A Method Coupling NDT and VGICP for Registering UAV-LiDAR and LiDAR-SLAM Point Clouds in Plantation Forest Plots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. LiDAR Data
2.2.2. Ground Survey Data
2.3. Methods
2.3.1. Coarse Registration Algorithm
2.3.2. Fine Registration Algorithm
- ICP Algorithm:
- GICP Algorithm:
- VGICP Algorithm:
- (1)
- Construct voxel grid: downsample the UAV-LiDAR point cloud to create voxels, with the voxel grid size set according to the point cloud scale of the sample plot.
- (2)
- Normal vector calculation: calculate the normal vectors of all the points within each voxel using either a radius search or a k-nearest neighbor (KNN) search. The average of these normal vectors is used as the voxel’s normal vector.
- (3)
- Plane fitting: alternatively, fit a plane to all the points within each voxel to calculate the normal vector, which is then used as the voxel’s normal vector.
- (4)
- LiDAR-SLAM point cloud normal vector calculation: for each point in the LiDAR-SLAM point cloud, calculate the normal vector using the same method applied in UAV-LiDAR.
- (5)
- Establishing the transformation equation: iterate until the voxel normal vectors in the UAV-LiDAR and LiDAR-SLAM point clouds are aligned. Use the relationship between the normal vectors of both the point clouds as weights to establish the transformation equation and solve for the transformation parameters.
2.3.3. Construction of the NDT-VGICP Fusion Registration Algorithm
Algorithm 1 NDT and VGICP Registration Algorithm |
Input: UAV-LiDAR point cloud A, LiDAR-SLAM point cloud B, GridSize, MaxIterations, ConvergenceThreshold Output: Transformation Matrix T |
|
2.3.4. Improved Individual Tree Segmentation Combining Rasterized CHM and Point Cloud Clustering
- (1)
- The LAS dataset rasterization tool in ArcGIS 10.8 is used to convert the non-ground and ground points into raster layers. The Inverse Distance Weighted (IDW) interpolation method is applied to generate digital surface model (DSM) and the terrain model (DEM). The CHM is constructed by calculating the difference between the DSM and the DEM, presented as a grayscale image that intuitively reflects the elevation information of the tree point cloud. To enhance data quality, the elevation information in the CHM is smoothed using mean filtering, improving the model’s accuracy and smoothness for subsequent analysis.
- (2)
- Potential individual tree vertices in the CHM are detected using the local maximum method. To ensure accuracy, an appropriate window size and shape are selected based on crown dimensions. Considering that the crowns of Chinese fir plantations in the study area are typically circular in horizontal distribution, this study uses circular windows of different sizes based on the average crown radius for the different age groups [47]. The highest value in each window is extracted and identified as a potential tree vertex if it is the local maximum.
- (3)
- The normalized elevation UAV-SLAM point cloud data are combined with the potential tree vertices to precisely identify the seed points for tree segmentation. Using the seed points as the center, the pre-segmented regions are determined based on the average crown diameter. This study uses a circular region with a radius of 1 m for the initial segmentation of the point cloud.
- (4)
- As shown in Figure 7, a bilateral distance determination method is applied based on the horizontal distance (dhl) and the edge distance (deg) between the points to be segmented and the tree vertices for clustering. Using a rolling segmentation block approach, the point cloud space is traversed block by block from top to bottom [48]. Final individual tree segmentation is completed in each block according to the bilateral distance determination rules.
2.3.5. Accuracy Evaluation
- Registration algorithm accuracy evaluation:
- Accuracy evaluation of individual tree crown vertex detection:
- Accuracy evaluation of individual tree parameter estimation:
2.3.6. Interaction Between Registration Algorithm and Tree Age, and Its Impact on Individual Tree Parameter Estimation
3. Results
3.1. Accuracy Evaluation of Three “Coarse-to-Fine” Registration Algorithms
3.1.1. Visual Evaluation
3.1.2. Quantitative Evaluation
3.2. Individual Tree Parameter Estimation Under Three Registration Algorithms
3.2.1. Individual Tree Crown Vertex Detection
3.2.2. Individual Tree Parameter Estimation
3.3. Analysis of Variance (ANOVA)
4. Discussion
4.1. Performance Comparison and Evaluation of the NDT-VGICP Optimization Algorithm in Point Cloud Registration
4.2. Accuracy Evaluation of Tree Height Estimation Using the NDT-VGICP Algorithm
4.3. Limitations and Optimization Measures of the NDT-VGICP Algorithm
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wallis, C.I.B.; Crofts, A.L.; Inamdar, D. Remotely Sensed Carbon Content: The Role of Tree Composition and Tree Diversity. Remote Sens. Environ. 2023, 276, 113075. [Google Scholar] [CrossRef]
- Li, M.; Im, J.; Quackenbush, L.J.; Liu, T. Forest Biomass and Carbon Stock Quantification Using Airborne LiDAR Data: A Case Study over Huntington Wildlife Forest in the Adirondack Park. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4512–4521. [Google Scholar] [CrossRef]
- Calders, K.; Adams, J.; Armston, J.; Bartholomeus, H. Terrestrial Laser Scanning in Forest Ecology: Expanding the Horizon. Remote Sens. Environ. 2020, 276, 113075. [Google Scholar] [CrossRef]
- Williams, E.; Ryding, J.; Smith, M.J.; Eichhorn, M.P. Assessing Handheld Mobile Laser Scanners for Forest Surveys. Remote Sens. 2015, 7, 1095–1114. [Google Scholar] [CrossRef]
- Guo, Q.; Su, Y.; Hu, T.; Guan, H.; Jin, S. LiDAR Boosts 3D Ecological Observations and Modelings: A Review and Perspective. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6555–6575. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, X.; Zhang, S.; Cai, S.; Yu, S. Branch Architecture Quantification of Large-Scale Coniferous Forest Plots Using UAV-LiDAR Data. Remote Sens. Environ. 2024, 290, 113132. [Google Scholar]
- Stol, K.A.; Lin, T.J. Autonomous Surveying of Plantation Forests Using Multi-Rotor UAVs. Drones 2022, 6, 256. [Google Scholar] [CrossRef]
- Persson, H.J.; de Paula Pires, R.; Olofsson, K. Individual Tree Detection and Estimation of Stem Attributes with Mobile Laser Scanning Along Boreal Forest Roads. ISPRS J. Photogramm. Remote Sens. 2022, 185, 107–121. [Google Scholar]
- Kuželka, K.; Marušák, R.; Surový, P. Inventory of Close-to-Nature Forest Stands Using Terrestrial Mobile Laser Scanning. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 102935. [Google Scholar] [CrossRef]
- Kukko, A.; Kaijaluoto, R.; Kaartinen, H.; Lehtola, V.V. Graph SLAM Correction for Single Scanner MLS Forest Data Under Boreal Forest Canopy. ISPRS J. Photogramm. Remote Sens. 2017, 132, 37–46. [Google Scholar] [CrossRef]
- Fekry, R.; Yao, W.; Cao, L.; Shen, X. Ground-based/UAV-LiDAR Data Fusion for Quantitative Structure Modeling and Tree Parameter Retrieval in Subtropical Planted Forest. For. Ecosyst. 2022, 9, 76. [Google Scholar] [CrossRef]
- Li, Z.; Jin, F.; Wang, J.; Zhang, Z.; Zhu, L.; Sun, W. Adaptive Fusion of Different Platform Point Cloud with Improved Particle Swarm Optimization and Supervoxels. Int. J. Appl. Earth Obs. Geoinf. 2024, 113, 102935. [Google Scholar] [CrossRef]
- Liang, Y.; Yang, Y.; Mu, Y.; Cui, T. Robust Fusion of Multi-Source Images for Accurate 3D Reconstruction of Complex Urban Scenes. Remote Sens. 2023, 15, 5302. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, H.; Wang, C.; Wang, Y.; Yang, Z. An Improved RANSAC-ICP Method for Registration of SLAM and UAV-LiDAR Point Cloud at Plot Scale. Forests 2024, 15, 893–912. [Google Scholar] [CrossRef]
- Panagiotidis, D.; Abdollahnejad, A.; Slavík, M. 3D Point Cloud Fusion from UAV and TLS to Assess Temperate Managed Forest Structures. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 102917. [Google Scholar] [CrossRef]
- Lin, Y.C.; Shao, J.; Shin, S.Y.; Saka, Z.; Joseph, M.; Manish, R. Comparative Analysis of Multi-Platform, Multi-Resolution, Multi-Temporal LiDAR Data for Forest Inventory. Remote Sens. 2022, 14, 649. [Google Scholar] [CrossRef]
- Jurado, J.M.; Pádua, L.; Feito, F.R.; Sousa, J.J. Automatic Grapevine Trunk Detection on UAV-Based Point Cloud. Remote Sens. 2020, 12, 3043. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, D.; Zheng, Z.; Xu, C.; Pang, Y. A clustering-based automatic registration of UAV and terrestrial LiDAR forest point clouds. Comput. Electron. Agric. 2024, 15, 0395. [Google Scholar] [CrossRef]
- Fan, G.; Nan, L.; Chen, F.; Dong, Y.; Wang, Z.; Li, H.; Chen, D. A New Quantitative Approach to Tree Attributes Estimation Based on LiDAR Point Clouds. Remote Sens. 2020, 12, 1779. [Google Scholar] [CrossRef]
- Lu, H.; Qi, J.; Li, B.; Wang, H.; Yang, G.; Pang, Y.; Dong, H. Terrain-Net: A highly-efficient, parameter-free, and easy-to-use deep neural network for ground filtering of UAV LiDAR data in forested environments. Remote Sens. 2022, 14, 5798. [Google Scholar] [CrossRef]
- Cui, C.; Liu, Y.; Zhang, F.; Shi, M.; Chen, L.; Li, W.; Li, Z. A Novel Automatic Registration Method for Array InSAR Point Clouds in Urban Scenes. Remote Sens. 2024, 16, 601. [Google Scholar] [CrossRef]
- Que, Y.; Sung, T.L.; Lee, H.J. Deep global features for point cloud alignment. Sensors 2020, 20, 4032. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Yue, X.; Zhu, J. Coarse–Fine Registration of Point Cloud Based on New Improved Whale Optimization Algorithm and Iterative Closest Point Algorithm. Symmetry 2023, 15, 2128. [Google Scholar] [CrossRef]
- Kuçak, R.A.; Erol, S.; Erol, B. An experimental study of a new keypoint matching algorithm for automatic point cloud registration. ISPRS Int. J. Geoinf. 2021, 10, 204. [Google Scholar] [CrossRef]
- Zhong, K.; Wu, L.; Li, Z.; Zhou, M.; Hu, H.; Wang, C.; Shi, Y. Pptfh: Robust local descriptor based on point-pair transformation features for 3D surface matching. Sensors 2021, 21, 3229. [Google Scholar] [CrossRef]
- Ghahremani, M.; Williams, K.; Corke, F. Direct and accurate feature extraction from 3D point clouds of plants using RANSAC. Comput. Electron. Agric. 2021, 189, 106418. [Google Scholar] [CrossRef]
- Si, H.; Qiu, J.; Li, Y. A review of point cloud registration algorithms for laser scanners: Applications in large-scale aircraft measurement. Appl. Sci. 2022, 12, 10247. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, J.; Dong, P.; Liu, Q.; Ma, W.; Zhang, J.; Su, G. Registration of TLS and ULS Point Cloud Data in Natural Forest Based on Similar Distance Search. Forests 2024, 15, 1569. [Google Scholar] [CrossRef]
- Zhou, R.; Sun, H.; Ma, K.; Tang, J.; Chen, S.; Fu, L.; Liu, Q. Improving estimation of tree parameters by fusing ALS and TLS point cloud data based on canopy gap shape feature points. Drones 2023, 7, 524. [Google Scholar] [CrossRef]
- Polewski, P.; Yao, W.; Cao, L.; Gao, S. Marker-free coregistration of UAV and backpack LiDAR point clouds in forested areas. ISPRS J. Photogramm. Remote Sens. 2019, 147, 307–318. [Google Scholar] [CrossRef]
- Zeng, C.; Chen, X.; Zhang, Y.; Gao, K. A Structure-Based Iterative Closest Point Using Anderson Acceleration for Point Clouds with Low Overlap. Sensors 2023, 23, 2049. [Google Scholar] [CrossRef] [PubMed]
- Araujo, P.R.M.; Elhabiby, M.; Dawson, E. Map Outage Recovery: ICP Tolerance to Initialization Errors for Automotive Radar. In Proceedings of the 37th International Technical Meeting of the Satellite Division of the Institute of Navigation, Baltimore, Maryland, 16–20 September 2024; Volume 37, pp. 2056–2066. [Google Scholar]
- Liu, H.; Liu, T.; Li, Y.; Wang, Y. Point cloud registration based on MCMC-SA ICP algorithm. IEEE Access 2019, 7, 73637–73648. [Google Scholar] [CrossRef]
- Censi, A. An ICP variant using a point-to-line metric. IEEE Int. Conf. Robot. Autom. 2008, 2008, 19–25. [Google Scholar]
- Low, K.L. Linear least-squares optimization for point-to-plane ICP surface registration. Chapel Hill Univ. North Carol. 2004, 4, 1–3. [Google Scholar]
- Segal, A.; Haehnel, D.; Thrun, S. Generalized-ICP. Robot. Sci. Syst. 2009, 2, 435. [Google Scholar]
- Koide, K.; Yokozuka, M.; Oishi, S.; Banno, A. Voxelized GICP for fast and accurate 3D point cloud registration. IEEE Robot. Autom. Lett. 2021, 6, 11054–11059. [Google Scholar]
- Hashim, F.A.; Ekinci, S. A Modified Bonobo Optimizer with its Application in Solving Engineering Design Problems. Comput. Intell. Neurosci. 2024, 383823200, 134948–134984. [Google Scholar]
- Niu, H.; Li, Y.; Zhang, C.; Chen, T.; Sun, L.; Abdullah, M.I. Multi-Strategy Bald Eagle Search Algorithm Embedded Orthogonal Learning for Wireless Sensor Network (WSN) Coverage Optimization. Sensors 2024, 24, 6794. [Google Scholar] [CrossRef]
- Hou, K.; Liang, J.; Cai, Z.; Liu, S. Octree-Based Level Progressive Point Cloud Registration Framework. In Proceedings of the 2023 42nd Chinese Control Conference (CCC 2023), Tianjing, China, 24–26 July 2023; Volume 42, pp. 3708–3713. [Google Scholar]
- Wang, B.; Zhao, S.; Guo, X.; Yu, G. A Mars Local Terrain Matching Method Based on 3D Point Clouds. Remote Sens. 2024, 16, 1620. [Google Scholar] [CrossRef]
- Hu, J.; Zheng, Z.; Wen, X.; Hu, X.; Lin, Y.; Li, J.; Ni, J.; Wu, C. Variation in Niche and Interspecific Associations across Elevations in Subtropical Forest Communities of the Wuyi Mountains, Southeastern China. Forests 2024, 15, 1256. [Google Scholar] [CrossRef]
- Hua, W.; Pan, X.; Zhu, D.; Wu, C.; Chi, S.; Zhuang, C.; Jiang, X. Developing Growth and Harvest Prediction Models for Mixed Coniferous and Broad-Leaved Forests at Different Ages. Forests 2023, 14, 1416. [Google Scholar] [CrossRef]
- Wu, X.; Cao, Y.; Jiang, Y.; Chen, M.; Zhang, H.; Wu, P.; Ma, X. Dynamics of Non-structural Carbohydrates Release in Chinese Fir Topsoil and Canopy Litter at Different Altitudes. Plants 2023, 12, 729. [Google Scholar] [CrossRef]
- Li, W.; Tang, B.; Hou, Z.; Wang, H.; Bing, Z.; Yang, Q. Dynamic Slicing and Reconstruction Algorithm for Precise Canopy Volume Estimation in 3D Citrus Tree Point Clouds. Remote Sens. 2024, 16, 2142. [Google Scholar] [CrossRef]
- Zhu, D.; Liu, X.; Zheng, Y.; Xu, L.; Huang, Q. Improved Tree Segmentation Algorithm Based on Backpack-LiDAR Point Cloud. Forests 2024, 15, 136. [Google Scholar] [CrossRef]
- Sun, M.L.; Yu, K.Y.; Zhang, X.P.; Zhao, G.J.; Chen, Y.C.; Chen, X.G.; Huang, X.; Liu, J. Study on the Estimation of Single Tree Volume of Chinese Fir Based on Airborne LiDAR Point Cloud Data and Catboost Algorithm. J. Southwest For. Univ. Nat. Sci. 2024, 44, 157–165. [Google Scholar]
- Jiang, W. Research on the Prediction of Single Tree Growth Parameters Based on Fuzzy Neural Networks. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2023. [Google Scholar]
- Jin, S.; Zhang, W.; Shao, J.; Wan, P.; Cheng, S.; Cai, S.; Yan, G. Estimation of Larch Growth at the Stem, Crown, and Branch Levels Using Ground-Based LiDAR Point Cloud. J. Remote Sens. 2022, 9836979, 1–15. [Google Scholar] [CrossRef]
- Smith, J.; Johnson, R.; Brown, A. Estimation of tree height in different growth stages of Pinus resinosa using registered LiDAR and ground survey data. For. Ecol. Manag. 2017, 405, 34–42. [Google Scholar]
- Johnson, K.; Smith, L.; Lee, A. Integrating ALS and TLS for Tree Height Estimation in European Coniferous Forests. Remote Sens. 2018, 10, 453–464. [Google Scholar]
- Wang, Y.; Pang, Y.; Liang, X.; Chen, D.; Lu, J. Lidar biomass index: A novel solution for tree-level biomass estimation using 3D crown information. For. Ecol. Manag. 2021, 499, 119542. [Google Scholar] [CrossRef]
- Dai, W.; Yang, B.; Liang, X.; Dong, Z.; Huang, R. Automated fusion of forest airborne and terrestrial point clouds through canopy density analysis. ISPRS J. Photogramm. Remote Sens. 2019, 156, 94–107. [Google Scholar] [CrossRef]
- Boucher, P.B.; Hockridge, E.G.; Singh, J.; Davies, A.B. Flying high: Sampling savanna vegetation with UAV-lidar. Methods Ecol. Evol. 2023, 14, 1668–1686. [Google Scholar] [CrossRef]
- Wang, R.; Wei, N.; Zhang, C.; Bao, T.; Liu, J.; Yu, K.; Wang, F. UAV Multi-Angle Remote Sensing for Understory Vegetation Coverage Measurement in Southern Hilly Areas. Ecol. Environ. Sci. 2021, 30, 2294–2302. [Google Scholar]
- Jeronimo, S.M.A.; Goetz, S.J.; Fatoyinbo, T.E.; Dubayah, R. LiDAR remote sensing for biomass estimation. Environ. Res. Lett. 2018, 13, 065015. [Google Scholar]
UAV (MATRICE 300 RTK) | Parameters |
---|---|
Laser Scanning Instruments | Zenmuse L1-DJI |
Spot Frequency | 240 kpts/s (single echo) |
480 kpts/s (multiple echoes) | |
Laser Emission Angle | 523.6 mrad |
Range Accuracy | ±3 cm |
System Accuracy | 10 cm (planar distance ≤ 50 m) |
5 cm (elevation distance ≤ 50 m) | |
Measurement Distance (maximum) | 450 m (>80% accuracy) |
190 m (>10% accuracy) |
SLAM (GoSLAM RS100S) | Parameters |
---|---|
Measurement Distance (maximum) | 120 m |
Range Accuracy | ±1 cm (Peak Value) |
Spot Frequency | 320 kpts/s |
Laser Field of View | 360° × 285° |
Echo Intensity | 16 bits |
Forest Age | Plot | N | Number of Trees per Hectare/(N/hm2) | Tree Height (m) | |||
---|---|---|---|---|---|---|---|
Max | Min | Mean | Std | ||||
Young-growth forests | Y-1 | 93 | 2325 | 12.1 | 5.2 | 8.5 | 2.9 |
Y-2 | 96 | 2400 | 12.8 | 5.0 | 8.2 | 2.3 | |
Y-3 | 102 | 2550 | 13.2 | 5.1 | 7.9 | 2.6 | |
Mean | - | 2425 | 12.7 | 5.1 | 8.2 | 2.8 | |
Half-mature forests | H-1 | 67 | 1675 | 18.0 | 7.3 | 13.8 | 3.1 |
H-2 | 69 | 1725 | 17.8 | 6.5 | 13.5 | 3.1 | |
H-3 | 73 | 1825 | 18.1 | 6.9 | 12.1 | 3.0 | |
Mean | - | 1742 | 18.0 | 6.9 | 13.1 | 3.1 | |
Near-mature forests | N-1 | 74 | 1850 | 20.2 | 8.5 | 17.2 | 3.2 |
N-2 | 75 | 1875 | 22.4 | 10.3 | 17.1 | 3.3 | |
N-3 | 82 | 2050 | 20.9 | 9.2 | 16.6 | 3.6 | |
Mean | - | 1925 | 21.2 | 9.3 | 17.0 | 3.4 | |
Mature forests | M-1 | 85 | 2125 | 22.7 | 13.9 | 18.3 | 2.4 |
M-2 | 89 | 2225 | 24.2 | 12.2 | 18.0 | 3.7 | |
M-3 | 91 | 2275 | 23.1 | 12.3 | 17.7 | 3.1 | |
Mean | - | 2208 | 23.3 | 12.8 | 18.0 | 3.1 | |
Over-mature forests | O-1 | 43 | 1075 | 24.5 | 14.5 | 22.0 | 3.2 |
O-2 | 50 | 1250 | 23.9 | 14.7 | 20.2 | 3.5 | |
O-3 | 56 | 1400 | 24.3 | 13.6 | 20.7 | 3.2 | |
Mean | — | 1242 | 24.2 | 14.3 | 21.0 | 3.3 |
Forest Age | Number of Trees per Hectare/(N/hm2) | NDT-ICP | NDT-GICP | NDT-VGICP | ||||
---|---|---|---|---|---|---|---|---|
Statistics | MAE (cm) | RMSE (cm) | MAE (cm) | RMSE (cm) | MAE (cm) | RMSE (cm) | ||
Young-growth forests | 2425 | Mean | 4.58/4.39 * | 5.35/4.87 * | 4.38/3.77 * | 5.21/4.61 * | 4.09/3.68 * | 4.97/4.33 * |
Std | 1.92/1.73 * | 2.88/1.75 * | 1.77/1.65 * | 2.35/1.70 * | 1.69/1.42 * | 2.17/1.69 * | ||
Half-mature forests | 1742 | Mean | 4.02/3.87 * | 4.55/4.03 * | 3.84/3.45 * | 3.92/3.70 * | 3.55/3.25 * | 3.61/3.52 * |
Std | 1.67/1.63 * | 1.98/1.85 * | 1.58/1.44 * | 1.84/1.62 * | 1.20/1.08 * | 1.70/1.54 * | ||
Near-mature forests | 1925 | Mean | 3.98/2.81 * | 4.54/3.72 * | 3.66/2.54 * | 3.60/3.02 * | 3.24/2.28 * | 3.13/2.33 * |
Std | 1.65/1.62 * | 1.92/1.55 * | 1.50/1.37 * | 1.78/1.51 * | 1.11/0.87 * | 1.69/1.27 * | ||
Mature forests | 2208 | Mean | 4.33/4.07 * | 4.75/4.60 * | 4.27/3.89 * | 4.68/4.58 * | 3.74/3.65 * | 3.87/3.85 * |
Std | 1.82/1.73 * | 2.15/1.95 * | 1.61/1.57 * | 1.90/1.65 * | 1.33/1.12 * | 1.75/1.66 * | ||
Over-mature forests | 1242 | Mean | 6.21/5.66 * | 6.85/6.27 * | 5.88/5.34 * | 6.01/5.97 * | 5.62/5.02 * | 5.77/5.29 * |
Std | 2.19/1.98 * | 2.95/2.01 * | 2.03/1.77 * | 2.37/1.86 * | 1.95/1.42 * | 2.22/1.70 * | ||
Mean | - | - | 4.62/4.16 * | 5.21/4.70 * | 4.41/3.80 * | 4.68/4.38 * | 4.05/3.58 * | 4.27/3.86 * |
Std | - | - | 3.88/2.95 * | 4.92/4.76 * | 3.42/3.16 * | 4.41/4.22 * | 2.36/1.71 * | 3.42/3.25 * |
Forest Age | Number of Trees per Hectare/(N/hm2) | NDT-ICP | NDT-GICP | NDT-VGICP | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Statistics | R | P | F-Score | R | P | F-Score | R | P | F-Score | ||
Young-growth forests | 2425 | Mean | 0.93 | 0.91 | 0.92 | 0.94 | 0.91 | 0.92 | 0.94 | 0.92 | 0.93 |
Std | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | ||
Half-mature forests | 1742 | Mean | 0.91 | 0.89 | 0.90 | 0.92 | 0.89 | 0.90 | 0.92 | 0.90 | 0.91 |
Std | 0.04 | 0.04 | 0.04 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | ||
Near-mature forests | 1925 | Mean | 0.88 | 0.84 | 0.86 | 0.89 | 0.85 | 0.87 | 0.89 | 0.87 | 0.88 |
Std | 0.05 | 0.04 | 0.04 | 0.05 | 0.04 | 0.04 | 0.05 | 0.04 | 0.04 | ||
Mature forests | 2208 | Mean | 0.83 | 0.78 | 0.80 | 0.85 | 0.79 | 0.82 | 0.87 | 0.82 | 0.84 |
Std | 0.06 | 0.05 | 0.06 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | ||
Over-mature forests | 1242 | Mean | 0.92 | 0.90 | 0.91 | 0.93 | 0.90 | 0.92 | 0.93 | 0.91 | 0.92 |
Std | 0.07 | 0.08 | 0.08 | 0.06 | 0.05 | 0.06 | 0.05 | 0.06 | 0.06 | ||
Mean | - | - | 0.89 | 0.86 | 0.88 | 0.91 | 0.87 | 0.89 | 0.91 | 0.88 | 0.90 |
Std | - | - | 0.06 | 0.06 | 0.06 | 0.05 | 0.04 | 0.04 | 0.05 | 0.04 | 0.04 |
Forest Age | NDT-ICP | NDT-GICP | NDT-VGICP | ||||
---|---|---|---|---|---|---|---|
Statistics | R2 | RMSE (m) | R2 | RMSE (m) | R2 | RMSE (m) | |
Young-growth forests | Mean | 0.88 | 0.39 | 0.88 | 0.38 | 0.89 | 0.35 |
Std | 0.03 | 0.12 | 0.03 | 0.08 | 0.03 | 0.09 | |
Half-mature forests | Mean | 0.82 | 0.43 | 0.83 | 0.41 | 0.85 | 0.38 |
Std | 0.04 | 0.20 | 0.04 | 0.09 | 0.05 | 0.11 | |
Near-mature forests | Mean | 0.90 | 0.37 | 0.91 | 0.35 | 0.92 | 0.31 |
Std | 0.02 | 0.11 | 0.02 | 0.10 | 0.02 | 0.08 | |
Mature forests | Mean | 0.92 | 0.17 | 0.93 | 0.15 | 0.93 | 0.11 |
Std | 0.02 | 0.07 | 0.02 | 0.06 | 0.01 | 0.05 | |
Over-mature forests | Mean | 0.81 | 0.49 | 0.82 | 0.46 | 0.83 | 0.42 |
Std | 0.05 | 0.22 | 0.06 | 0.17 | 0.06 | 0.15 | |
Mean | - | 0.87 | 0.37 | 0.87 | 0.35 | 0.88 | 0.32 |
Std | - | 0.05 | 0.20 | 0.05 | 0.13 | 0.03 | 0.12 |
Parameter | Factor | Degree of Freedom | Sum of Square | Mean Square | F-Statistics | p-Value |
---|---|---|---|---|---|---|
ITCD | Age group | 5 | 0.06 | 0.03 | 16.59 | 0.00 * |
Algorithm | 3 | 0.01 | 0.00 | 1.52 | 0.23 | |
Algorithm × Age group | 15 | 0.00 | 0.00 | 0.04 | 1.00 | |
Tree height | Age group | 5 | 0.53 | 0.32 | 30.12 | 0.00 * |
Algorithm | 3 | 0.74 | 0.27 | 28.07 | 0.00 * | |
Age group × Algorithm | 15 | 0.15 | 0.02 | 2.14 | 0.08 |
Forest Age | Number of Iterations | Runtime (s) | |||||
---|---|---|---|---|---|---|---|
Statistics | NDT-ICP | NDT-GICP | NDT-VGICP | NDT-ICP | NDT-GICP | NDT-VGICP | |
Young-growth forests | Mean | 25 | 20 | 17 | 45.80 | 40.20 | 35.50 |
Half-mature forests | Mean | 24 | 19 | 15 | 42.00 | 37.50 | 33.00 |
Near-mature forests | Mean | 22 | 18 | 14 | 40.00 | 36.00 | 31.50 |
Mature forests | Mean | 20 | 16 | 13 | 35.70 | 31.00 | 28.00 |
Over-mature forests | Mean | 28 | 24 | 21 | 50.10 | 45.00 | 42.30 |
Mean | - | 24 | 19 | 16 | 42.70 | 37.90 | 34.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Wang, J.; Wu, Y.; Xue, Z.; Tan, X.; Yang, Y.; Lin, S. A Method Coupling NDT and VGICP for Registering UAV-LiDAR and LiDAR-SLAM Point Clouds in Plantation Forest Plots. Forests 2024, 15, 2186. https://doi.org/10.3390/f15122186
Wang F, Wang J, Wu Y, Xue Z, Tan X, Yang Y, Lin S. A Method Coupling NDT and VGICP for Registering UAV-LiDAR and LiDAR-SLAM Point Clouds in Plantation Forest Plots. Forests. 2024; 15(12):2186. https://doi.org/10.3390/f15122186
Chicago/Turabian StyleWang, Fan, Jiawei Wang, Yun Wu, Zhijie Xue, Xin Tan, Yueyuan Yang, and Simei Lin. 2024. "A Method Coupling NDT and VGICP for Registering UAV-LiDAR and LiDAR-SLAM Point Clouds in Plantation Forest Plots" Forests 15, no. 12: 2186. https://doi.org/10.3390/f15122186
APA StyleWang, F., Wang, J., Wu, Y., Xue, Z., Tan, X., Yang, Y., & Lin, S. (2024). A Method Coupling NDT and VGICP for Registering UAV-LiDAR and LiDAR-SLAM Point Clouds in Plantation Forest Plots. Forests, 15(12), 2186. https://doi.org/10.3390/f15122186