Variational Specific Mode Extraction: A Novel Method for Defect Signal Detection of Ferromagnetic Pipeline
Abstract
:1. Introduction
2. Theoretical Background
2.1. Signal Model
2.2. Bandwidth of the Specific Mode
2.3. Matching Demodulation Transform
3. Variational Specific Mode Extraction
3.1. Main Idea
3.2. Algorithm
Algorithm 1.VSME |
Initialize repeat for to end for until |
3.3. Performance Analysis
4. Results and Analysis
4.1. Method Validation
4.2. Experimental Results
4.2.1. Experimental Setup
4.2.2. Results Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cataldo, A.; Cannazza, G.; De Benedetto, E.; Giaquinto, N. A new method for detecting leaks in underground water pipelines. IEEE Sens. J. 2011, 12, 1660–1667. [Google Scholar] [CrossRef]
- Vanaei, H.R.; Eslami, A.; Egbewande, A. A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models International. J. Press. Vessel. & Pip. 2017, 149, 43–54. [Google Scholar]
- Duisterwinkel, E.H.; Talnishnikh, E.; Krijnders, D.; Wörtche, H.J. Sensor motes for the exploration and monitoring of operational pipelines. IEEE Trans. Instrum. Meas. 2018, 67, 655–666. [Google Scholar] [CrossRef]
- Quarini, J.; Shire, S. A Review of Fluid-Driven Pipeline Pigs and their Applications. Proc. Inst. Mech. Eng.-Part E 2007, 221, 1–10. [Google Scholar] [CrossRef]
- Pham, H.Q.; Tran, B.V.; Doan, D.T.; Le, V.S.; Pham, Q.N.; Kim, K.; Kim, C.; Terki, F.; Tran, Q.H. Highly sensitive planar hall magnetoresistive sensor for magnetic flux leakage pipeline inspection. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Civera, M.; Fragonara, L.Z.; Surace, C. Video processing techniques for the contactless investigation of large oscillations. J. Phys. Conf. Ser. IOP Publ. 2019, 1249, 012004. [Google Scholar] [CrossRef]
- Civera, M.; Zanotti Fragonara, L.; Surace, C. An experimental study of the feasibility of phase-based video magnification for damage detection and localisation in operational deflection shapes. Strain 2020, 56, e12336. [Google Scholar] [CrossRef]
- Li, Y.; Yan, B.; Li, D.; Li, Y.; Zhou, D. Gradient-field pulsed eddy current probes for imaging of hidden corrosion in conductive structures. Sens. & Actuators A Phys. 2016, 238, 251–265. [Google Scholar]
- Jarvis, R.; Cawley, P.; Nagy, P.B. Current deflection NDE for the inspection and monitoring of pipes. NDT & E Int. 2016, 81, 46–59. [Google Scholar]
- Honarvar, F.; Salehi, F.; Safavi, V.; Mokhtari, A.; Sinclair, T. Ultrasonic monitoring of erosion/corrosion thinning rates in industrial piping systems. Ultrasonics 2013, 53, 1251–1258. [Google Scholar] [CrossRef]
- Hu, B.; Yu, R.; Liu, J. Experimental study on the corrosion testing of a buried metal pipeline by transient electromagnetic method. Anti-Corros. Methods Mater. 2016, 63, 262–268. [Google Scholar] [CrossRef]
- Haith, M.I.; Huthwaite, P.; Lowe, M.J. Defect characterisation from limited view pipeline radiography. NDT & E Int. 2017, 86, 186–198. [Google Scholar]
- Chongchong, L.; Lihong, D.; Haidou, W.; Guolu, L.; Binshi, X. Metal magnetic memory technique used to predict the fatigue crack propagation behavior of 0.45% C steel. J. Magn. Magn. Mater. 2016, 405, 150–157. [Google Scholar] [CrossRef]
- Aydin, U.; Rasilo, P.; Singh, D.; Lehikoinen, A.; Belahcen, A.; Arkkio, A. Coupled magneto-mechanical analysis of iron sheets under biaxial stress. IEEE Trans. Magn. 2015, 52, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Dubov, A.; Kolokolnikov, S. The metal magnetic memory method application for online monitoring of damage development in steel pipes and welded joints specimens. Weld. World 2013, 57, 123–136. [Google Scholar] [CrossRef]
- Augustyniak, M.; Usarek, Z. Discussion of Derivability of Local Residual Stress Level from Magnetic Stray Field Measurement. J. Nondestruct. Eval. 2015, 34, 21. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Pang, H.; Pan, M.; Wan, C. Calibration and Compensation of Geomagnetic Vector Measurement System and Improvement of Magnetic Anomaly Detection. IEEE Geosci. & Remote Sens. Lett. 2016, 13, 447–451. [Google Scholar]
- Sheinker, A.; Moldwin, M.B. Magnetic anomaly detection (MAD) of ferromagnetic pipelines using principal component analysis (PCA). Meas. Sci. & Technol. 2016, 27, 45104. [Google Scholar]
- Buhari, M.D.; Tian, G.Y.; Tiwari, R. Microwave-Based SAR Technique for Pipeline Inspection Using Autofocus Range-Doppler Algorithm. IEEE Sens. J. 2018, 19, 1777–1787. [Google Scholar] [CrossRef] [Green Version]
- Fallahpour, M.; Case, J.T.; Ghasr, M.T.; Zoughi, R. Piecewise and Wiener filter-based SAR techniques for monostatic microwave imaging of layered structures. IEEE Trans. Antennas Propag. 2013, 62, 282–294. [Google Scholar] [CrossRef]
- Gilmore, C.; Jeffrey, I.; Lovetri, J. Derivation and comparison of SAR and frequency-wavenumber migration within a common inverse scalar wave problem formulation. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1454–1461. [Google Scholar] [CrossRef]
- Winters, D.W.; Van Veen, B.D.; Hagness, S.C. A sparsity regularization approach to the electromagnetic inverse scattering problem. IEEE Trans. Antennas Propag. 2009, 58, 145–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Zaeytijd, J.; Franchois, A.; Eyraud, C.; Jean-Michel, G. Full-wave three-dimensional microwave imaging with a regularized Gauss-Newton method-Theory and experiment. IEEE Trans. Antennas Propag. 2007, 55, 3279–3292. [Google Scholar] [CrossRef]
- De Zaeytijd, J.; Franchois, A.; Geffrin, J. A new value picking regularization strategy—Application to the 3-D electromagnetic inverse scattering problem. IEEE Trans. Antennas Propag. 2009, 57, 1133–1149. [Google Scholar] [CrossRef]
- Sheinker, A.; Ginzburg, B.; Salomonski, N.; Dickstein, P.A.; Frumkis, L.; Kaplan, B. Magnetic Anomaly Detection Using High-Order Crossing Method. IEEE Trans. Geosci. & Remote Sens. 2012, 50, 1095–1103. [Google Scholar]
- Sheinker, A.; Salomonski, N.; Ginzburg, B.; Frumkis, L.; Kaplan, B. Magnetic anomaly detection using entropy filter. Meas. Sci. & Technol. 2008, 19, 45205. [Google Scholar]
- Zhou, H.; Pan, Z.; Zhang, Z. Magnetic Anomaly Detection with Empirical Mode Decomposition Trend Filtering. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2017, 2503–2506. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Math. Phys. & Eng. Sci. 1998, 454, 903–995. [Google Scholar]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Yeh, J.R.; Shieh, J.S.; Huang, N.E. Complementary Ensemble Empirical Mode Decomposition: A Novel Noise Enhanced Data Analysis Method. Adv. Adapt. Data Anal. 2010, 2, 135–156. [Google Scholar] [CrossRef]
- Gilles, J. Empirical Wavelet Transform. IEEE Trans. Signal Proc. 2013, 61, 3999–4010. [Google Scholar] [CrossRef]
- Chen, S.; Dong, X.; Peng, Z.; Zhang, W.; Meng, G. Nonlinear Chirp Mode Decomposition: A Variational Method. IEEE Trans. Signal Process. 2017, 65, 6024–6037. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Ma, W.; Yin, S.; Jiang, C.; Zhang, Y. Variational mode decomposition denoising combined with the Hausdorff distance. Rev. Sci. Instrum. 2017, 88, 35109. [Google Scholar] [CrossRef] [PubMed]
- Nazari, M.; Sakhaei, S.M. Variational Mode Extraction: A New Efficient Method to Derive Respiratory Signals from ECG. IEEE J. Biomed. Health Inf. 2018, 22, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, X.; Cai, G.; Chen, B.; Li, X.; He, Z. Matching Demodulation Transform and SynchroSqueezing in Time-Frequency Analysis. IEEE Trans. Signal Process. 2014, 62, 69–84. [Google Scholar] [CrossRef]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Found. & Trends® Mach. Learn. 2010, 3, 1–122. [Google Scholar]
- Tejero, C.E.J.; Sallares, V.; Ranero, C.R. Appraisal of instantaneous phase-based functions in adjoint waveform inversion. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5185–5197. [Google Scholar] [CrossRef] [Green Version]
- Mcneill, S.I. Decomposing a signal into short-time narrow-banded modes. J. Sound Vib. 2016, 373, 325–339. [Google Scholar] [CrossRef]
- Pustelnik, N.; Borgnat, P.; Flandrin, P. Empirical mode decomposition revisited by multicomponent non-smooth convex optimization. Signal Process. 2014, 102, 313–331. [Google Scholar] [CrossRef]
- Goldstein, T.; O’Donoghue, B.; Setzer, S. Fast alternating direction optimization methods. SIAM J. Imaging Sci. 2014, 7, 1588–1623. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Dong, X.; Xing, G.; Peng, Z.K.; Zhang, W.; Meng, G. Separation of overlapped non-stationary signals by ridge path regrouping and intrinsic chirp component decomposition. IEEE Sens. J. 2017, 17, 5994–6005. [Google Scholar] [CrossRef]
Contents | EMD | EWT | VMD | VSME |
---|---|---|---|---|
Basis | Self-adaption | Prior determination | Prior determination | Self-adaption |
Frequency | Difference: Local | Convolution: Local | Difference: Global | Convolution: Global |
Characterization | Energy-Time | Energy-Time-Frequency | Energy-Time-Frequency | Energy-Time-Frequency |
Nonlinear | Yes | Yes | Yes | Yes |
Nonstationarity | Yes | No | No | Yes |
Feature Extraction | Yes | Discrete: No Continuous: Yes | Yes | Yes |
Theoretical Basis | Empirical | Complete theory | Complete theory | Complete theory |
Algorithms | SNR/dB | RMSE | NCCC | |||
---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | |
BPF | 2.23 | 0.20 | 0.15 | 0.10 | 0.81 | 0.46 |
EWT | 2.61 | 0.12 | 0.18 | 0.06 | 0.89 | 0.26 |
VMD | 3.08 | 0.89 | 0.11 | 0.68 | 0.94 | 0.16 |
VSME | 3.26 | 0.05 | 0.13 | 0.02 | 0.95 | 0.04 |
Algorithm | BPF | EMD | VMD | VSME |
---|---|---|---|---|
Mean/s | 5.69 | 146.82 | 108.36 | 10.63 |
SD | 0.04 | 16.78 | 8.29 | 1.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, H.; Wang, X.; Zhao, Y. Variational Specific Mode Extraction: A Novel Method for Defect Signal Detection of Ferromagnetic Pipeline. Algorithms 2020, 13, 105. https://doi.org/10.3390/a13040105
Ju H, Wang X, Zhao Y. Variational Specific Mode Extraction: A Novel Method for Defect Signal Detection of Ferromagnetic Pipeline. Algorithms. 2020; 13(4):105. https://doi.org/10.3390/a13040105
Chicago/Turabian StyleJu, Haiyang, Xinhua Wang, and Yizhen Zhao. 2020. "Variational Specific Mode Extraction: A Novel Method for Defect Signal Detection of Ferromagnetic Pipeline" Algorithms 13, no. 4: 105. https://doi.org/10.3390/a13040105
APA StyleJu, H., Wang, X., & Zhao, Y. (2020). Variational Specific Mode Extraction: A Novel Method for Defect Signal Detection of Ferromagnetic Pipeline. Algorithms, 13(4), 105. https://doi.org/10.3390/a13040105