Characterization of the Micro-Abrasive Wear in Coatings of TaC-HfC/Au for Biomedical Implants
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. XRD Characterization
3.2. Wear Estimation
3.3. Morphological Analysis
3.3.1. SEM
3.3.2. AFM
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, S.P.; Xu, J. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties. Mater. Sci. Eng. C 2017, 73, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.Z.; Sarhan, A.A.D.; Yusuf, F.; Hamdi, M. Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants—A review article. J. Alloys Compd. 2017, 714, 636–667. [Google Scholar] [CrossRef]
- Niinomi, M.; Nakai, M.; Hieda, J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012, 8, 3888–3903. [Google Scholar] [CrossRef] [PubMed]
- Mora, M.; Vera, E.; Aperador, W. Tribo-electrochemical characterization of hafnium multilayer systems deposited on nitride/vanadium nitride AISI 4140 steel. J. Phys. Conf. Ser. 2016, 687, 12032. [Google Scholar] [CrossRef]
- Tolan, N.V.; Sierra, R.J.; Moyer, T.P. Evidence against implant-derived cobalt toxicity: Case report and retrospective study of serum cobalt concentrations in an orthopedic implant population. Clin. Biochem. 2015, 48, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Spriano, S.; Vernè, E.; Faga, M.G.; Bugliosi, S.; Maina, G. Surface treatment on an implant cobalt alloy for high biocompatibility and wear resistance. Wear 2005, 259, 919–925. [Google Scholar] [CrossRef]
- Scholes, S.C.; Unsworth, A.; Hall, R.M.; Scott, R. The effects of material combination and lubricant on the friction of total hip prostheses. Wear 2000, 241, 209–213. [Google Scholar] [CrossRef]
- Kunčická, L.; Kocich, R.; Lowe, T.C. Advances in metals and alloys for joint replacement. Prog. Mater. Sci. 2017, 88, 232–280. [Google Scholar] [CrossRef]
- Longhofer, L.K.; Chong, A.; Strong, N.M.; Wooley, P.H.; Yang, S.-Y. Specific material effects of wear-particle-induced inflammation and osteolysis at the bone—Implant interface: A rat model. J. Orthop. Transl. 2017, 8, 5–11. [Google Scholar] [CrossRef]
- Kaliaraj, G.S.; Bavanilathamuthiah, M.; Kirubaharan, K.; Ramachandran, D.; Dharini, T.; Viswanathan, K.; Vishwakarma, V. Bio-inspired YSZ coated titanium by EB-PVD for biomedical applications. Surf. Coat. Technol. 2016, 307, 227–235. [Google Scholar] [CrossRef]
- Marin, E.; Offoiach, R.; Regis, M.; Fusi, S.; Lanzutti, A.; Fedrizzi, L. Diffusive thermal treatments combined with PVD coatings for tribological protection of titanium alloys. Mater. Des. 2016, 89, 314–322. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Raeissi, K.; Fathi, M.H. Corrosion and tribocorrosion behavior of Ti/TiN PVD coating on 316L stainless steel substrate in Ringer’s solution. Mater. Chem. Phys. 2014, 148, 614–623. [Google Scholar] [CrossRef]
- Rahmati, B.; Zalnezhad, E.; Sarhan, A.A.D.; Kamiab, Z.; Tabrizi, B.N.; Abas, W.A.B.W. Enhancing the adhesion strength of tantalum oxide ceramic thin film coating on biomedical Ti-6Al-4V alloy by thermal surface treatment. Ceram. Int. 2015, 41, 13055–13063. [Google Scholar] [CrossRef]
- Guzmán, P.; Aperador, W.; Yate, L. Enhancement of the Pitting Corrosion Resistance of AISI 316LVM Steel with Ta-Hf-C/Au Bilayers for Biomedical Applications. J. Nanomater. 2017. [Google Scholar] [CrossRef]
- Wauthle, R.; van der Stok, J.; Yavari, S.A.; van Humbeeck, J.; Kruth, J.-P.; Zadpoor, A.A.; Weinans, H.; Mulier, M.; Schrooten, J. Additively manufactured porous tantalum implants. Acta Biomater. 2015, 14, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Ching, H.A.; Choudhury, D.; Nine, M.J.; Azuan, N.; Osman, A. Effects of surface coating on reducing friction and wear of orthopaedic implants. Sci. Technol. Adv. Mater. 2014, 15, 14402–14421. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, H.B.R.; Maeng, W.J. Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 2009, 517, 2563–2580. [Google Scholar] [CrossRef]
- Zhao, T.; Li, Y.; Liu, Y.; Zhao, X. Nano-hardness, wear resistance and pseudoelasticity of hafnium implanted NiTi shape memory alloy. J. Mech. Behav. Biomed. Mater. 2012, 13, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Hon, Y.H.; Wang, J.Y.; Pan, Y.N. Influence of hafnium content on mechanical behaviors of Ti-40Nb-xHf alloys. Mater. Lett. 2004. [Google Scholar] [CrossRef]
- Jin, W.; Wu, G.; Gao, A.; Feng, H.; Peng, X.; Chu, P.K. Hafnium-implanted WE43 magnesium alloy for enhanced corrosion protection and biocompatibility. Surf. Coat. Technol. 2016, 306, 11–15. [Google Scholar] [CrossRef]
- Shi, X.; Zhai, W.; Wang, M.; Xu, Z.; Yao, J.; Song, S.; Wang, Y. Tribological behaviors of NiAl based self-lubricating composites containing different solid lubricants at elevated temperatures. Wear 2014, 310, 1–11. [Google Scholar] [CrossRef]
- Zhao, G.H.; Aune, R.E.; Espallargas, N. Tribocorrosion studies of metallic biomaterials: The effect of plasma nitriding and DLC surface modifications. J. Mech. Behav. Biomed. Mater. 2016, 63, 100–114. [Google Scholar] [CrossRef] [PubMed]
- Miyake, S.; Shindo, T.; Miyake, M. Deposition and Tribology of Electroconductive and Wear-Resistant Nanocomposite Solid Lubricant Films Composed of Carbon and Silver or Gold. Tribol. Lett. 2016, 61, 1–9. [Google Scholar] [CrossRef]
- Hilton, M.R.; Fleischauer, P.D. Applications of solid lubricant films in spacecraft. Surf. Coat. Technol. 1992, 54, 435–441. [Google Scholar] [CrossRef]
- Spalvins, T. A review of recent advances in solid film lubrication. J. Vac. Sci. Technol. 1987, 5, 212–219. [Google Scholar] [CrossRef]
- Shi, L.; Guo, Z.G.; Liu, W.M. The recent progress of tribological biomaterials. Biosurf. Biotribol. 2015, 1, 81–97. [Google Scholar]
- Buckley, H. The X-Ray Photoelectron Spectroscopy Depth Profiling And Tribological Characterization Plated Gold On Various Metals * An investigation was conducted to examine, by X-ray photoelectron spec- troscopy analysis and depth profiling, the atomic nature of su. Thin Soild Films 1983, 108, 199–207. [Google Scholar]
- Chetan; Behera, B.C.; Ghosh, S.; Rao, P.V. Wear behavior of PVD TiN coated carbide inserts during machining of Nimonic 90 and Ti6Al4V superalloys under dry and MQL conditions. Ceram. Int. 2016, 42, 14873–14885. [Google Scholar]
- Veronesi, F.; Giavaresi, G.; Fini, M.; Longo, G.; Ioannidu, C.A.; d’Abusco, A.S.; Superti, F.; Panzini, G.; Misiano, C.; Palattella, A.; et al. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon. Mater. Sci. Eng. 2017, 70, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Du, Y.; Peng, Y. Effect of TaC and NbC addition on the microstructure and hardness in graded cemented carbides: Simulations and experiments. Ceram. Int. 2015, 42, 428–435. [Google Scholar] [CrossRef]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The HighScore suite. Powder Diffr. 2014, 29, S13–S18. [Google Scholar] [CrossRef]
- Gee, M.G.; Gant, A.; Hutchings, I.M.; Bethke, R.; Schiffman, K.; Acker, K.V.; Poulat, S.; Gachon, Y.; von Stebut, J. Ball Cratering or Micro-Abrasion Wear Testing of Coatings: Good Practice Guide 057; British Library: Teddington, UK, 2002; p. 58. [Google Scholar]
- Gee, M.G.; Gant, A.; Hutchings, I.; Bethke, R.; Schiffman, K.; van Acker, K.; Poulat, S.; Gachon, Y.; von Stebut, J. Progress towards standardisation of ball cratering. Wear 2003, 255, 1–13. [Google Scholar] [CrossRef]
- Zhang, X.; Järn, M.; Peltonen, J.; Pore, V.; Vuorinen, T.; Levänen, E.; Mäntylä, T. Analysis of roughness parameters to specify superhydrophobic antireflective boehmite films made by the sol-gel process. J. Eur. Ceram. Soc. 2008, 28, 2177–2181. [Google Scholar] [CrossRef]
- Zivic, F.; Babic, M.; Grujovic, N.; Mitrovic, S.; Adamovic, D. Influence of loose PMMA bone cement particles on the corrosion assisted wear of the orthopedic AISI 316LVM stainless steel during reciprocating sliding. Wear 2013, 300, 65–77. [Google Scholar] [CrossRef]
Specifications of the Micro-Abrasion Test | |
---|---|
Material of sample | 316LVM stainless steel, coatings of TaC/Au, HfC/Au, Au, 70TaC 30HfC/Au, and 30TaC 70HfC/Au |
Material of sphere | Ultra-high molecular weight polyethylene sphere UHMWPE (25 mm diameter) |
Size of the particles | Alumina, 0.3 µm |
Solution | Ringer's balanced salt solution |
Concentration of particles | 0.02% (10 g alumina in 500 ml of Ringer’s solution) |
Velocity | 40 rpm |
Normal load | 3 N |
Number of cycles | 500 revolutions |
Sliding distance | 78.53 m |
Flow rate | 30 mL/min |
Sample | Perpendicular Length (mm) | Parallel Length (mm) | Average Length (mm) |
---|---|---|---|
Au | 0.59 | 0.95 | 0.77 |
TaC | 0.69 | 1.2 | 0.945 |
HfC | 1.1 | 0.99 | 1.045 |
30TaC 70 HfC | 1.2 | 0.73 | 0.965 |
70TaC 30HfC | 0.99 | 0.3 | 0.645 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzmán, P.; Yate, L.; Sandoval, M.; Caballero, J.; Aperador, W. Characterization of the Micro-Abrasive Wear in Coatings of TaC-HfC/Au for Biomedical Implants. Materials 2017, 10, 842. https://doi.org/10.3390/ma10080842
Guzmán P, Yate L, Sandoval M, Caballero J, Aperador W. Characterization of the Micro-Abrasive Wear in Coatings of TaC-HfC/Au for Biomedical Implants. Materials. 2017; 10(8):842. https://doi.org/10.3390/ma10080842
Chicago/Turabian StyleGuzmán, Pablo, Luis Yate, Mercy Sandoval, Jose Caballero, and Willian Aperador. 2017. "Characterization of the Micro-Abrasive Wear in Coatings of TaC-HfC/Au for Biomedical Implants" Materials 10, no. 8: 842. https://doi.org/10.3390/ma10080842