Improved Tree Segmentation Algorithm Based on Backpack-LiDAR Point Cloud
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Acquisition
2.2. Individual Tree Segmentation Based on a Hierarchical Strategy
2.3. Data Preprocessing
2.4. Individual Tree Segmentation
2.4.1. Point Cloud Stratification
2.4.2. Trunk Detection
Algorithm 1. Pseudo-code for Dijkstra’s algorithm based on heap optimization. |
Require: graph: the input graph; source: the source node; |
Ensure: dist: an array with the shortest distances from the source to all other nodes; |
1: dist[source] ← 0 |
2: heap ← MinHeap() |
3: heap.insert(source, dist[source]) |
4: while heap is not empty do |
5: current ← heap.extractMin() |
6: for each neighbor in graph.neighbors(current) do |
7: distance ← dist[current] +graph.edgeWeight(current, neighbor) |
8: if distance < dist[neighbor] then |
9: dist[neighbor] ← distance |
10: if neighbor is not in heap then |
11: heap.insert(neighbor, dist[neighbor]) |
12: else |
13: heap.decreaseKey(neighbor, dist[neighbor]) |
14: end if |
15: end if |
16: end for |
17: end while |
18: return dist |
2.5. Point Cloud Segmentation and Comparative Shortest Path
2.6. Implementation and Accuracy Assessment
3. Results
4. Discussion
4.1. Comparison and Analysis of Results from Individual Tree Segmentation Algorithm Based on Stratification Strategy with PCS and CSP
4.2. Important Parameters in the Individual Tree Segmentation Algorithm Based on Stratification Strategy
4.3. Limitations of Individual Tree Segmentation Algorithms Based on Hierarchical Strategy and Possible Future Research Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haoran, L.; Weiwei, F.; Yongsheng, X.; Wenshu, L. Estimation of Individual Tree Biomass Based on Unmanned Aerial Vehicle LiDAR Point Cloud. J. Cent. South Univ. For. Sci. Technol. 2021, 41, 92–99. [Google Scholar]
- Hu, T.; Sun, X.; Su, Y.; Guan, H.; Sun, Q.; Kelly, M.; Guo, Q. Development and Performance Evaluation of a Very Low-Cost UAV-Lidar System for Forestry Applications. Remote Sens. 2021, 13, 77. [Google Scholar] [CrossRef]
- Kai, Z.; Lin, C. Current Status and Prospects of Remote Sensing Applications in Precision Forest Cultivation. J. Remote Sens. 2021, 25, 423–438. [Google Scholar]
- Ping, L.; Zhong, F. Quantitative structural modeling for ground-based LiDAR individual tree segmentation applications. Surv. Mapp. Sci. 2022, 47, 151–156+199. [Google Scholar]
- Torre-Tojal, L.; Bastarrika, A.; Boyano, A.; Lopez-Guede, J.M.; Graña, M. Above-Ground Biomass Estimation from LiDAR Data Using Random Forest Algorithms. J. Comput. Sci. 2022, 58, 101517. [Google Scholar] [CrossRef]
- Huo, L.; Zhang, X. Individual tree information extraction based on multi-layer clustering of airborne LiDAR point cloud and its accuracy evaluation. For. Sci. 2021, 57, 85–94. [Google Scholar]
- Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of a UAV-LiDAR System with Application to Forest Inventory. Remote Sens. 2012, 4, 1519–1543. [Google Scholar] [CrossRef]
- Yu, H.; Feng, S.; Shen, Y.; Liu, P. Research on individual tree segmentation algorithms for UAV-borne LiDAR in plantation forests. Laser Infrared 2022, 52, 757–762. [Google Scholar]
- Liu, H.; Zhang, X.; Zhang, Y.; Zhu, Y.; Liu, H.; Wang, L. Advances in airborne lidar individual tree recognition research. Adv. Lasers Optoelectron. 2018, 55, 40–48. [Google Scholar]
- Popescu, S.C.; Wynne, R.H. Seeing the Trees in the Forest. Photogramm. Eng. Remote Sens. 2004, 70, 589–604. [Google Scholar] [CrossRef]
- Koch, B.; Heyder, U.; Weinacker, H. Detection of Individual Tree Crowns in Airborne Lidar Data. Photogramm. Eng. Remote Sens. 2006, 72, 357–363. [Google Scholar] [CrossRef]
- Li, W.; Guo, Q.; Jakubowski, M.K.; Kelly, M. A New Method for Segmenting Individual Trees from the Lidar Point Cloud. Photogramm. Eng. Remote Sens. 2012, 78, 75–84. [Google Scholar] [CrossRef]
- Chen, W.; Hu, X.; Chen, W.; Hong, Y.; Yang, M. Airborne LiDAR Remote Sensing for Individual Tree Forest Inventory Using Trunk Detection-Aided Mean Shift Clustering Techniques. Remote Sens. 2018, 10, 1078. [Google Scholar] [CrossRef]
- Ko, C.; Lee, S.; Yim, J.; Kim, D.; Kang, J. Comparison of Forest Inventory Methods at Plot-Level between a Backpack Personal Laser Scanning (BPLS) and Conventional Equipment in Jeju Island, South Korea. Forests 2021, 12, 308. [Google Scholar] [CrossRef]
- Guo, Q.; Su, Y.; Hu, T.; Guan, H.; Jin, S.; Zhang, J.; Zhao, X.; Xu, K.; Wei, D.; Kelly, M.; et al. Lidar Boosts 3D Ecological Observations and Modelings: A Review and Perspective. IEEE Geosci. Remote Sens. Mag. 2021, 9, 232–257. [Google Scholar] [CrossRef]
- Hu, T.; Wei, D.; Su, Y.; Wang, X.; Zhang, J.; Sun, X.; Liu, Y.; Guo, Q. Quantifying the Shape of Urban Street Trees and Evaluating Its Influence on Their Aesthetic Functions Based on Mobile Lidar Data. ISPRS J. Photogramm. Remote Sens. 2022, 184, 203–214. [Google Scholar] [CrossRef]
- An, Z.; Froese, R.E. Tree Stem Volume Estimation from Terrestrial LiDAR Point Cloud by Unwrapping. Can. J. For. Res. 2023, 53, 60–70. [Google Scholar] [CrossRef]
- Tao, S.; Wu, F.; Guo, Q.; Wang, Y.; Li, W.; Xue, B.; Hu, X.; Li, P.; Tian, D.; Li, C.; et al. Segmenting Tree Crowns from Terrestrial and Mobile LiDAR Data by Exploring Ecological Theories. ISPRS J. Photogramm. Remote Sens. 2015, 110, 66–76. [Google Scholar] [CrossRef]
- Hyyppä, E.; Kukko, A.; Kaijaluoto, R.; White, J.C.; Wulder, M.A.; Pyörälä, J.; Liang, X.; Yu, X.; Wang, Y.; Kaartinen, H.; et al. Accurate Derivation of Stem Curve and Volume Using Backpack Mobile Laser Scanning. ISPRS J. Photogramm. Remote Sens. 2020, 161, 246–262. [Google Scholar] [CrossRef]
- Comesaña-Cebral, L.; Martínez-Sánchez, J.; Lorenzo, H.; Arias, P. Individual Tree Segmentation Method Based on Mobile Backpack LiDAR Point Clouds. Sensors 2021, 21, 6007. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, A.; Xiao, S.; Hu, S.; He, N.; Pang, H.; Zhang, X.; Yang, S. Single Tree Segmentation and Diameter at Breast Height Estimation With Mobile LiDAR. IEEE Access 2021, 9, 24314–24325. [Google Scholar] [CrossRef]
- Vitter, J.S. Faster Methods for Random Sampling. Commun. ACM 1984, 27, 703–718. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Gu, Z.; Pei, F. A multi-layer K-means based algorithm for individual tree identification in forest point clouds. For. Resour. Manag. 2022, 1, 124–131. [Google Scholar]
- Wu, J.; Cawse-Nicholson, K.; van Aardt, J. 3D Tree Reconstruction from Simulated Small Footprint Waveform Lidar. Photogramm. Eng. Remote Sens. 2013, 79, 1147–1157. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Lu, J.; Wang, H.; Qin, S.; Cao, L.; Pu, R.; Li, G.; Sun, J. Estimation of Aboveground Biomass of Robinia Pseudoacacia Forest in the Yellow River Delta Based on UAV and Backpack LiDAR Point Clouds. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102014. [Google Scholar] [CrossRef]
- Yang, Q.; Su, Y.; Jin, S.; Kelly, M.; Hu, T.; Ma, Q.; Li, Y.; Song, S.; Zhang, J.; Xu, G.; et al. The Influence of Vegetation Characteristics on Individual Tree Segmentation Methods with Airborne LiDAR Data. Remote Sens. 2019, 11, 2880. [Google Scholar] [CrossRef]
- Wang, Y.; Hyyppa, J.; Liang, X.; Kaartinen, H.; Yu, X.; Lindberg, E.; Holmgren, J.; Qin, Y.; Mallet, C.; Ferraz, A.; et al. International Benchmarking of the Individual Tree Detection Methods for Modeling 3-D Canopy Structure for Silviculture and Forest Ecology Using Airborne Laser Scanning. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5011–5027. [Google Scholar] [CrossRef]
- Burt, A.; Disney, M.; Calders, K. Extracting Individual Trees from Lidar Point Clouds Using Treeseg. Methods Ecol. Evol. 2019, 10, 438–445. [Google Scholar] [CrossRef]
- Fan, G.; Liang, H.; Zhao, Y.; Li, Y. Automatic Reconstruction of Three-Dimensional Root System Architecture Based on Ground Penetrating Radar. Comput. Electron. Agric. 2022, 197, 106969. [Google Scholar] [CrossRef]
- Cai, S.; Xing, Y.; Duanmu, J. Backpack Lidar Filtering Low Intensity Point Clouds to Extract Forest Tree Breast Diameter. For. Eng. 2021, 37, 12–19. [Google Scholar]
- Xu, X.; Iuricich, F.; Calders, K.; Armston, J.; De Floriani, L. Topology-Based Individual Tree Segmentation for Automated Processing of Terrestrial Laser Scanning Point Clouds. Int. J. Appl. Earth Obs. Geoinf. 2023, 116, 103145. [Google Scholar] [CrossRef]
- Ao, Z.; Wu, F.; Hu, S.; Sun, Y.; Su, Y.; Guo, Q.; Xin, Q. Automatic Segmentation of Stem and Leaf Components and Individual Maize Plants in Field Terrestrial LiDAR Data Using Convolutional Neural Networks. Crop J. 2022, 10, 1239–1250. [Google Scholar] [CrossRef]
- Kim, D.-H.; Ko, C.-U.; Kim, D.-G.; Kang, J.-T.; Park, J.-M.; Cho, H.-J. Automated Segmentation of Individual Tree Structures Using Deep Learning over LiDAR Point Cloud Data. Forests 2023, 14, 1159. [Google Scholar] [CrossRef]
- Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. PointCNN: Convolution on X-Transformed Points. Adv. Neural Inf. Process. Syst. 2018, 31. [Google Scholar]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
Name | Content | Parameter |
---|---|---|
RS-LiDAR-16 | Field of View | Horizontal: 360° |
Vertical: 30° | ||
Detection Range | Up to 150 m | |
Laser Wavelength | 905 nm | |
Scanning Accuracy | ±2 cm | |
Resolution | Horizontal: 0.1°/0.2°/0.4° | |
Attitude Angle Range Dual Gyroscope Parameters Magnetic Field Sensor Parameters Output Frequency Resolution | Vertical: 2.0° Roll: ±180°; Pitch: ±90°; Yaw: ±180°; #1: 3-axis, ±400, 24 bits #2: ±1000/±2000 dps, 16 bits 3-axis, ±2/±8 gauss, 16 bits 5~500 Hz 0.01° | |
LPMS-IG1 | ||
Plot | Algorithm | Actual Number | Segmentation Number | TP | FN | FP | r | p | F |
---|---|---|---|---|---|---|---|---|---|
SHS | 43 | 43 | 43 | 0 | 0 | 1 | 1 | 1 | |
1 | CSP | 43 | 46 | 43 | 0 | 3 | 1 | 0.93 | 0.96 |
PCS | 43 | 45 | 38 | 5 | 7 | 0.88 | 0.84 | 0.86 | |
SHS | 51 | 51 | 50 | 1 | 0 | 0.98 | 1 | 0.99 | |
2 | CSP | 51 | 51 | 51 | 0 | 1 | 1 | 0.98 | 0.99 |
PCS | 51 | 49 | 48 | 2 | 1 | 0.96 | 0.98 | 0.97 | |
SHS | 62 | 62 | 62 | 0 | 0 | 1 | 1 | 1 | |
3 | CSP | 62 | 116 | 62 | 0 | 54 | 1 | 0.53 | 0.69 |
PCS | 62 | 76 | 49 | 2 | 27 | 0.96 | 0.64 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, D.; Liu, X.; Zheng, Y.; Xu, L.; Huang, Q. Improved Tree Segmentation Algorithm Based on Backpack-LiDAR Point Cloud. Forests 2024, 15, 136. https://doi.org/10.3390/f15010136
Zhu D, Liu X, Zheng Y, Xu L, Huang Q. Improved Tree Segmentation Algorithm Based on Backpack-LiDAR Point Cloud. Forests. 2024; 15(1):136. https://doi.org/10.3390/f15010136
Chicago/Turabian StyleZhu, Dongwei, Xianglong Liu, Yili Zheng, Liheng Xu, and Qingqing Huang. 2024. "Improved Tree Segmentation Algorithm Based on Backpack-LiDAR Point Cloud" Forests 15, no. 1: 136. https://doi.org/10.3390/f15010136
APA StyleZhu, D., Liu, X., Zheng, Y., Xu, L., & Huang, Q. (2024). Improved Tree Segmentation Algorithm Based on Backpack-LiDAR Point Cloud. Forests, 15(1), 136. https://doi.org/10.3390/f15010136