Investigation on Applying Biodegradable Material for Removal of Various Substances (Fluorides, Nitrates and Lead) from Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fluoride, Nitrate and Lead Removal Procedure
2.3. Analytical Methods
2.4. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baksiene, E.; Ciunys, A. Dreging of lake and application sapropel for improvement of light soil properties. J. Environ. Eng. Landsc. Manag. 2012, 20, 97–103. [Google Scholar] [CrossRef]
- Emeis, K.C. Sapropel. In Encyclopaedia of Paleoclimatology and Ancient Environments; Springer: Dordrecht, The Netherlands, 2009; pp. 875–877. [Google Scholar]
- Pavlovska, I.; Klavina, A.; Auce, A.; Vanadzins, I.; Silova, A.; Kamarovska, L.; Silamikele, B.; Dobkevica, L.; Paegle, L. Assessment of sapropel according to legislation, pollution parameters, and concentration of biologically active substances. Sci. Rep. 2020, 10, 21527. [Google Scholar] [CrossRef]
- Filippidi, A.; Triantaphyllou, M.V.; Lange, G.J. Eastern–Mediterranean ventilation variability during sapropel S1 formation, evaluated at two sites influenced by deep–water formation from Adriatic and Aegean Seas. Quat. Sci. Rev. 2016, 144, 95–106. [Google Scholar] [CrossRef]
- Kurkulis, B. Sapropelis. In Tarybų Lietuvos enciklopedija; Vyriausioji Enciklopedijų Redakcija: Vilnius, Lietuva, 1987; p. 627. [Google Scholar]
- Stankevica, K.; Klavins, M.; Rutina, L.; Cerina, A. Lake sapropel: A valuable resource and indicator of lake development. Adv. Environ. Comput. Chem. Biosci. 2013, 7, 247–252. [Google Scholar]
- Jevdokimova, G.; Bukac, O.; Tiskovic, A. Sapropeļu mineralo komponentu agroķimiska nozime. BPSR ZA Vesc. 1980, 4, 38–42. [Google Scholar]
- Daux, V.; Foucault, A.; Melieres, F.; Turpin, M. Sapropel-like pliocene sediments of Sicily deposited under oxygenated bottom water. Bull. Soc. Geol. Fr. 2006, 177, 79–88. [Google Scholar] [CrossRef]
- Thomson, J.; Croudace, I.W.; Rothwell, R.G. A geochemical application of the ITRAX scanner to a sediment core containing eastern Mediterranean sapropel units. Geol. Soc. 2006, 267, 65–77. [Google Scholar] [CrossRef]
- Baksiene, E.; Ciunys, A. Ilgučio ežero sapropelio panaudojimas dirvožemiui gerinti. Soil Sci. Agrochem. 2007, 1, 1–8. [Google Scholar]
- Becic, A.; Railic, B.; Dublevis, R.; Mitrovic, D.; Spalevis, V. Application of sapropel in agricultural production. Agric. For. 2014, 60, 243–250. [Google Scholar]
- Obuka, V.; Sinka, M.; Klavins, M.; Stankevica, K.; Korjakins, A. Sapropel as a Binder: Properties and Application Possibilities for Composite Materials. In IOP Conference Series: Materials Science and Engineering, Proceedings of the 2nd International Conference on Innovative Materials, Structures and Technologies, Riga, Latvia, 30 September–2 October 2015; IOP Publishing: Bristol, UK, 2015; Volume 96, pp. 1–10. [Google Scholar]
- Birgelaite, R.; Valskys, V.; Ignatavicius, G. Use of sapropel for removal of heavy metals from solution. Sci.-Future Lith. 2016, 8, 388–396. [Google Scholar] [CrossRef]
- Adeeva, L.N.; Kovalenko, T.A. Removal of organic substances and metal ions from water using a carbon-mineral sapropel sorbent. Russ. J. Appl. Chem. 2012, 85, 557–563. [Google Scholar] [CrossRef]
- Lavalle-Carrasco, J.; Molina-Frechero, N.; Nevarez-Rascon, M.; Sanchez-Perez, L.; Hamdan-Partida, A.; Gozalez-Gonzalez, R.; Cassi, D.; Isiordia-Espinoza, M.A.; Bologna-Molina, R. Recent biomarkers for monitoring the systemic fluoride levels in exposed polutions: Asystematic review. Int. J. Environ. Res. Public Health 2021, 18, 317. [Google Scholar] [CrossRef] [PubMed]
- Klimas, A. Vandens Kokybe Lietuvos Vandenvietese. In Pokyciu Studija; Lietuvos Vandens Tiekeju Asociacija: Vilnius, Lietuva, 2006; p. 487. [Google Scholar]
- Takmil, F.; Esmaeili, H.; Mousavi, S.M.; Hashemi, S.A. Nano-magnetically modified activated carbon prepared by oak shell for treatment of wastewater containing fluoride ion. Adv. Powder Technol. 2020, 31, 3236–3245. [Google Scholar] [CrossRef]
- Yousefi, M.; Asghari, F.B.; Zuccarello, P.; Conti, G.O.; Ejlali, A.; Mohammadi, A.A.; Ferrante, M. Spatial distribution variation and probabilistic risk assessment of exposure to fluoride in ground water supplies: A case study in an endemic fluorosis region of northwest Iran. Int. J. Environ. Res. Public Health 2019, 16, 564. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Nunez, M.L.; Olguin, M.T.; Solache-Rios, M. Fluoride removal from aqueous solutions by magnesium, nickel, and cobalt calcined hydrotalcite-like compounds. Sep. Sci. Technol. 2007, 42, 3623–3639. [Google Scholar] [CrossRef]
- Singh, K.; Lataye, D.H.; Wasewar, K.L. Removal of fluoride from aqueous solution by using bael (Aegle marmelos) shell acti-vated carbon: Kinetic, equilibrium and thermodynamic study. J. Fluor. Chem. 2017, 194, 23–32. [Google Scholar] [CrossRef]
- Gao, Z.; Shi, M.; Zhang, H.; Feng, J.; Fang, S.; Cui, Y. Formation and In Situ treatment of high fluoride concentrations in shallow groundwater of a Semi-arid region: Jiaolai basin, China. Int. J. Environ. Res. Public Health 2020, 17, 8075. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality; First Addendum to Third Edition; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Ahn, J.S. Geochemical occurrences of arsenic and fluoride in bedrock groundwater: A case study in Geumsan County, Korea. Environ. Geochem. Health 2012, 34, 43–54. [Google Scholar] [CrossRef]
- Das, G.; Tirth, V.; Arora, S.; Algahtani, A.; Kafeel, M.; Algarni, A.H.G.; Saluja, P.; Vij, H.; Bavabeedu, S.S.; Tirth, A. Effect of fluoride concentration in drinking water on dental fluorosis in southwest Saudi Arabia. Int. J. Environ. Res. Public Health 2020, 17, 3914. [Google Scholar] [CrossRef]
- Waghmare, S.S.; Arfin, T. Fluoride Removal from Water by various techniques: Review. IJISET—Int. J. Innov. Sci. Eng. Technol. 2015, 2, 560–571. [Google Scholar]
- Shen, J.; Schafer, A. Removal of fluoride and uranium by nanofiltration and reverse osmosis: A review. Chemosphere 2014, 117, 679–691. [Google Scholar] [CrossRef]
- Mohapatra, M.; Anand, S.; Mishra, B.K.; Giles, E.; Singh, P. Review of fluoride removal from drinking water. J. Environ. Manag. 2009, 91, 67–77. [Google Scholar] [CrossRef]
- Meenakshi, S.; Viswanathan, N. Identification of selective ion-exchange resin for fluoride sorption. J. Colloid Interface Sci. 2007, 308, 438–450. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, S.; Jiang, Q.; Fang, J.; Wang, W.; Wang, Y. The adsorptive removal of fluoride from aqueous solution by modified sludge: Optimization using response surface methodology. Int. J. Environ. Res. Public Health 2018, 15, 826. [Google Scholar] [CrossRef] [PubMed]
- Onyango, M.S.; Kojima, Y.; Aoyi, O.; Bernardo, E.S.; Matsuda, H. Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. J. Colloid Interface Sci. 2004, 279, 341–350. [Google Scholar] [CrossRef]
- He, J.; Chen, K.; Cai, X.; Li, Y.; Wang, C.; Zhang, K.; Jin, Z.; Meng, F.; Wang, X.; Kong, L.; et al. A biocompatible and novelly-defined Al-HAP adsorption membrane for highly effective removal of fluoride from drinking water. J. Colloid Interface Sci. 2017, 490, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xu, P.; Qian, H. Assessment of groundwater quality and human health risk (HHR) evaluation of nitrate in the Central-western Guanzhong basin, China. Int. J. Environ. Res. Public Health 2019, 16, 4246. [Google Scholar] [CrossRef]
- Petrauskiene, V. Research on Mine Wells Drinking Water Quality in Siauliai District. Prof. Stud. Theory Pract. 2016, 1, 86–89. [Google Scholar]
- Ward, M.H.; Jones, R.R.; Brender, J.D.; Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.M.; Breda, S.G. Drinking water nitrate and human health: An update review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [Google Scholar] [CrossRef]
- Feng, W.; Wang, C.; Lei, X.; Wang, H.; Zhang, X. Distribution of nitrate content in groundwater and evaluation of potential health risks: A case study of rural areas in Northern China. Int. J. Environ. Res. Public Health 2020, 17, 9390. [Google Scholar] [CrossRef]
- Sadler, R.; Maetam, B.; Edokpolo, B.; Connel, D.; Yu, J.; Stewart, D.; Park, M.J.; Gray, D.; Laksono, B. Health risk assessment for exposure to nitrate in drinking water from village wells in Semarang, Indonesia. Environ. Pollut. 2016, 216, 738–745. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011; pp. 398–403. [Google Scholar]
- Schullehner, J.; Stayner, L.; Hansen, B. Nitrate, nitrite and ammonium variability in drinking water distribution systems. Int. J. Environ. Res. Public Health 2017, 14, 276. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Kovalsky, P.; He, D.; Waite, T.D. Fluoride and nitrate removal from brackish groundwater by bach-mode capacitive deionization. Water Res. 2015, 84, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Bergquist, A.M.; Choe, J.K.; Strathamann, T.J.; Werth, C.J. Evaluation of a hybrid ion exchange-catalyst treatment technology for nitrate removal from drinking water. Water Res. 2016, 96, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; Yang, Q.; Zhong, Y.; Shu, X.; Chen, F.; Sun, J.; Ma, Y.; Fu, Z.; Wang, D.; Li, X. Indirect electrochemical reduction of nitrate in water using zero-valent titanium anode: Factors, kinetics, and mechanism. Water Res. 2019, 157, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Aliaskari, M.; Schafer, A.I. Nitrate, arsenic and fluoride removal by electrodialysis from brackish groundwater. Water Res. 2021, 190, 116683. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chu, L. Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnol. Adv. 2016, 34, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Quang, H.H.P.; Phan, K.T.; Dinh, N.T.; Thi, T.N.T.; Kajitvichyanukul, P.; Raizada, P.; Singh, P.; Nguyen, V.H. Using ZrO2 coated sludge from drinking water treatment plant as a novel adsorbent for nitrate removal from contaminated water. Environ. Res. 2022, 212, 113410. [Google Scholar] [CrossRef]
- Bian, J.; Wang, A.; Sun, Y.; Zhu, Q. Adsorption of nitrate from water by core-shell chitosan wrinkled microspheres @LDH composite: Electrostatic interaction, hydrogen bonding and surface complexation. Appl. Clay Sci. 2022, 225, 106550. [Google Scholar] [CrossRef]
- Naja, G.M.; Volesky, B. Toxicity and sources of Pb, Cd, Hg, Cr, As, and radionuclides in the environment. In Heavy Metals in the Environment; Environment Canada: Ottawa, ON, Canada, 2009; pp. 127–145. [Google Scholar]
- Oregon Health Authority. Heavy Metals and Your Health: Frequently Asked Questions about Testing, Treatment and Prevention; Oregon Health Authority: Salem, OR, USA, 2016; pp. 1–4. [Google Scholar]
- Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol. 2012, 5, 47–58. [Google Scholar] [CrossRef]
- Chubaka, C.E.; Whiley, H.; Edwards, J.W.; Ross, K. Lead Zinc, Copper, and Cadmium Content of Water from South Australian Rainwater Tanks. Int. J. Environ. Res. Public Health 2018, 15, 1551. [Google Scholar] [CrossRef]
- Zhang, R.; Wilson, V.L.; Hou, A.; Meng, G. Source of lead pollution, its influence on public health and the countermeasures. Int. J. Health Anim. Sci. Food Saf. 2015, 1, 18–31. [Google Scholar]
- Woolf, A.D.; Goldman, R.; Bellinger, D.C. Update on the Clinical Management of Childhood Lead Poisoning. Pediatr. Clin. North Am. 2007, 2, 271–294. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Chen, H.; Yang, X.; Chen, J.; Allen, J.O. Source apportionment of lead-containing aerosol particles in Shanghai using single particle mass spectrometry. Chemosphere 2009, 74, 501–507. [Google Scholar] [CrossRef]
- Liu, G.; Yu, Y.; Hou, J.; Xue, W.; Liu, X.; Liu, Y.; Wang, W.; Alsaedi, A.; Hayat, T.; Liu, Z. An ecological risk assessment of heavy metal pollution of the agricultural ecosystem near a lead-acid battery factory. Ecol. Indic. 2014, 47, 210–218. [Google Scholar] [CrossRef]
- Chen, M.; Lee, J.M.; Nurhati, I.S.; Switzer, A.D.; Boyle, E.A. Isotopic record of lead in Singapore Straits during the last 50 years: Spatial and temporal variations. Mar. Chem. 2015, 168, 49–59. [Google Scholar] [CrossRef]
- Li, P.; Lin, C.; Cheng, H.; Duan, X.; Lei, K. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicol. Environ. Saf. 2015, 113, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Pavlovska, D.; Albrektiene, R.; Paliulis, D. Švino šalinimo iš vandens naudojant alternatyvius sorbentus tyrimas. Is 21-osios Lietuvos jaunuju mokslininku konferencijos “Mokslas—Lietuvos Ateitis” Temines konferencijos “Pastatu inzinerines sistemos”; Technika: Vilnius, Lithuania, 2018; pp. 112–117. [Google Scholar]
- Ngah, W.W.; Hanafiah, M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresour. Technol. 2008, 99, 3935–3948. [Google Scholar] [CrossRef]
- Okuda, T.; Nishijima, W.; Sugimoto, M.; Saka, N.; Nakai, S.; Tanabe, K.; Ito, J.; Takenaka, K.; Okada, M. Removal of coagulant aluminum from water treatment residuals by acid. Water Res. 2014, 60, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 2012, 211–212, 317–331. [Google Scholar] [CrossRef]
- Zhao, D.; Yu, Y.; Chen, J.P. Treatment of lead contaminated water by a PVDF membrane that is modified by zirconium, phosphate and PVA. Water Res. 2016, 101, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, M.; Satish Babu, R.; Sonawane, S.H.; Gogate, P.R.; Girdhar, A.; Reddy, E.R.; Pola, M. Application of nanoadsorbents for removal of lead from water. Int. J. Environ. Sci. Technol. 2017, 14, 1135–1154. [Google Scholar] [CrossRef]
- Badawi, M.A.; Negm, N.A.; Abou Kana, M.T.; Abdel Moneem, M.M. Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: Isotherms, kinetics, thermodynamics and process mechanism. Int. J. Biol. Macromol. 2017, 99, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Golbad, S.; Khoshnoud, P.; Abu-Zahra, N. Hydrothermal synthesis of hydroxy sodalite from fly ash for the removal of lead ions from water. Int. J. Environ. Sci. Technol. 2017, 1, 135–142. [Google Scholar] [CrossRef]
- Khohsang, H.; Ghaffarinejad, A. Rapid removal of lead (II) ions from aqueous solutions by saffron flower waste as a green biosorbent. J. Environ. Chem. Eng. 2018, 5, 6021–6027. [Google Scholar] [CrossRef]
- Zou, C.; Jiang, W.; Sun, X.; Guan, Y. Removal of Pb(II) from aqueous solutions by adsorption on magnetic bentonite. Envi-Ronmental Sci. Pollut. Res. 2019, 26, 1315–1322. [Google Scholar] [CrossRef]
- Mishra, P.C.; Patel, R.K. Removal of lead and zinc ions from water by low cost adsorbents. J. Hazard. Mater. 2019, 168, 319–325. [Google Scholar] [CrossRef]
- Alhogbi, B.G.; Salam, M.A.; Ibrahim, O. Environmental remediation of toxic lead ions from aqueous solution using palm tree waste fibers biosorbent. Desalination Water Treat. 2019, 145, 179–188. [Google Scholar] [CrossRef]
- Dias, M.; Pinto, J.; Henriques, B.; Figueira, P.; Fabre, E.; Tavares, D.; Vale, C.; Pereira, E. Nutshells as efficient biosorbent to remove cadmium, lead, and mercury from contaminated solutions. Int. J. Environ. Res. Public Health 2021, 18, 1580. [Google Scholar] [CrossRef]
- Huang, W.; Diao, K.; Tan, X.; Lei, F.; Jiang, J.; Goodman, B.A.; Ma, Y.; Liu, S. Mechanisms of Adsorption of Heavy Metal Cations from Waters by an Amino Bio-Based Resin Derived from Rosin. Polymers 2019, 11, 969. [Google Scholar] [CrossRef]
- Jin, L.; Bai, R. Mechanisms of Lead Adsorption on Chitosan/PVAHydrogel Beads. Langmuir 2002, 18, 9765–9770. [Google Scholar] [CrossRef]
- Bobade, V.; Eshtiagi, N. Heavy metals removal from wastewater by adsorption process: A review. In Proceedings of the Asia Pacific Confederation of Chemical Engineering Congress, Melbourne, Australlia, 27 September–1 October 2015; Volume 6, pp. 312–317. [Google Scholar]
- Coonery, D.O. Adsorption Design for Wastewater Treatment; Lewis Publishers: Boca Raton, FL, USA, 1999; p. 182. [Google Scholar]
- Manchisi, J.; Matinde, E.; Rowson, N.A.; Simmons, M.J.; Simate, G.S.; Ndlovu, S.; Mwewa, B. Ironmaking and steelmaking slags as sustain- able adsorbents for industrial effluents and wastewater treatment: A critical review of properties, performance, challenges and opportunities. Sustainability 2020, 12, 2118. [Google Scholar] [CrossRef]
- Gupta, V.K.; Tyagi, I.; Sadegh, H.; Shahryari-Ghoshekandi, R.; Makhlouf, A.S.H.; Maazinejad, B. Nanoparticles as adsorbent; A positive approach for removal of noxious metal ions: A review. Sci. Technol. Dev. J. 2015, 34, 195–214. [Google Scholar] [CrossRef]
- Tripathi, A.; Ranjan, M.R. Heavy metal removal from wastewater using low cost adsorbents. J. Bioremediation Biodegrad. 2015, 6, 315. [Google Scholar] [CrossRef]
- Wong, S.; Abd Ghafar, N.; Ngadi, N.; Razmi, F.A.; Inuwa, I.M.; Mat, R.; Amin, N.A.S. Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Bisht, R.; Agarwal, M.; Singh, K. Heavy metal removal from wastewater using various adsorbents: A review. J. Water Reuse Desalination 2016, 7, 387–419. [Google Scholar]
- Sahu, J.N.; Acharya, J.; Meikap, B.C. Response surface modeling and optimization of chromium (VI) removal from aqueous solution using Tamarind wood activated carbon in batch process. J. Hazard. Mater. 2009, 172, 818–825. [Google Scholar] [CrossRef]
- Barakat, M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.H.; Babel, S. Comparisons of low-cost ad- sorbents for treating wastewaters laden with heavy metals. Sci. Total Environ. 2005, 366, 409–426. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Gupta, S.K. Adsorption of heavy metals: A review. Int. J. Innov. Sci. Eng. Technol. 2016, 5, 2267–2281. [Google Scholar]
- Rashid, R.; Shafiq, I.; Akhter, P.; Iqbal, M.J.; Hussain, M. A state-of-the-art review on wastewater treatment techniques: The effectiveness of adsorption method. Environ. Sci. Pollut. Res. 2021, 28, 9050–9066. [Google Scholar] [CrossRef] [PubMed]
- Darwish, A.D. Fullerenes, annual reports on the progress in chemistry. Inorg. Chem. 2013, 109, 436–452. [Google Scholar]
- Burakov, A.; Romantsova, I.; Kucherova, A.; Tkachev, A. Removal of heavy-metal ions from aqueous solutions using activated carbons: Effect of adsorbent surface modification with carbon nanotubes. Adsorpt. Sci. Technol. 2014, 32, 737–747. [Google Scholar] [CrossRef]
- Melezhyk, A.V.; Kotov, V.A.; Tkachev, A.G. Optical properties and aggregation of graphene nanoplatelets. J. Nanosci. Nanotechnoly 2016, 16, 1067–1075. [Google Scholar] [CrossRef]
- Iqbal, S.; Zahoor, C.; Musaddiq, S.; Hussain, M.; Begum, R.; Irfan, A.; Azam, M.; Farooqi, Z.H. Silver nanoparticles stabilized in polymer hydrogels for catalytic degradation of azo dyes. Ecotoxicol. Environ. Saf. 2020, 202, 110924. [Google Scholar] [CrossRef] [PubMed]
- Burakov, A.E.; Galunin, E.V.; Burakova, I.V.; Kucherova, A.E.; Agarwal, S.; Tkachev, A.G.; Gupta, V.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 2018, 148, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.H.; Show, P.L. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
- Fan, X.; Parker, D.J.; Smith, M.D. Adsorption kinetics of fluoride on low cost materials. Water Res. 2003, 37, 4929–4937. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Kumar, E.; Sillanpaa, M. Fluoride removal from water by adsorption—A review. Chem. Eng. J. 2011, 171, 811–840. [Google Scholar] [CrossRef]
- Rao, C.R.N. Fluoride and Environment—A Review. In Proceedings of the Third International Conference on Environment and Health, Chennai, India, 15–17 December 2003; pp. 386–399. [Google Scholar]
- Tomar, V.; Kumar, D. A critical study on efficiency of different materials for fluoride removal from aqueous media. Chem. Cent. J. 2013, 7, 1–15. [Google Scholar] [CrossRef]
- Habuda-Stanic, M.; Ergovic Ravancic, M.; Flanagan, A. A review on adsorption of fluoride from aqueous solution. Materials 2014, 7, 6317–6366. [Google Scholar] [CrossRef]
- Council Directive 98/83/EC; 3 November 1998 on the Quality of Water Intended for Human Consumption. European Union: Brussel, Belgium, 3 November 1998.
- Gunko, V.M.; Mironyuk, I.F.; Zarko, V.I.; Matkovskij, O.K. Surface electric and titration behavior of fumed oxides. Colloids Surf. 2004, 240, 9–25. [Google Scholar] [CrossRef]
- Blitz, J.P.; Blitz, I.P.; Gunko, V.; Sheeran, D. Functionalized surfaces: Silica structure and metal ion adsorption behavior. In Surface Chemistry in Biomedical and Environmental Science, NATO Science Series, II; Blitz, J.P., Gun’ko, V., Eds.; Springer: Dordrecht, The Netherlands, 2006; Volume 228, pp. 337–348. [Google Scholar]
- Pauling, L. The Nature of the Chemical Bond; Cornell University Press: Ithaca, NY, USA, 1960; p. 644. [Google Scholar]
- Voronkov, M.G. Khimiya i Prakticheskoe Primenenie Kremniy-Organicheskih Soedineniy (Chemistry and Practical Use of Silicon-Organic Compounds); Nauka Publication: Moscow, Russia, 1961; p. 136. [Google Scholar]
- Syrkin, Y.K. Effective charges and electro-negativity. Russ. Chem. Rev. 1962, 31, 197–207. [Google Scholar] [CrossRef]
- Lazarev, A.N. Strukturniye Prevrashcheniya v Steklah (Structural Transformations in Glasses); Nauka Publisher: Moscow, Russia, 1966; p. 233. [Google Scholar]
- Barany, S.; Strelko, V. Laws and mechanism of adsorption of cations by different ion-exchange forms of silica gel. Adsorption 2013, 19, 769–776. [Google Scholar] [CrossRef]
- Parfitt, R.L. Anion adsorption in soils. Adv. Agron. 1978, 39, 50. [Google Scholar]
Element | w/w,% | Compound | w/w,% |
---|---|---|---|
C | 6.616 | CO2 | 24.240 |
O | 56.325 | O | 0.105 |
Si | 30.383 | SiO2 | 65.000 |
Mg | 0.279 | MgO | 0.462 |
Na | 0.363 | Na2O | 0.489 |
Al | 2.602 | Al2O3 | 4.916 |
S | 0.165 | SO3 | 0.413 |
P | 0.040 | P2O5 | 0.091 |
Ca | 0.890 | CaO | 1.246 |
K | 1.422 | K2O | 1.712 |
Cl | 0.011 | Cl | 0.011 |
Ti | 0.147 | TiO2 | 0.245 |
Cr | 0.027 | Cr2O3 | 0.040 |
Fe | 0.657 | Fe2O3 | 0.940 |
Mn | 0.010 | MnO | 0.013 |
Cu | 0.001 | CuO | 0.001 |
Ni | 0.003 | NiO | 0.003 |
Zn | 0.003 | ZnO | 0.003 |
Pb | 0.007 | PbO | 0.008 |
Zr | 0.024 | ZrO2 | 0.032 |
Sr | 0.005 | SrO | 0.006 |
Rb | 0.005 | Rb2O | 0.006 |
Ba | 0.013 | BaO | 0.015 |
Y | 0.002 | Y2O3 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albrektienė-Plačakė, R.; Bazienė, K.; Gargasas, J. Investigation on Applying Biodegradable Material for Removal of Various Substances (Fluorides, Nitrates and Lead) from Water. Materials 2023, 16, 6519. https://doi.org/10.3390/ma16196519
Albrektienė-Plačakė R, Bazienė K, Gargasas J. Investigation on Applying Biodegradable Material for Removal of Various Substances (Fluorides, Nitrates and Lead) from Water. Materials. 2023; 16(19):6519. https://doi.org/10.3390/ma16196519
Chicago/Turabian StyleAlbrektienė-Plačakė, Ramunė, Kristina Bazienė, and Justinas Gargasas. 2023. "Investigation on Applying Biodegradable Material for Removal of Various Substances (Fluorides, Nitrates and Lead) from Water" Materials 16, no. 19: 6519. https://doi.org/10.3390/ma16196519
APA StyleAlbrektienė-Plačakė, R., Bazienė, K., & Gargasas, J. (2023). Investigation on Applying Biodegradable Material for Removal of Various Substances (Fluorides, Nitrates and Lead) from Water. Materials, 16(19), 6519. https://doi.org/10.3390/ma16196519