Soil Organic Carbon Mapping Using Multispectral Remote Sensing Data: Prediction Ability of Data with Different Spatial and Spectral Resolutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Materials
2.2.1. Landsat-8
2.2.2. Sentinel-2
2.2.3. Sentinel-2 Bare Soil Composite
2.2.4. PlanetScope
2.2.5. Hyperspectral Airborne Imaging
2.2.6. UAS Multispectral Imaging
2.3. Methods
2.3.1. Collection of Soil Sampling Data
2.3.2. Prediction of SOC
- Spectrally affected pixels in individual data sources were filtered based on NDVI value. The threshold was set to 0.25 according to a preliminary analysis of bare soils within the study area. Only 0 to 2 samples from the whole dataset (50 samples) were filtered, depending on the data source.
- The filtered dataset was partitioned into a training set (for calibration purposes) and a test set (for validation purposes) as independent validation data were not available [84]. Partitioning at a 4:1 ratio was carried out by random stratified sampling based on predicting variable (SOC) values (grouped based on 10th percentile) ensuring the same distribution of both datasets and enabling a balanced comparison of results.
- The training process included fitting separate models. Five-fold cross-validation of the training set was used to assess the model performance and find model parameters. The best parameters were optimized and selected by a grid search. These parameters included a number of latent variables for PLS and hyperparameters for machine learning methods (RF—number of randomly selected predictors and number of trees to grow, CB—number of committees and number of instances, SVM—cost for linear kernel; cost and sigma for radial kernel; polynomial degree scale and cost for polynomial kernel). Model specific metrics was used in each model for the calculation of the importance of variables (spectral bands) (CB—usage as a linear combination of the rule conditions and terminal model; RF—increase in mean squared error by permuting a variable; PLS—weighted sums of the absolute regression coefficients) with the exception of SVM, where the squared weights [85] were used. Importance values were standardized to range 0–100. The final model was selected based on the smallest root mean square error of cross-validation (RMSECV) value. This model was used in the next step for validation of the validation set.
- The prediction ability of models and accuracy of prediction were evaluated by determining the measure of accuracy computed based on a comparison of observed and predicted values of the validation set. Root mean square error of prediction (RMSEP), coefficient of determination (R2), and Lin’s concordance correlation coefficient (CCC) were computed. Even though some measures may have duplicate meanings [86], they are often used together by many authors, and we also calculated the ratio of performance to deviation (RPD) and the ratio of performance to interquartile range (RPIQ), which are more suitable for datasets with skewed distribution [87].
- Finally, the spatial prediction of soil attributes was performed using a selected model with the best predictive ability (lowest RMSEP value). This model was applied to the entire dataset of image spectral data.
3. results
3.1. Descriptive Statistics of Soil Samples
3.2. Comparison of Measured Spectra
3.3. Prediction of Soil Properties by Spectral Data
3.4. Spatial Distribution of SOC
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Batjes, N.H. World Soil Carbon Stocks and Global Change; ISRIC: Wageningen, The Netherlands, 1995. [Google Scholar]
- Houghton, R.A. Changes in the storage of terrestrial carbon since 1850. In Soils and Global Change; Lal, R., Kimble, J.M., Levine, E.R., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 1995; pp. 45–65. [Google Scholar]
- Todd-Brown, K.E.O.; Randerson, J.T.; Post, W.M.; Hoffman, F.M.; Tarnocai, C.; Schuur, E.A.G.; Allison, S.D. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 2013, 10, 1717–1736. [Google Scholar] [CrossRef]
- Hiederer, R.; Köchy, M. Global Soil Organic Carbon Estimates and the Harmonized World Soil Database; EUR 25225; Publications Office of the European Union: Luxembourg, 2011; ISBN 978-92-79-23108-7. [Google Scholar]
- Banwart, S.A.; Black, H.; Cai, Z.; Gicheru, P.T.; Joosten, H.; Victoria, R.L.; Milne, E.; Noellemeyer, E.; Pascual, U. The Global Challenge for Soil Carbon. In Soil Carbon: Science, Management and Policy for Multiple Benefits; Banwart, S.A., Noellemeyer, E., Milne, E., Eds.; CAB International: Wallingford, UK, 2015; pp. 1–9. ISBN 9781780645322. [Google Scholar]
- Milne, E.; Banwart, S.A.; Noellemeyer, E.; Abson, D.J.; Ballabio, C.; Bampa, F.; Bationo, A.; Batjes, N.H.; Bernoux, M.; Bhattacharyya, T.; et al. Soil carbon, multiple benefits. Environ. Dev. 2015, 13, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; Gottschalk, P.; Smith, J. Climate Change and Soil Carbon Impacts. In Soil Carbon: Science, Management and Policy for Multiple Benefits; Banwart, S.A., Noellemeyer, E., Milne, E., Eds.; CAB International: Wallingford, UK, 2015; pp. 235–242. [Google Scholar]
- Smith, J.; Smith, P.; Wattenbach, M.; Zaehle, S.; Hiederer, R.; Jones, R.J.A.; Montanarella, L.; Rounsevell, M.D.; Reginster, I.; Ewert, F. Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Glob. Chang. Biol. 2005, 11, 2141–2152. [Google Scholar] [CrossRef]
- McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Ravi Shankar, D. Remote Sensing of Soils; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-662-53738-1. [Google Scholar]
- Castaldi, F.; Chabrillat, S.; Jones, A.; Vreys, K.; Bomans, B.; van Wesemael, B. Soil organic carbon Estimation in croplands by hyperspectral remote APEX data using the LUCAS topsoil database. Remote Sens. 2018, 10, 153. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, A.; Chabrillat, S.; Stevens, A.; Segl, K.; Foerster, S. Prediction of common surface soil properties based on Vis-NIR airborne and simulated EnMAP imaging spectroscopy Data: Prediction accuracy and influence of spatial resolution. Remote Sens. 2016, 8, 613. [Google Scholar] [CrossRef] [Green Version]
- Gomez, C.; Lagacherie, P.; Coulouma, G. Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis-NIR data. Geoderma 2012, 189–190, 176–185. [Google Scholar] [CrossRef]
- Žížala, D.; Zádorová, T.; Kapička, J. Assessment of soil degradation by erosion based on analysis of soil properties using aerial hyperspectral images and ancillary data, Czech Republic. Remote Sens. 2017, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Kanning, M.; Siegmann, B.; Jarmer, T. Regionalization of uncovered agricultural soils based on organic carbon and soil texture estimations. Remote Sens. 2016, 8, 927. [Google Scholar] [CrossRef] [Green Version]
- Vaudour, E.; Gilliot, J.M.; Bel, L.; Lefevre, J.; Chehdi, K. Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 24–38. [Google Scholar] [CrossRef]
- Franceschini, M.H.D.; Demattê, J.A.M.; da Silva Terra, F.; Vicente, L.E.; Bartholomeus, H.M.; de Souza Filho, C.R. Prediction of soil properties using imaging spectroscopy: Considering fractional vegetation cover to improve accuracy. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 358–370. [Google Scholar] [CrossRef]
- Matarrese, R.; Ancona, V.; Salvatori, R.; Muolo, M.R.; Uricchio, V.F.; Vurro, M. Detecting soil organic carbon by CASI hyperspectral images. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec, QC, Canada, 13–18 July 2014; pp. 3284–3287. [Google Scholar]
- Denis, A.; Stevens, A.; van Wesemael, B.; Udelhoven, T.; Tychon, B. Soil organic carbon assessment by field and airborne spectrometry in bare croplands: Accounting for soil surface roughness. Geoderma 2014, 226–227, 94–102. [Google Scholar] [CrossRef]
- Pascucci, S.; Casa, R.; Belviso, C.; Palombo, A.; Pignatti, S.; Castaldi, F. Estimation of soil organic carbon from airborne hyperspectral thermal infrared data: A case study. Eur. J. Soil Sci. 2014, 65, 865–875. [Google Scholar] [CrossRef]
- Stevens, A.; Miralles, I.; van Wesemael, B. Soil organic carbon predictions by airborne imaging spectroscopy: Comparing cross-validation and validation. Soil Sci. Soc. Am. J. 2012, 76, 2174. [Google Scholar] [CrossRef]
- Hbirkou, C.; Pätzold, S.; Mahlein, A.K.; Welp, G. Airborne hyperspectral imaging of spatial soil organic carbon heterogeneity at the field-scale. Geoderma 2012, 175–176, 21–28. [Google Scholar] [CrossRef]
- Bhunia, G.S.; Kumar Shit, P.; Pourghasemi, H.R. Soil organic carbon mapping using remote sensing techniques and multivariate regression model. Geocarto Int. 2017, 6049, 1–12. [Google Scholar] [CrossRef]
- Mondal, A.; Khare, D.; Kundu, S.; Mondal, S.; Mukherjee, S.; Mukhopadhyay, A. Spatial soil organic carbon (SOC) prediction by regression kriging using remote sensing data. Egypt. J. Remote Sens. Sp. Sci. 2017, 20, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Ballabio, C.; Panagos, P.; Montanarella, L. Predicting soil organic carbon content in Cyprus using remote sensing and Earth observation data. In Proceedings of the Second International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2014), Paphos, Cyprus, 7–10 April 2014; Hadjimitsis, D.G., Themistocleous, K., Michaelides, S., Papadavid, G., Eds.; SPIE: Paphos, Cyprus, 2014; Volume 9229, pp. 96–104. [Google Scholar]
- Jarmer, T.; Hill, J.; Lavée, H.; Sarah, P. Mapping topsoil organic carbon in non-agricultural semi-arid and arid ecosystems of Israel. Photogramm. Eng. Remote Sens. 2010, 76, 85–94. [Google Scholar] [CrossRef]
- Ray, S.S.; Singh, J.P.; Das, G.; Panigrahy, S.; Group, A.R.; Centre, S.A.; Potato, C. Use of high resolution remote sensing data for generatin site-specific soil mangement plan. In Proceedings of the XX ISPRS Congress, Commission VII, Working Group VII/2, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Istanbul, Turkey, 12–23 July 2004; pp. 127–131. [Google Scholar]
- Hill, J.; Schütt, B. Mapping complex patterns of erosion and stability in dry mediterranean ecosystems. Remote Sens. Environ. 2000, 74, 557–569. [Google Scholar] [CrossRef]
- Aldana-Jague, E.; Heckrath, G.; Macdonald, A.; van Wesemael, B.; Van Oost, K. UAS-based soil carbon mapping using VIS-NIR (480–1000nm) multi-spectral imaging: Potential and limitations. Geoderma 2016, 275, 55–66. [Google Scholar] [CrossRef]
- Crucil, G.; Castaldi, F.; Aldana-Jague, E.; van Wesemael, B.; Macdonald, A.; Oos, K. Van Assessing the performance of UAS-Compatible multispectral and hyperspectral sensors for soil organic carbon prediction. Sustainability 2019, 11, 1889. [Google Scholar] [CrossRef] [Green Version]
- Gilliot, J.-M.; Vaudour, E.; Michelin, J.; Houot, S. Estimation des Teneurs en Carbone Organique des Sols Agricoles par Télédétection par Drone. Rev. Fr. Photogramm. Teledetect. 2017, 213–214, 105–115. [Google Scholar]
- Ladoni, M.; Bahrami, H.A.; Alavipanah, S.K.; Norouzi, A.A. Estimating soil organic carbon from soil reflectance: A review. Precis. Agric. 2010, 11, 82–99. [Google Scholar] [CrossRef]
- Croft, H.; Kuhn, N.J.; Anderson, K. On the use of remote sensing techniques for monitoring spatio-temporal soil organic carbon dynamics in agricultural systems. Catena 2012, 94, 64–74. [Google Scholar] [CrossRef]
- Angelopoulou, T.; Tziolas, N.; Balafoutis, A.; Zalidis, G.; Bochtis, D. Remote sensing techniques for soil organic carbon estimation: A review. Remote Sens. 2019, 11, 676. [Google Scholar] [CrossRef] [Green Version]
- Gholizadeh, A.; Žížala, D.; Saberioon, M.; Borůvka, L. Soil Organic Carbon and Clay Monitoring and Mapping using Airborne and Sentinel-2 Spectral Imaging. In Proceedings of SPIE, vol. 10733, Proceedings of the Sixth International Conference on Remote Sensing and Geoinformation of Environment(RSCy2018), International Society for Optics and Photonics, Aliathon, Cyprus, 6 August 2018; Themistocleous, K., Hadjimitsis, D.G., Michaelides, S., Ambrosia, V., Papadavid, G., Eds.; SPIE: Aliathon, Cyprus, 2018; pp. 422–428. [Google Scholar]
- Castaldi, F.; Hueni, A.; Chabrillat, S.; Ward, K.; Buttafuoco, G.; Bomans, B.; Vreys, K.; Brell, M.; Wesemael, B. Van Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands. ISPRS J. Photogramm. Remote Sens. 2019, 147, 267–282. [Google Scholar] [CrossRef]
- Castaldi, F.; Palombo, A.; Santini, F.; Pascucci, S.; Pignatti, S.; Casa, R. Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sens. Environ. 2016, 179, 54–65. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Taylor, G.R.; Hill, J.; Demattê, J.A.M.; Whiting, M.L.; Chabrillat, S.; Sommer, S. Imaging spectrometry for soil applications. Adv. Agron. 2008, 97, 321–392. [Google Scholar]
- Gomez, C.; Viscarra Rossel, R.A.; McBratney, A.B. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study. Geoderma 2008, 146, 403–411. [Google Scholar] [CrossRef]
- Grunwald, S.; Vasques, G.M.; Rivero, R.G. Fusion of soil and remote sensing data to model soil properties. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–109. ISBN 978-0-12-802136-1. [Google Scholar]
- Tiwari, S.K.; Saha, S.K.; Kumar, S. Prediction modeling and mapping of soil carbon content using artificial neural network, hyperspectral satellite data and field spectroscopy. Adv. Remote Sens. 2015, 4, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Castaldi, F.; Casa, R.; Castrignanò, A.; Pascucci, S.; Palombo, A.; Pignatti, S. Estimation of soil properties at the field scale from satellite data: A comparison between spatial and non-spatial techniques. Eur. J. Soil Sci. 2014, 65, 842–851. [Google Scholar] [CrossRef]
- Anne, N.J.P.; Abd-Elrahman, A.H.; Lewis, D.B.; Hewitt, N.A. Modeling soil parameters using hyperspectral image reflectance in subtropical coastal wetlands. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 47–56. [Google Scholar] [CrossRef]
- Zhang, S.-R.; Sun, B.; Zhao, Q.-G.; XIAO, P.-F.; Shu, J.-Y. Temporal-spatial variability of soil organic carbon stocks in a rehabilitating ecosystem. Pedosphere 2013, 14, 501–508. [Google Scholar]
- Lu, P.; Wang, L.; Niu, Z.; Li, L.; Zhang, W. Prediction of soil properties using laboratory VIS-NIR spectroscopy and Hyperion imagery. J. Geochemical Explor. 2013, 132, 26–33. [Google Scholar] [CrossRef]
- Nowkandeh, S.M.; Homaee, M.; Noroozi, A.A. Mapping soil organic matter using hyperion images. Int. J. Agron. Plant. Prod. 2013, 4, 1753–1759. [Google Scholar]
- Jaber, S.M.; Lant, C.L.; Al-Qinna, M.I. Estimating spatial variations in soil organic carbon using satellite hyperspectral data and map algebra. Int. J. Remote Sens. 2011, 32, 5077–5103. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P. Moisture Effects on Soil Reflectance. Soil Sci. Soc. Am. J. 2002, 66, 722. [Google Scholar] [CrossRef]
- Mulder, V.L.; de Bruin, S.; Schaepman, M.E.; Mayr, T.R. The use of remote sensing in soil and terrain mapping - A review. Geoderma 2011, 162, 1–19. [Google Scholar] [CrossRef]
- Selige, T.; Böhner, J.; Schmidhalter, U. High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures. Geoderma 2006, 136, 235–244. [Google Scholar] [CrossRef]
- Žížala, D.; Juřicová, A.; Zádorová, T.; Zelenková, K.; Minařík, R. Mapping soil degradation using remote sensing data and ancillary data: South-East Moravia, Czech Republic. Eur. J. Remote Sens. 2018, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Shabou, M.; Mougenot, B.; Chabaane, Z.; Walter, C.; Boulet, G.; Aissa, N.; Zribi, M. Soil Clay Content Mapping Using a Time Series of Landsat TM Data in Semi-Arid Lands. Remote Sens. 2015, 7, 6059–6078. [Google Scholar] [CrossRef] [Green Version]
- Demattê, J.A.M.; Alves, M.R.; Terra, F.D.S.; Bosquilia, R.W.D.; Fongaro, C.T.; Barros, P.P.D.S. Is it possible to classify topsoil texture using a sensor located 800 km away from the surface? Rev. Bras. Cienc. Solo 2016, 40, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Blasch, G.; Spengler, D.; Hohmann, C.; Neumann, C.; Itzerott, S.; Kaufmann, H. Multitemporal soil pattern analysis with multispectral remote sensing data at the field-scale. Comput. Electron. Agric. 2015, 113, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Rogge, D.; Bauer, A.; Zeidler, J.; Mueller, A.; Esch, T.; Heiden, U. Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014). Remote Sens. Environ. 2018, 205, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Demattê, A.J.M.; Fongaro, C.T.; Rizzo, R.; Safanelli, J.L. Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral re fl ectance from satellite images. Remote Sens. Environ. 2018, 212, 161–175. [Google Scholar] [CrossRef]
- Gallo, B.C.; Demattê, J.A.M.; Rizzo, R.; Safanelli, J.L.; Mendes, W.D.S.; Lepsch, I.F.; Sato, M.V.; Romero, D.J.; Lacerda, M.P.C. Multi-temporal satellite images on topsoil attribute quantification and the relationship with soil classes and geology. Remote Sens. 2018, 10, 1571. [Google Scholar] [CrossRef]
- Diek, S.; Fornallaz, F.; Schaepman, M.E.; de Jong, R. Barest Pixel Composite for agricultural areas using landsat time series. Remote Sens. 2017, 9, 1245. [Google Scholar] [CrossRef] [Green Version]
- Blasch, G.; Spengler, D.; Itzerott, S.; Wessolek, G. Organic matter modeling at the landscape scale based on multitemporal soil pattern analysis using rapideye data. Remote Sens. 2015, 7, 11125–11150. [Google Scholar] [CrossRef] [Green Version]
- Loiseau, T.; Chen, S.; Mulder, V.L.; Román Dobarco, M.; Richer-de-Forges, A.C.; Lehmann, S.; Bourennane, H.; Saby, N.P.A.; Martin, M.P.; Vaudour, E.; et al. Satellite data integration for soil clay content modelling at a national scale. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101905. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sens. Environ. 2018, 218, 89–103. [Google Scholar] [CrossRef]
- Hrabalíková, M.; Huislová, P.; Ureš, J.; Holubík, O.; Žížala, D.; Kumhálová, J. Assessment of changes in topsoil depth redistribution in relation to different tillage technologies. In Proceedings of the 3rd WASWAC Conference, Belgrade, Serbia, 22–26 August 2016. [Google Scholar]
- Zádorová, T.; Žížala, D.; Penížek, V.; Čejková, Š. Relating extent of colluvial soils to topographic derivatives and soil variables in a Luvisol sub-catchment, Central Bohemia, Czech Republic. Soil Water Res. 2014, 9, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Zádorová, T.; Penížek, V. Formation, morphology and classification of colluvial soils: A review. Eur. J. Soil Sci. 2018, 69, 577–591. [Google Scholar] [CrossRef]
- ESA. SENTINEL-2 User Handbook; Revision 2; ESA Standard Document; ESA: Paris, France, 2015; 64p. [Google Scholar]
- ESA Radiometric—Resolutions—Sentinel-2 MSI—User Guides—Sentinel Online. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/radiometric (accessed on 10 November 2019).
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat data continuity mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Planet team. Planet Imagery Product Specifications; Planet Team: San Francisco, CA, USA, 2018; p. 91. [Google Scholar]
- Pandey, P.; Planet Labs, Inc., San Francisco, CA, USA. Personal communication, 20 June 2019.
- Hanuš, J.; Global Change Research Institute CAS, Brno, Czech Republic. Personal communication, 22 June 2019.
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Planet team. Planet application program interface: In space for life on Earth; Planet team: San Francisco, CA, USA, 2017; Volume 2017. [Google Scholar]
- Ben-Dor, E.; Levin, N. Determination of surface reflectance from raw hyperspectral data without simultaneous ground data measurements: A case study of the GER 63-channel sensor data acquired over Naan, Israel. Int. J. Remote Sens. 2000, 21, 2053–2074. [Google Scholar] [CrossRef]
- Verhoeven, G. Taking computer vision aloft—Archaeological three-dimensional reconstructions from aerial photographs with photoscan. Archaeol. Prospect. 2011, 18, 67–73. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Comput. Geosci. 2006, 32, 1378–1388. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995; ISBN 978-1-4757-2442-4. [Google Scholar]
- Schölkopf, B.; Smola, A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; MIT Press: Cambridge, MA, USA, 2001; ISBN 9780262194754. [Google Scholar]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines: And Other kernel-Based Learning Methods; Cambridge University Press: New York, NY, USA, 2000; ISBN 0-521-78019-5. [Google Scholar]
- Kuhn, M.; Weston, S.; Keefer, C.; Coulter, N.; Ross, Q. Cubist: Rule- and Instance-Based Regression Modeling, 2013. R package version 0.2.1. Available online: https://topepo.github.io/Cubist (accessed on 10 November 2019).
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; Benesty, M.; et al. Caret: Classification and Regression Training; 2015. R Package Version 6.0-82. Available online: https://CRAN.R-project.org/package=caret (accessed on 9 December 2019).
- Morrison, R.E.; Bryant, C.M.; Terejanu, G.; Prudhomme, S.; Miki, K. Data partition methodology for validation of predictive models. Comput. Math. Appl. 2013, 66, 2114–2125. [Google Scholar] [CrossRef]
- Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46, 389–422. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. Why you don’t need to use RPD By Budiman Minasny & Alex. McBratney University of Sydney Why you don’t need to use RPD. Pedometron 2013, 33, 14–15. [Google Scholar]
- Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.M.; McBratney, A. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends Anal. Chem. 2010, 29, 1073–1081. [Google Scholar] [CrossRef]
- Lamichhane, S.; Kumar, L.; Wilson, B. Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review. Geoderma 2019, 352, 395–413. [Google Scholar] [CrossRef]
- Song, X.; Brus, D.J.; Liu, F.; Li, D.; Zhao, Y.; Yang, J.; Zhang, G. Mapping soil organic carbon content by geographically weighted regression: A case study in the Heihe River Basin, China. Geoderma 2016, 261, 11–22. [Google Scholar] [CrossRef]
- Xin, Z.; Qin, Y.; Yu, X. Spatial variability in soil organic carbon and its influencing factors in a hilly watershed of the Loess Plateau, China. Catena 2016, 137, 660–669. [Google Scholar] [CrossRef]
- Nussbaum, M.; Spiess, K.; Baltensweiler, A.; Grob, U.; Keller, A.; Greiner, L.; Schaepman, M.E.; Papritz, A. Evaluation of digital soil mapping approaches with large sets of environmental covariates. SOIL 2018, 4, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Behrens, T.; Schmidt, K.; Ramirez-Lopez, L.; Gallant, J.; Zhu, A.-X.; Scholten, T. Hyper-scale digital soil mapping and soil formation analysis. Geoderma 2014, 213, 578–588. [Google Scholar] [CrossRef]
- Grinand, C.; Arrouays, D.; Laroche, B.; Martin, M.P. Extrapolating regional soil landscapes from an existing soil map: Sampling intensity, validation procedures, and integration of spatial context. Geoderma 2008, 143, 180–190. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Demattê, J.A.M. Remote Sensing of Soil in the Optical Domains. In Land Resources Monitoring, Modeling, and Mapping with Remote Sensing; Thenkabail, P.S., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 733–787. [Google Scholar]
- Stevens, F.; Bogaert, P.; Wesemael, B. Van Detecting and quantifying field-related spatial variation of soil organic carbon using mixed-effect models and airborne imagery. Geoderma 2015, 259–260, 93–103. [Google Scholar] [CrossRef]
- Rosero-Vlasova, O.A.; Borini-Alves, D.; Vlassova, L.; Montorio Llovería, R.; Pérez-Cabello, F. Modeling soil organic matter (SOM) from satellite data using VISNIR-SWIR spectroscopy and PLS regression with step-down variable selection algorithm: Case study of Campos Amazonicos National Park savanna enclave, Brazil. In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XIX, Warsaw, Poland, 12–14 September 2017; Neale, C.M., Maltese, A., Eds.; SPIE: Bellingham, WA, USA, 2017; Volume 10421, p. 64. [Google Scholar]
- Stenberg, B.; Viscarra Rossel, R.A.; Mouazen, A.M.; Wetterlind, J. Visible and near infrared spectroscopy in soil science. In Advances in Agronomy; Bertsch, P.M., Phillips, R.L., Scow, K.M., Wilding, L.P., Eds.; Elsevier: San Diego, CA, USA, 2010; Volume 107, pp. 163–215. ISBN 0065-2113 978-0-12-381033-5. [Google Scholar]
- Viscarra Rossel, R.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; McBratney, A. Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils—Critical review and research perspectives. Soil Biol. Biochem. 2011, 43, 1398–1410. [Google Scholar] [CrossRef]
- Summers, D.; Lewis, M.; Ostendorf, B.; Chittleborough, D. Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties. Ecol. Indic. 2011, 11, 123–131. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Irons, J.R.; Epema, G.F. Soil Reflectante. In Manual of Remote Sensing: Remote Sensing for Earth Science; Rencz, A.N., Ryerson, R.A., Eds.; John Wiley & Sons lnc.: Hoboken, NJ, USA, 1999; Volume 3, pp. 111–187. ISBN 978-0-471-29405-4. [Google Scholar]
- Chénier, R.; Faucher, M.-A.; Ahola, R. Satellite-derived bathymetry for improving Canadian hydrographic service charts. ISPRS Int. J. Geo-Inf. 2018, 7, 306. [Google Scholar] [CrossRef] [Green Version]
- Gerighausen, H.; Menz, G.; Kaufmann, H. Spatially explicit estimation of clay and organic carbon content in agricultural soils using multi-annual imaging spectroscopy data. Appl. Environ. Soil Sci. 2012, 2012, 1–23. [Google Scholar] [CrossRef]
- Castaldi, F.; Chabrillat, S.; Don, A.; van Wesemael, B. Soil Organic Carbon Mapping Using LUCAS Topsoil Database and Sentinel-2 Data: An Approach to Reduce Soil Moisture and Crop Residue Effects. Remote Sens. 2019, 11, 2121. [Google Scholar] [CrossRef] [Green Version]
Sensor Characteristics | Sentinel-2 MSI [65,66] | Landsat-8 OLI [67] | PlanetScope [68,69] | Parrot Sequoia | CASI 1500 and SASI 600 [70] |
---|---|---|---|---|---|
Mission | Spaceborne | Spaceborne | Spaceborne | UAS | Airborne |
Sensor type | Pushbroom | Pushbroom | Frame with split-frame NIR filter | 4 × 1.2 Mpix Global shutter frame sensors | Both pushbroom |
Spectral bands | 13 | 9 | 4 | 4 | CASI: 72 * SASI: 100 * |
Used spectral bands | 10 | 8 | 4 | 4 | 102 |
Spectral range (nm) | 9 VNIR 3 SWIR | 5 VNIR 3 SWIR 1 PAN | 4 VNIR | 4VNIR | CASI: 365–1050 SASI: 950–2450 |
FWHM (nm) | 20–200 | 18–238 | 40–90 | 10–40 | CASI: 10 * SASI: 15 * |
SNR (typical) | 129@444 nm 154@497 nm 168@560 nm 142@664 nm 117@704 nm 89@740 nm 105@783 nm 174@843 nm 72@865 nm 114@943 nm 50@1377 nm 100@1613 nm 100@2200 nm | 130@443 nm 130@482 nm 100@561 nm 90@655 nm 90@865 nm 100@1609 nm 100@2201 nm 80@590 nm 50@1373 nm | 151@475 184@545 157@655 157@835 | Dark target: 27@550 nm * 28@660 nm * 35@735 nm * 30@790 nm * Light target: 39@550 nm * 43@660 nm * 46@735 nm * 41@790 nm * | CASI: 800–900 Peak avelength SASI: 350–450@1000–1350 nm 250–350@1450–1800 nm 100@1900–2350 nm Peak wavelength |
GSD (spatial resolution) | 10/20/60m | 30 m (15 m PAN) | 3.5–4m | Variable (cm) | CASI: 1.2 m* SASI: 3.1 m* |
Positional accuracy | 12 m | 12 m | 10 m | 2 m | 1.8 m* |
Acquisition date | 18-08-2018 | 19-08-2018 | 29-08-2018 | 20-08-2018 | 21-09-2015 |
Soil Properties | Min | Max | Mean | Range | SD | CV (%) | IQ |
---|---|---|---|---|---|---|---|
SOC (%) | 0.84 | 2.62 | 1.44 | 1.78 | 0.39 | 27 | 0.51 |
Sand (%) | 15.2 | 58.3 | 38.91 | 43.1 | 8.34 | 21.4 | 10.0 |
Silt (%) | 27.5 | 49.1 | 38.49 | 21.6 | 4.67 | 12.1 | 4.45 |
Clay (%) | 14.2 | 48.3 | 22.6 | 34.1 | 6.8 | 30.1 | 5.93 |
CaCO3 (%) | 0 | 10.0 | 4.07 | 10.0 | 3.34 | 82.1 | 6.56 |
Platform | SR (m) | No. of Bands | Total Samples | Best Model | Calibration | Validation | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. of Samples | RMSECV (%) | R2cv | No. of Samples | RMSEP (%) | R2p | CCC | RPD | RPIQ | |||||
Sentinel-2 individual | 10 | 10 | 50 | PLS | 40 | 0.29 | 0.72 | 10 | 0.27 | 0.66 | 0.75 | 1.45 | 1.88 |
Sentinel-2 individual | 20 | 10 | 50 | CB | 40 | 0.24 | 0.7 | 10 | 0.26 | 0.68 | 0.69 | 1.52 | 2.00 |
Sentinel-2 individual | 30* | 10 | 50 | CB | 40 | 0.25 | 0.64 | 10 | 0.28 | 0.56 | 0.64 | 1.4 | 1.80 |
Sentinel-2 composite | 10 | 10 | 49 | CB | 39 | 0.28 | 0.52 | 10 | 0.34 | 0.81 | 0.62 | 1.16 | 1.53 |
Landsat-8 | 30 | 8 | 49 | SVM | 39 | 0.29 | 0.45 | 10 | 0.28 | 0.65 | 0.65 | 1.41 | 1.86 |
PlanetScope | 3 | 4 | 49 | CB | 39 | 0.20 | 0.75 | 10 | 0.26 | 0.66 | 0.74 | 1.52 | 2.00 |
PlanetScope | 10 | 4 | 49 | RF | 39 | 0.22 | 0.64 | 10 | 0.24 | 0.74 | 0.80 | 1.65 | 2.17 |
PlanetScope | 30 | 4 | 49 | RF | 39 | 0.21 | 0.70 | 10 | 0.27 | 0.59 | 0.72 | 1.46 | 1.93 |
Parrot Sequoia | 1 | 4 | 29 | CB | 23 | 0.27 | 0.72 | 6 | 0.31 | 0.72 | 0.7 | 1.38 | 1.77 |
Parrot Sequoia | 10 | 4 | 29 | CB | 23 | 0.28 | 0.52 | 6 | 0.34 | 0.57 | 0.68 | 1.26 | 1.62 |
CASI + SASI | 3 | 102 | 48 | SVM | 39 | 0.16 | 0.82 | 9 | 0.20 | 0.76 | 0.86 | 1.81 | 2.68 |
CASI + SASI * + SG trans. | 3 | 102 | 48 | SVM | 39 | 0.17 | 0.87 | 9 | 0.16 | 0.8 | – | 2.26 | 3.34 |
CASI + SASI | 10 | 102 | 48 | SVM | 39 | 0.17 | 0.80 | 9 | 0.24 | 0.73 | 0.76 | 1.51 | 2.23 |
CASI + SASI | 30 | 102 | 48 | SVM | 39 | 0.16 | 0.82 | 9 | 0.24 | 0.63 | 0.73 | 1.51 | 2.23 |
CASI + +SASI | Sentinel-2 | Sentinel-2 Composite | Landsat-8 | PlanetScope | |
---|---|---|---|---|---|
Sentinel-2 | 0.756 | ||||
Sentinel-2 Composite | 0.761 | 0.883 | |||
Landsat-8 | 0.622 | 0.732 | 0.715 | ||
PlanetScope | 0.817 | 0.797 | 0.773 | 0.648 | |
Sequoia | 0.748 1 | 0.833 1 | 0.803 1 | 0.823 1 | 0.874 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žížala, D.; Minařík, R.; Zádorová, T. Soil Organic Carbon Mapping Using Multispectral Remote Sensing Data: Prediction Ability of Data with Different Spatial and Spectral Resolutions. Remote Sens. 2019, 11, 2947. https://doi.org/10.3390/rs11242947
Žížala D, Minařík R, Zádorová T. Soil Organic Carbon Mapping Using Multispectral Remote Sensing Data: Prediction Ability of Data with Different Spatial and Spectral Resolutions. Remote Sensing. 2019; 11(24):2947. https://doi.org/10.3390/rs11242947
Chicago/Turabian StyleŽížala, Daniel, Robert Minařík, and Tereza Zádorová. 2019. "Soil Organic Carbon Mapping Using Multispectral Remote Sensing Data: Prediction Ability of Data with Different Spatial and Spectral Resolutions" Remote Sensing 11, no. 24: 2947. https://doi.org/10.3390/rs11242947
APA StyleŽížala, D., Minařík, R., & Zádorová, T. (2019). Soil Organic Carbon Mapping Using Multispectral Remote Sensing Data: Prediction Ability of Data with Different Spatial and Spectral Resolutions. Remote Sensing, 11(24), 2947. https://doi.org/10.3390/rs11242947