An Innovative Double-Frontier Approach to Measure Sustainability Efficiency Based on an Energy Use and Operations Management Perspective
Abstract
:1. Introduction
2. Methodology
2.1. The Framework of Sustainability Efficiency Measurement
2.2. Envelopment Network Model and Duality
2.3. Double Frontier and Stage Efficiency
3. Empirical Study
3.1. Variables
3.2. Data Sources
3.3. Results
3.4. Findings
3.5. Optimized Energy Allocation
4. Conclusions and Policy Implications
Author Contributions
Funding
Conflicts of Interest
References
- Zheng, X.; Lu, Y.; Yuan, J.; Baninla, Y.; Zhang, S.; Stenseth, N.C.; Chen, D.; Obersteiner, M.; Chen, D. Drivers of change in China’s energy-related CO2 emissions. Proc. Natl. Acad. Sci. USA 2020, 117, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Borowski, P.F. Digitization, digital twins, blockchain, and industry 4.0 as elements of management process in enterprises in the energy sector. Energies 2021, 14, 1885. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- Yang, S.; Jahanger, A.; Hossain, M.R. Does China’s low-carbon city pilot intervention limit electricity consumption? An analysis of industrial energy efficiency using time-varying DID model. Energy Econ. 2023, 121, 106636. [Google Scholar] [CrossRef]
- Schletz, M.; Cardoso, A.; Prata Dias, G.; Salomo, S. How can blockchain technology accelerate energy efficiency interventions? A use case comparison. Energies 2020, 13, 5869. [Google Scholar] [CrossRef]
- Khatoon, A.; Verma, P.; Southernwood, J.; Massey, B.; Corcoran, P. Blockchain in energy efficiency: Potential applications and benefits. Energies 2019, 12, 3317. [Google Scholar] [CrossRef]
- Juszczyk, O.; Shahzad, K. Blockchain technology for renewable energy: Principles, applications and prospects. Energies 2022, 15, 4603. [Google Scholar] [CrossRef]
- Kumar, N.M.; Chand, A.A.; Malvoni, M.; Prasad, K.A.; Mamun, K.A.; Islam, F.R.; Chopra, S.S. Distributed energy resources and the application of AI, IoT, and blockchain in smart grids. Energies 2022, 13, 5739. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Castelli, L.; Pesenti, R.; Ukovich, W. DEA-like models for the efficiency evaluation of hierarchically structured units. Eur. J. Oper. Res. 2004, 154, 465–476. [Google Scholar] [CrossRef]
- Kao, C.; Hwang, S.N. Efficiency measurement for network systems: IT impact on firm performance. Decis. Support Syst. 2010, 48, 437–446. [Google Scholar] [CrossRef]
- Kao, C. Network data envelopment analysis: A review. Eur. J. Oper. Res. 2014, 239, 1–16. [Google Scholar] [CrossRef]
- Liu, J.S.; Lu, L.Y.Y.; Lu, W.M. Research fronts in data envelopment analysis. Omega 2016, 41, 3–15. [Google Scholar] [CrossRef]
- Azadi, M.; Yousefi, S.; Saen, R.F.; Shabanpour, H.; Jabeen, F. Forecasting sustainability of healthcare supply chains using deep learning and network data envelopment analysis. J. Bus. Res. 2023, 154, 113357. [Google Scholar] [CrossRef]
- Kahi, V.S.; Yousefi, S.; Shabanpour, H.; Saen, R.F. How to evaluate sustainability of supply chains? A dynamic network DEA approach. Ind. Manag. Data Syst. 2017, 117, 1866–1889. [Google Scholar] [CrossRef]
- Badiezadeh, T.; Saen, R.F.; Samavati, T. Assessing sustainability of supply chains by double frontier network DEA: A big data approach. Comput. Oper. Res. 2018, 98, 284–290. [Google Scholar] [CrossRef]
- Kalantary, M.; Saen, R.F. Assessing sustainability of supply chains: An inverse network dynamic DEA model. Comput. Ind. Eng. 2019, 135, 1224–1238. [Google Scholar] [CrossRef]
- Samavati, T.; Badiezadeh, T.; Saen, R.F. Developing double frontier version of dynamic network DEA model: Assessing sustainability of supply chains. Decis. Sci. 2020, 51, 804–829. [Google Scholar] [CrossRef]
- Azadi, M.; Moghaddas, Z.; Saen, R.F.; Gunasekaran, A.; Mangla, S.K.; Ishizaka, A. Using network data envelopment analysis to assess the sustainability and resilience of healthcare supply chains in response to the COVID-19 pandemic. Ann. Oper. Res. 2023, 328, 107–150. [Google Scholar] [CrossRef]
- Sarkhosh-Sara, A.; Tavassoli, M.; Heshmati, A. Assessing the sustainability of high-, middle-, and low-income countries: A network DEA model in the presence of both zero data and undesirable outputs. Sustain. Prod. Consum. 2020, 21, 252–268. [Google Scholar] [CrossRef]
- Stefaniec, A.; Hosseini, K.; Xie, J.; Li, Y. Sustainability assessment of inland transportation in China: A triple bottom line-based network DEA approach. Transp. Res. Part D Transp. Environ. 2020, 80, 102258. [Google Scholar] [CrossRef]
- Tavassoli, M.; Ketabi, S.; Ghandehari, M. Developing a network DEA model for sustainability analysis of Iran’s electricity distribution network. Int. J. Electr. Power Energy Syst. 2020, 122, 106187. [Google Scholar] [CrossRef]
- Geng, Z.; Song, G.; Han, Y.; Chu, C. Static and dynamic energy structure analysis in the world for resource optimization using total factor productivity method based on slacks-based measure integrating data envelopment analysis. Energy Convers. Manag. 2021, 228, 113713. [Google Scholar] [CrossRef]
- Lu, L.C.; Chiu, S.Y.; Chiu, Y.H.; Chang, T.H. Sustainability efficiency of climate change and global disasters based on greenhouse gas emissions from the parallel production sectors—A modified dynamic parallel three-stage network DEA model. J. Environ. Manag. 2022, 317, 115401. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, T.A.; Othman, M.H.D.; Liang, X.; Goh, H.H.; Gikas, P.; Kusworo, T.D.; Chew, K.W.; Anouzla, A. Decarbonization in waste recycling industry using digitalization to promote net-zero emissions and its implications on sustainability. J. Oper. Manag. 2023, 338, 117765. [Google Scholar] [CrossRef] [PubMed]
- Lozano, S.; Villa, G. Centralized resource allocation using data envelopment analysis. J. Product. Anal. 2004, 22, 143–161. [Google Scholar] [CrossRef]
- Chen, Y.; Cook, W.D.; Zhu, J. Deriving the DEA frontier for two-stage processes. Eur. J. Oper. Res. 2010, 202, 138–142. [Google Scholar] [CrossRef]
- Bi, G.; Ding, J.; Luo, Y.; Liang, L. Resource allocation and target setting for parallel production system based on DEA. Appl. Math. Model. 2011, 35, 4270–4280. [Google Scholar] [CrossRef]
- Chen, Y.; Cook, W.D.; Kao, C.; Zhu, J. Network DEA pitfalls: Divisional efficiency and frontier projection under general network structures. Eur. J. Oper. Res. 2013, 226, 507–515. [Google Scholar] [CrossRef]
- Wu, J.; An, Q.; Ali, S.; Liang, L. DEA based resource allocation considering environmental factors. Math. Comput. Model. 2013, 58, 1128–1137. [Google Scholar] [CrossRef]
- Kao, C. Efficiency measurement and frontier projection identification for general two-stage systems in data envelopment analysis. Eur. J. Oper. Res. 2017, 261, 679–689. [Google Scholar] [CrossRef]
- Lim, S.; Zhu, J. Primal-dual correspondence and frontier projections in two-stage network DEA models. Omega 2019, 83, 236–248. [Google Scholar] [CrossRef]
- Lozano, S.; Contreras, I. Centralised resource allocation using Lexicographic Goal Programming. Application to the Spanish public university system. Socio-Econ. Plan. Sci. 2022, 84, 101419. [Google Scholar] [CrossRef]
- Zhu, B.; Shan, H. Impacts of industrial structures reconstructing on carbon emission and energy consumption: A case of Beijing. J. Clean. Prod. 2020, 245, 118916. [Google Scholar] [CrossRef]
- Li, Y.; Pizer, W.A.; Wu, L. Climate change and residential electricity consumption in the Yangtze River Delta, China. Proc. Natl. Acad. Sci. USA 2019, 116, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Zhang, J.; Zhang, L. Two-stage additive network DEA: Duality, frontier projection and divisional efficiency. Expert Syst. Appl. 2020, 157, 113478. [Google Scholar] [CrossRef]
- Li, H.; Wu, D. Online investor attention and firm restructuring performance: Insights from an event-based DEA-Tobit model. Omega 2024, 122, 102967. [Google Scholar] [CrossRef]
- Song, M.; An, Q.; Zhang, W.; Wang, Z.; Wu, J. Environmental efficiency evaluation based on data envelopment analysis: A review. Renew. Sustain. Energy Rev. 2012, 16, 4465–4469. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, Q.; Ji, X.; Chu, J.; Liang, L. Two-stage network processes with shared resources and resources recovered from undesirable outputs. Eur. J. Oper. Res. 2016, 251, 182–197. [Google Scholar] [CrossRef]
- Kao, C.; Hwang, S.N. Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. Eur. J. Oper. Res. 2008, 185, 418–429. [Google Scholar] [CrossRef]
- Liang, L.; Cook, W.D.; Zhu, J. DEA models for two-stage processes: Game approach and efficiency decomposition. Nav. Res. Logist. 2008, 55, 643–653. [Google Scholar] [CrossRef]
- Lim, S.; Zhu, J. A note on two-stage network DEA model: Frontier projection and duality. Eur. J. Oper. Res. 2016, 248, 342–346. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y. Equivalent Solutions to Additive Two-stage Network Data Envelopment Analysis. Eur. J. Oper. Res. 2018, 264, 1189–1191. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Lewin, A.Y.; Seiford, L.M. (Eds.) Data Envelopment Analysis: Theory, Methodology, and Applications; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Tan, S.; Wang, X.; Jiang, C. Privacy-preserving energy scheduling for ESCOs based on energy blockchain network. Energies 2019, 12, 1530. [Google Scholar] [CrossRef]
- Gao, K.; Wang, T.; Han, C.; Xie, J.; Ma, Y. A review of optimization of microgrid operation. Energies 2021, 14, 2842. [Google Scholar] [CrossRef]
- Lei, B.; Ren, Y.; Luan, H.; Dong, R.; Wang, X.; Liao, J.; Fang, S.; Gao, K. A review of optimization for system reliability of microgrid. Mathematics 2023, 11, 822. [Google Scholar] [CrossRef]
Variables | Gross Fixed Capital Formation | Number of Employees | Coal Consumption | Urban Sewage Discharge | Exhaust Emissions | Completed Investment in Operations Management | GDP | Sewage Treatment | PM2.5 | Number of Days with Good Air Quality |
---|---|---|---|---|---|---|---|---|---|---|
Number of DMUs | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 |
Minimum | 2223.000 | 314.210 | 1720.330 | 16,496.000 | 9.530 | 21.100 | 2122.060 | 10,476.000 | 20.000 | 49.000 |
Maximum | 116,628.000 | 6767.000 | 38,722.800 | 712,678.000 | 450.010 | 952.500 | 89,705.230 | 673,323.000 | 154.000 | 361.000 |
Median | 10,709.550 | 2073.000 | 12,123.170 | 121,706.500 | 133.240 | 251.350 | 18,536.225 | 106,165.000 | 53.500 | 260.000 |
Mean | 13,824.790 | 2726.329 | 14,566.256 | 154,947.927 | 153.366 | 302.081 | 24,422.983 | 141,643.693 | 57.126 | 253.255 |
Standard deviation | 11,753.476 | 1783.981 | 8425.239 | 132,299.741 | 101.854 | 206.992 | 18,528.356 | 124,332.902 | 20.255 | 58.799 |
Regions | e | e1 | e2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2013 | 2015 | 2017 | 2019 | 2021 | 2013 | 2015 | 2017 | 2019 | 2021 | 2013 | 2015 | 2017 | 2019 | 2021 | |
Beijing | 0.34 | 0.20 | 0.24 | 0.20 | 0.24 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.34 | 0.20 | 0.24 | 0.20 | 0.24 |
Tianjin | 0.42 | 0.30 | 0.48 | 0.97 | 0.80 | 0.95 | 1.00 | 0.98 | 0.97 | 0.95 | 0.44 | 0.30 | 0.49 | 1.00 | 0.84 |
Hebei | 0.32 | 0.31 | 0.45 | 0.52 | 0.50 | 0.61 | 0.46 | 0.61 | 0.65 | 0.66 | 0.53 | 0.67 | 0.73 | 0.80 | 0.75 |
Shanxi | 0.40 | 0.37 | 0.19 | 0.13 | 0.28 | 0.51 | 0.39 | 0.55 | 0.63 | 0.90 | 0.79 | 0.95 | 0.35 | 0.21 | 0.31 |
Inner Mongolia | 0.63 | 0.65 | 0.63 | 0.52 | 0.51 | 0.63 | 0.65 | 0.63 | 0.58 | 0.57 | 1.00 | 1.00 | 1.00 | 0.90 | 0.90 |
Liaoning | 0.40 | 0.48 | 0.61 | 0.84 | 0.80 | 0.60 | 0.61 | 0.84 | 0.92 | 0.90 | 0.67 | 0.78 | 0.73 | 0.91 | 0.89 |
Jilin | 0.49 | 0.43 | 0.33 | 0.55 | 0.52 | 0.53 | 0.52 | 0.51 | 0.55 | 0.55 | 0.93 | 0.82 | 0.65 | 1.00 | 0.94 |
Heilongjiang | 0.31 | 0.36 | 0.36 | 0.48 | 0.48 | 0.57 | 0.50 | 0.57 | 0.65 | 0.61 | 0.55 | 0.72 | 0.63 | 0.74 | 0.79 |
Shanghai | 1.00 | 0.74 | 0.63 | 0.82 | 0.99 | 1.00 | 1.00 | 0.99 | 1.00 | 0.99 | 1.00 | 0.74 | 0.64 | 0.82 | 1.00 |
Jiangsu | 0.59 | 0.61 | 0.65 | 0.80 | 0.70 | 0.80 | 0.78 | 0.83 | 0.91 | 0.87 | 0.74 | 0.78 | 0.78 | 0.88 | 0.80 |
Zhejiang | 0.53 | 0.39 | 0.38 | 0.33 | 0.49 | 0.86 | 0.79 | 0.83 | 0.86 | 0.88 | 0.62 | 0.49 | 0.46 | 0.38 | 0.56 |
Anhui | 0.22 | 0.29 | 0.21 | 0.25 | 0.49 | 0.73 | 0.65 | 0.70 | 0.75 | 0.74 | 0.30 | 0.45 | 0.30 | 0.33 | 0.66 |
Fujian | 0.71 | 0.67 | 0.60 | 0.70 | 0.65 | 0.71 | 0.67 | 0.65 | 0.70 | 0.68 | 1.00 | 1.00 | 0.92 | 1.00 | 0.96 |
Jiangxi | 0.45 | 0.47 | 0.39 | 0.37 | 0.34 | 0.80 | 0.74 | 0.80 | 0.77 | 0.78 | 0.56 | 0.64 | 0.49 | 0.48 | 0.44 |
Shandong | 0.61 | 0.60 | 0.62 | 0.76 | 0.78 | 0.69 | 0.62 | 0.67 | 0.76 | 0.78 | 0.88 | 0.96 | 0.92 | 1.00 | 1.00 |
Henan | 0.32 | 0.33 | 0.29 | 0.22 | 0.22 | 0.51 | 0.49 | 0.48 | 0.52 | 0.54 | 0.62 | 0.67 | 0.60 | 0.43 | 0.40 |
Hubei | 0.36 | 0.22 | 0.27 | 0.23 | 0.26 | 0.67 | 0.61 | 0.62 | 0.67 | 0.64 | 0.53 | 0.36 | 0.43 | 0.34 | 0.40 |
Hunan | 0.40 | 0.35 | 0.30 | 0.48 | 0.58 | 0.67 | 0.62 | 0.68 | 0.72 | 0.73 | 0.59 | 0.56 | 0.44 | 0.66 | 0.79 |
Guangdong | 0.93 | 0.84 | 0.88 | 0.92 | 0.87 | 0.93 | 0.84 | 0.88 | 0.92 | 0.87 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Guangxi | 0.47 | 0.38 | 0.32 | 0.43 | 0.62 | 0.57 | 0.56 | 0.54 | 0.58 | 0.77 | 0.82 | 0.68 | 0.59 | 0.74 | 0.80 |
Hainan | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Chongqing | 0.50 | 0.38 | 0.53 | 0.47 | 0.41 | 0.73 | 0.69 | 0.70 | 0.76 | 0.74 | 0.69 | 0.55 | 0.76 | 0.62 | 0.55 |
Sichuan | 0.39 | 0.34 | 0.43 | 0.40 | 0.42 | 0.73 | 0.65 | 0.74 | 0.79 | 0.77 | 0.54 | 0.53 | 0.58 | 0.51 | 0.55 |
Guizhou | 0.59 | 0.25 | 0.43 | 0.46 | 0.32 | 0.59 | 0.54 | 0.54 | 0.56 | 0.60 | 1.00 | 0.46 | 0.79 | 0.83 | 0.54 |
Yunnan | 0.48 | 0.44 | 0.42 | 0.44 | 0.43 | 0.48 | 0.44 | 0.42 | 0.44 | 0.43 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Shaanxi | 0.23 | 0.30 | 0.20 | 0.17 | 0.19 | 0.57 | 0.54 | 0.48 | 0.60 | 0.58 | 0.41 | 0.56 | 0.41 | 0.29 | 0.33 |
Gansu | 0.39 | 0.31 | 0.39 | 0.41 | 0.76 | 0.69 | 0.67 | 0.55 | 0.56 | 0.81 | 0.57 | 0.47 | 0.70 | 0.73 | 0.94 |
Qinghai | 0.59 | 0.59 | 0.69 | 0.26 | 0.77 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.59 | 0.59 | 0.69 | 0.26 | 0.77 |
Ningxia | 0.71 | 0.53 | 0.45 | 0.39 | 0.29 | 0.71 | 0.71 | 0.72 | 0.71 | 0.83 | 1.00 | 0.75 | 0.63 | 0.55 | 0.35 |
Xinjiang | 0.16 | 0.35 | 0.28 | 0.15 | 0.22 | 0.47 | 0.44 | 0.40 | 0.47 | 0.38 | 0.34 | 0.79 | 0.69 | 0.32 | 0.58 |
The average | 0.50 | 0.46 | 0.46 | 0.48 | 0.53 | 0.71 | 0.67 | 0.70 | 0.73 | 0.75 | 0.70 | 0.68 | 0.65 | 0.66 | 0.70 |
Regions | e | e1 | e2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2013 | 2015 | 2017 | 2019 | 2021 | 2013 | 2015 | 2017 | 2019 | 2021 | 2013 | 2015 | 2017 | 2019 | 2021 | |
Beijing | 0.68 | 0.61 | 0.63 | 0.61 | 0.64 | 1 | 1 | 1 | 1 | 1 | 0.35 | 0.21 | 0.26 | 0.22 | 0.27 |
Tianjin | 0.69 | 0.64 | 0.74 | 0.97 | 0.89 | 0.95 | 1 | 0.97 | 0.95 | 0.94 | 0.43 | 0.28 | 0.5 | 0.99 | 0.83 |
Hebei | 0.57 | 0.57 | 0.67 | 0.73 | 0.71 | 0.61 | 0.46 | 0.61 | 0.65 | 0.66 | 0.53 | 0.67 | 0.73 | 0.8 | 0.75 |
Shanxi | 0.65 | 0.67 | 0.45 | 0.42 | 0.61 | 0.51 | 0.39 | 0.55 | 0.63 | 0.9 | 0.79 | 0.95 | 0.35 | 0.21 | 0.31 |
Inner Mongolia | 0.82 | 0.83 | 0.82 | 0.74 | 0.74 | 0.63 | 0.65 | 0.63 | 0.58 | 0.57 | 1 | 1 | 1 | 0.9 | 0.9 |
Liaoning | 0.64 | 0.70 | 0.79 | 0.92 | 0.90 | 0.6 | 0.61 | 0.84 | 0.92 | 0.9 | 0.67 | 0.78 | 0.73 | 0.91 | 0.89 |
Jilin | 0.73 | 0.67 | 0.58 | 0.78 | 0.75 | 0.53 | 0.52 | 0.51 | 0.55 | 0.55 | 0.93 | 0.82 | 0.65 | 1 | 0.94 |
Heilongjiang | 0.56 | 0.62 | 0.60 | 0.70 | 0.70 | 0.57 | 0.51 | 0.57 | 0.65 | 0.61 | 0.55 | 0.73 | 0.63 | 0.74 | 0.79 |
Shanghai | 1.00 | 0.87 | 0.82 | 0.91 | 1.00 | 1 | 1 | 0.99 | 1 | 0.99 | 1 | 0.74 | 0.64 | 0.82 | 1 |
Jiangsu | 0.77 | 0.78 | 0.81 | 0.90 | 0.84 | 0.8 | 0.78 | 0.83 | 0.91 | 0.87 | 0.74 | 0.78 | 0.78 | 0.88 | 0.8 |
Zhejiang | 0.74 | 0.64 | 0.65 | 0.62 | 0.72 | 0.86 | 0.79 | 0.83 | 0.86 | 0.88 | 0.62 | 0.49 | 0.46 | 0.38 | 0.56 |
Anhui | 0.54 | 0.55 | 0.52 | 0.54 | 0.70 | 0.75 | 0.65 | 0.71 | 0.75 | 0.74 | 0.32 | 0.45 | 0.32 | 0.33 | 0.66 |
Fujian | 0.86 | 0.84 | 0.79 | 0.85 | 0.82 | 0.71 | 0.67 | 0.65 | 0.7 | 0.68 | 1 | 1 | 0.92 | 1 | 0.96 |
Jiangxi | 0.70 | 0.69 | 0.63 | 0.63 | 0.61 | 0.82 | 0.74 | 0.78 | 0.77 | 0.78 | 0.58 | 0.64 | 0.48 | 0.48 | 0.44 |
Shandong | 0.79 | 0.79 | 0.80 | 0.88 | 0.89 | 0.69 | 0.62 | 0.67 | 0.76 | 0.78 | 0.88 | 0.96 | 0.92 | 1 | 1 |
Henan | 0.57 | 0.58 | 0.54 | 0.48 | 0.47 | 0.51 | 0.49 | 0.48 | 0.52 | 0.54 | 0.62 | 0.67 | 0.6 | 0.43 | 0.4 |
Hubei | 0.60 | 0.49 | 0.53 | 0.51 | 0.52 | 0.67 | 0.61 | 0.62 | 0.67 | 0.64 | 0.53 | 0.36 | 0.43 | 0.34 | 0.4 |
Hunan | 0.63 | 0.59 | 0.56 | 0.69 | 0.76 | 0.67 | 0.62 | 0.68 | 0.72 | 0.73 | 0.59 | 0.56 | 0.44 | 0.66 | 0.79 |
Guangdong | 0.97 | 0.92 | 0.94 | 0.96 | 0.94 | 0.93 | 0.84 | 0.88 | 0.92 | 0.87 | 1 | 1 | 1 | 1 | 1 |
Guangxi | 0.70 | 0.62 | 0.57 | 0.66 | 0.79 | 0.57 | 0.56 | 0.54 | 0.58 | 0.77 | 0.82 | 0.68 | 0.59 | 0.74 | 0.8 |
Hainan | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Chongqing | 0.71 | 0.62 | 0.75 | 0.69 | 0.65 | 0.73 | 0.69 | 0.72 | 0.76 | 0.74 | 0.69 | 0.55 | 0.77 | 0.62 | 0.55 |
Sichuan | 0.64 | 0.59 | 0.66 | 0.65 | 0.66 | 0.73 | 0.65 | 0.74 | 0.79 | 0.77 | 0.54 | 0.53 | 0.58 | 0.51 | 0.55 |
Guizhou | 0.80 | 0.50 | 0.67 | 0.70 | 0.57 | 0.59 | 0.54 | 0.54 | 0.56 | 0.6 | 1 | 0.46 | 0.79 | 0.83 | 0.54 |
Yunnan | 0.74 | 0.72 | 0.71 | 0.72 | 0.72 | 0.48 | 0.44 | 0.42 | 0.44 | 0.43 | 1 | 1 | 1 | 1 | 1 |
Shaanxi | 0.49 | 0.55 | 0.45 | 0.47 | 0.46 | 0.57 | 0.54 | 0.48 | 0.62 | 0.58 | 0.41 | 0.56 | 0.41 | 0.31 | 0.33 |
Gansu | 0.63 | 0.57 | 0.63 | 0.65 | 0.88 | 0.69 | 0.67 | 0.55 | 0.56 | 0.81 | 0.57 | 0.47 | 0.7 | 0.73 | 0.94 |
Qinghai | 0.80 | 0.80 | 0.85 | 0.63 | 0.89 | 1 | 1 | 1 | 1 | 1 | 0.59 | 0.59 | 0.69 | 0.26 | 0.77 |
Ningxia | 0.86 | 0.73 | 0.68 | 0.63 | 0.59 | 0.71 | 0.71 | 0.72 | 0.71 | 0.83 | 1 | 0.75 | 0.63 | 0.55 | 0.35 |
Xinjiang | 0.41 | 0.62 | 0.55 | 0.40 | 0.48 | 0.47 | 0.44 | 0.4 | 0.47 | 0.38 | 0.34 | 0.79 | 0.69 | 0.32 | 0.58 |
The average | 0.73 | 0.68 | 0.70 | 0.70 | 0.75 | 0.71 | 0.67 | 0.72 | 0.73 | 0.75 | 0.74 | 0.68 | 0.67 | 0.66 | 0.74 |
Regions | Energy Use | Operations Management | ||||
---|---|---|---|---|---|---|
Gross Fixed Capital Formation | Number of Employees | Coal Consumption | Urban Sewage Discharge | Exhaust Emissions | Completed Investment in Operations Management | |
Beijing | 0.0 | 0.0 | 0.0 | 553,750.6 | 57.7 | 503.76 |
Tianjin | 535.0 | 47.2 | 412.7 | 19,163.9 | 5.1 | 11.48 |
Hebei | 6437.5 | 1421.3 | 10,276.1 | 55,775.6 | 82.8 | 152.41 |
Shanxi | 676.1 | 193.1 | 1698.9 | 162,241.9 | 335.6 | 191.17 |
Inner Mongolia | 4430.7 | 607.5 | 8490.9 | 7271.5 | 17.5 | 41.66 |
Liaoning | 969.4 | 229.8 | 2061.7 | 31,303.7 | 19.0 | 23.94 |
Gilling | 4479.2 | 665.8 | 3585.2 | 6330.2 | 3.7 | 5.16 |
Heilongjiang | 3761.9 | 783.9 | 4886.0 | 28,700.2 | 28.5 | 26.97 |
Shanghai | 78.7 | 9.4 | 81.1 | 0.0 | 0.0 | 0.00 |
Jiangsu | 4615.0 | 602.9 | 3983.1 | 107,640.1 | 43.0 | 143.84 |
Zhejiang | 2689.2 | 466.9 | 2586.9 | 242,906.7 | 62.0 | 201.23 |
Anhui | 3563.1 | 1149.6 | 3427.3 | 78,265.3 | 51.5 | 170.90 |
Fujian | 5719.3 | 909.8 | 4179.7 | 5450.4 | 2.6 | 9.52 |
Jiangxi | 2173.0 | 590.3 | 2007.2 | 114,830.4 | 106.2 | 175.17 |
Shandong | 7804.0 | 1475.3 | 8698.9 | 0.0 | 0.0 | 0.00 |
Henan | 13,915.2 | 3095.9 | 10,497.0 | 287,291.6 | 176.3 | 385.14 |
Hubei | 7447.2 | 1305.9 | 6204.1 | 329,188.0 | 116.4 | 259.55 |
Hunan | 4603.6 | 1024.1 | 4338.4 | 50,857.4 | 21.1 | 46.47 |
Guangdong | 5168.6 | 853.7 | 4264.7 | 0.0 | 0.0 | 0.00 |
Guangxi | 2107.6 | 663.0 | 2439.8 | 33,851.8 | 18.2 | 36.70 |
Hainan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00 |
Chongqing | 2597.7 | 449.6 | 2215.3 | 90,013.0 | 43.4 | 98.92 |
Sichuan | 3993.7 | 1100.0 | 3851.8 | 174,094.5 | 87.2 | 138.30 |
Guizhou | 3626.1 | 807.5 | 3904.6 | 50,700.6 | 107.6 | 100.51 |
Yunnan | 8478.9 | 1711.5 | 6343.1 | 0.0 | 0.0 | 0.00 |
Shaanxi | 5917.5 | 866.9 | 5245.0 | 200,646.0 | 175.4 | 211.35 |
Gansu | 658.9 | 287.8 | 1396.4 | 2649.9 | 4.4 | 5.69 |
Qinghai | 0.0 | 0.0 | 0.0 | 4809.8 | 8.6 | 9.28 |
Ningxia | 636.7 | 62.4 | 1077.0 | 45,603.6 | 102.9 | 54.75 |
Xinjiang | 6665.2 | 814.9 | 11,466.6 | 49,262.3 | 94.9 | 162.13 |
Inputs\Levels | Low | Lower | Normal | Higher | High |
---|---|---|---|---|---|
Gross fixed capital formation | 3 | 10 | 9 | 7 | 1 |
Number of employees | 3 | 11 | 11 | 4 | 1 |
Coal consumption | 3 | 8 | 10 | 6 | 3 |
Urban sewage discharge | 5 | 17 | 4 | 3 | 1 |
Exhaust emissions | 5 | 15 | 7 | 2 | 1 |
Completed investment in operations management | 5 | 13 | 8 | 3 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Xu, C.; Zhang, J.; Lei, B.; Xie, A.; Shen, N.; Li, Y.; Gao, K. An Innovative Double-Frontier Approach to Measure Sustainability Efficiency Based on an Energy Use and Operations Management Perspective. Energies 2024, 17, 3972. https://doi.org/10.3390/en17163972
Zhang L, Xu C, Zhang J, Lei B, Xie A, Shen N, Li Y, Gao K. An Innovative Double-Frontier Approach to Measure Sustainability Efficiency Based on an Energy Use and Operations Management Perspective. Energies. 2024; 17(16):3972. https://doi.org/10.3390/en17163972
Chicago/Turabian StyleZhang, Linyan, Chunhao Xu, Jian Zhang, Bingyin Lei, Anke Xie, Ning Shen, Yujie Li, and Kaiye Gao. 2024. "An Innovative Double-Frontier Approach to Measure Sustainability Efficiency Based on an Energy Use and Operations Management Perspective" Energies 17, no. 16: 3972. https://doi.org/10.3390/en17163972