7191; SAE International: Warrendale, PA, USA, 2003. [Google Scholar]
- Singh, R.; Akbarzadeh, A.; Mochizuki, M. Operational characteristics of a miniature loop heat pipe with flat evaporator. Int. J. Therm. Sci. 2008, 47, 1504–1515. [Google Scholar] [CrossRef]
- Celata, G.P.; Cumo, M.; Furrer, M. Experimental tests of a stainless steel loop heat pipe with flat evaporator. Exp. Therm. Fluid Sci. 2010, 34, 866–878. [Google Scholar] [CrossRef]
- Zhang, X.; Huo, J.; Wang, S. Experimental investigation on temperature oscillation in a miniature loop heat pipe with flat evaporator. Exp. Therm. Fluid Sci. 2012, 37, 29–36. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H.; Chen, B.; Yang, J.; Liu, W. Operational characteristics of flat type loop heat pipe with biporous wick. Int. J. Therm. Sci. 2012, 58, 180–185. [Google Scholar] [CrossRef]
- Hoang, T.; Baldauff, R. A Theory for Temperature Oscillations in Loop Heat Pipes. In Proceedings of the 42nd International Conference on Environmental Systems, San Francisco, CA, USA, 15–19 July 2012. [Google Scholar]
- Feng, J.; Lin, G.; Bai, L. Experimental investigation on operating instability of a dual compensation chamber loop heat pipe. Sci. China Ser. E Technol. Sci. 2009, 52, 2316–2322. [Google Scholar] [CrossRef]
- Lv, X.; Xie, Y.; Zhang, H.; Xu, Y.; Wu, H.; Day, R.; Ren, J. Temperature oscillation of a dual compensation chamber loop heat pipe under acceleration conditions. Appl. Therm. Eng. 2021, 198, 117450. [Google Scholar] [CrossRef]
- Yerkes, K.L.; Scofield, J.D.; Courson, D.L.; Jiang, H. Steady-Periodic Acceleration Effects on the Performance of a Loop Heat Pipe. J. Thermophys. Heat Transf. 2014, 28, 440–454. [Google Scholar] [CrossRef]
- Mo, D.; Zou, G.; Lu, S.; Zhang, L.W. A Flow Visualization Study on the Temperature Oscillations Inside a Loop Heat Pipe With Flat Evaporator. In Proceedings of the ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, Burlingame, CA, USA, 16–18 July 2013. [Google Scholar]
- Zhang, Q.; Lin, G.; Shen, X.; Bai, L.; Wen, D. Visualization study on the heat and mass transfer in the evaporator-compensation chamber of a loop heat pipe. Appl. Therm. Eng. 2020, 164, 114472. [Google Scholar] [CrossRef]
- Liu, L.; Yang, X.; Yuan, B.; Wei, J. Investigation of temperature oscillations in a novel loop heat pipe with a vapor-driven jet injector. Int. J. Heat Mass Transf. 2021, 179, 121672. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Wang, Y.; Zhu, K.; Liu, S. Characteristic of temperature oscillation during the operation of loop heat pipe enhanced by pressure head of evaporation. Heat Mass Transf. 2022, 58, 1145–1155. [Google Scholar] [CrossRef]
- Du, S.; Zhang, Q.; Ling, L.; Zou, S.; Liu, L.; Meng, F. Visualization Investigation on Temperature Oscillation and Two-Phase Behaviors of A Flat Loop Heat Pipe. J. Therm. Sci. 2023, 32, 1536–1546. [Google Scholar] [CrossRef]
- Chen, B.B.; Liu, W.; Liu, Z.C.; Li, H.; Yang, J.G. Experimental investigation of loop heat pipe with flat evaporator using biporous wick. Appl. Therm. Eng. 2012, 42, 34–40. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, D.; Jiang, C.; Yang, J.; Liu, W. Experimental study on loop heat pipe with two-wick flat evaporator. Int. J. Therm. Sci. 2015, 94, 9–17. [Google Scholar] [CrossRef]
- Mo, D.-C.; Ding, N.; Lu, S.-S. Gravity Effects on the Performance of a Flat Loop Heat Pipe. Microgravity Sci. Technol. 2009, 21, 95–102. [Google Scholar] [CrossRef]
- Zakar, D.; Holman, T.D.; Maxwell, J.R.; Hoang, T.T.; Baldauff, R.W. Experimental Investigation of Temperature Oscillations in Loop Heat Pipes. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018. [Google Scholar]
- Xu, J.; Wang, Z.; Xu, H.; Zhang, L. Experimental research on the heat performance of a flat copper-water loop heat pipe with different inventories. Exp. Therm. Fluid Sci. 2017, 84, 110–119. [Google Scholar] [CrossRef]
- Hsu, C.-C.; Kang, S.-W.; Hou, T.-F. Performance Testing of Micro Loop Heat Pipes. J. Appl. Sci. Eng. 2005, 8, 123–132. [Google Scholar] [CrossRef]
- Singh, R.; Akbarzadeh, A.; Mochizuki, M. Operational characteristics of the miniature loop heat pipe with non-condensable gases. Int. J. Heat Mass Transf. 2010, 53, 3471–3482. [Google Scholar] [CrossRef]
- Prado-Montes, P.; Mishkinis, D.; Kulakov, A.; Torres, A.; Pérez-Grande, I. Effects of non condensable gas in an ammonia loop heat pipe operating up to 125 °C. Appl. Therm. Eng. 2014, 66, 474–484. [Google Scholar] [CrossRef]
- Maydanik, Y.F.; Chernysheva, M.A.; Pastukhov, V.G. Investigation of thermal characteristics of high-capacity loop heat pipes after a long-term storage. Energy 2014, 74, 804–809. [Google Scholar] [CrossRef]
- He, J.; Lin, G.; Bai, L.; Miao, J.; Zhang, H. Effect of non-condensable gas on the operation of a loop heat pipe. Int. J. Heat Mass Transf. 2014, 70, 449–462. [Google Scholar] [CrossRef]
- Anand, A.R. Investigations on effect of noncondensable gas in a loop heat pipe with flat evaporator on deprime. Int. J. Heat Mass Transf. 2019, 143, 118531. [Google Scholar] [CrossRef]
- Wang, H.; Lin, G.; Shen, X.; Bai, L.; Yang, R.; Sun, B. Effect of evaporator tilt on the startup performance of loop heat pipe with non-condensable gas. In Proceedings of the CSAA/IET International Conference on Aircraft Utility Systems (AUS 2018), Guiyang, China, 19–22 June 2018. [Google Scholar]
- Wang, H.; Lin, G.; Shen, X.; Bai, L.; Wen, D. Effect of evaporator tilt on a loop heat pipe with non-condensable gas. Int. J. Heat Mass Transf. 2019, 128, 1072–1080. [Google Scholar] [CrossRef]
- Wang, H.; Lin, G.; Shen, X.; Bai, L.; Yang, R.; Wen, D. Effect of evaporator/condenser elevations on a loop heat pipe with non-condensable gas. Appl. Therm. Eng. 2020, 180, 115711. [Google Scholar] [CrossRef]
- Hartenstine, J.R.; Anderson, W.G.; Bonner, R., III. Titanium Loop Heat Pipes for Space Nuclear Power Systems. AIP Conf. Proc. 2008, 969, 44–52. [Google Scholar] [CrossRef]
- Yang, R.; Lin, G.; He, J.; Bai, L.; Miao, J. Investigation on the effect of thermoelectric cooler on LHP operation with non-condensable gas. Appl. Therm. Eng. 2017, 110, 1189–1199. [Google Scholar] [CrossRef]
Working Fluid | Toxicity (LD50, mg/kg; LC50, ppm/4 h) * | Flammability (NFPA 704 Scale) ** | Regulatory Compliance (ODP/GWP) | Compatibility with LHP Materials | Chemical Stability (NFPA 704 Scale) *** | Availability | Cost (USD/kg) |
---|---|---|---|---|---|---|---|
Water | Relatively Harmless, >90,000 mg/kg (oral, rat) | 0 | 0/0 | Compatible with most metals and plastics | 0 | Widely available, used universally | 0.96–1.91 |
Toluene | Slightly Toxic, 8000 ppm (inhalation, rat) | 3 | 0/2.73 | Compatible with many metals, limited compatibility with some plastics | 0 | Readily available, common in the industry | 1.05–1.25 |
R245fa | Practically Non-toxic, >20,000 ppm (inhalation, rat) | 1 | 0/1030 | Compatible with most metals and plastics | 0 | Moderately available, specialized use | 17.00–20.00 |
R22 | Relatively Harmless, >250,000 ppm (inhalation, rat) | 1 | 0.05/1760 | Compatible with many metals, potential issues with some plastics | 0 | Limited availability, phased out | 6.00–9.00 |
R152a | Relatively Harmless, 128,000 ppm (inhalation, rat) | 4 | 0/124 | Compatible with most materials | 0 | Readily available, common in HVAC | 4.00–6.00 |
R134a | Relatively Harmless, >500,000 ppm (inhalation, rat) | 0 | 0/1430 | Compatible with most metals and plastics | 1 | Widely available, used in refrigeration | 4.50–6.00 |
R1233zde | Relatively Harmless, 120,000 ppm (inhalation, rat) | 0 | 0/4 | Compatible with most materials | 0 | Moderately available, specialized use | 30.00–35.00 |
R1234zee | Relatively Harmless, >207,000 ppm (inhalation, rat) | 1 | 0/1 | Compatible with most materials | 0 | Moderately available, specialized use | 35.00–40.00 |
Propylene | Practically Non-toxic, >65,000 ppm (inhalation, rat) | 4 | 0/3 | Compatible with most metals, potential issues with some plastics | 1 | Widely available, used in various applications | 1.00–1.20 |
Pentane | Relatively Harmless, 123,361 ppm (inhalation, rat) | 4 | 0/4 | Compatible with most metals, limited compatibility with some plastics | 0 | Widely available, used in labs and industry | 1.50–2.00 |
Methanol | Practically Non-toxic, 64,000 ppm (inhalation, rat) | 3 | 0/0 | Compatible with many metals and plastics but can corrode aluminum | 0 | Widely available, used in industry and labs | 0.40–0.50 |
Heptane | Practically Non-toxic, 48,000 ppm (inhalation, rat) | 3 | 0/0 | Compatible with most metals, limited compatibility with some plastics | 0 | Widely available, common in labs | 3.00–4.00 |
Ethylene | Practically Non-toxic, 57,000 ppm (inhalation, rat) | 4 | 0/0 | Compatible with many metals, limited compatibility with some plastics | 2 | Widely available, used in the industry | 1.20–1.40 |
Ethane | Relatively Harmless, >800,000 ppm (inhalation, rat) | 4 | 0/0 | Compatible with many metals, limited compatibility with some plastics | 0 | Widely available, common in the petrochemical industry | 0.60–0.80 |
Ethanol | Practically Non-toxic, 50,000 ppm (inhalation, rat) | 3 | 0/0 | Compatible with most metals and plastics | 0 | Widely available, used universally | 0.90–1.20 |
Benzene | Practically Non-toxic, 13,700 ppm (inhalation, rat) | 3 | 0/0 | Compatible with many metals, potential issues with some plastics | 0 | Limited availability, restricted use | 1.20–1.50 |
Ammonia | Slightly Toxic, 2000 ppm (inhalation, rat) | 1 | 0/0 | Corrosive to copper and its alloys | 0 | Widely available, used in the industry | 0.30–0.50 |
Acetone | Highly Toxic, 76 ppm (inhalation, rat) | 3 | 0/0 | Compatible with most metals and plastics | 0 | Widely available, common in labs | 1.00–1.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Wei, M.; Dan, D. Modeling, Design, and Optimization of Loop Heat Pipes. Energies 2024, 17, 3971. https://doi.org/10.3390/en17163971
Zhao Y, Wei M, Dan D. Modeling, Design, and Optimization of Loop Heat Pipes. Energies. 2024; 17(16):3971. https://doi.org/10.3390/en17163971
Chicago/Turabian StyleZhao, Yihang, Mingshan Wei, and Dan Dan. 2024. "Modeling, Design, and Optimization of Loop Heat Pipes" Energies 17, no. 16: 3971. https://doi.org/10.3390/en17163971