Knowledge-Based Classification of Grassland Ecosystem Based on Multi-Temporal WorldView-2 Data and FAO-LCCS Taxonomy
Abstract
:1. Introduction
2. Study Area and Data Set
2.1. Murgia Alta National Park
2.2. In Situ Data Collection for Validation
2.3. The Imagery Data Set
3. Methodology
3.1. LC Taxonomy
3.2. Expert Knowledge Elicitation
- (1)
- Core and context class components. In VHR images, classes can appear to be composed of individually detectable core elements and other surrounding elements constituting the context. As an example, an olive grove field is composed by olive trees, as class core elements, surrounded by bare soil, grassland or emerging rocks as context background [66,67].
- (2)
- Class phenology. Vegetated class discrimination depends on different period of peak of biomass and plant development. Agricultural class discrimination is based on periodicity of agricultural practices (i.e., ploughing, harvesting/mowing). Aquatic class discrimination requires water seasonality information [46].
3.3. The Algorithm
3.3.1. SO and LO Image Segmentation
3.3.2. SO Classification
3.3.3. LO Classification
- When inside an LO, there was a class dominance, i.e., more than 80 percent of the pixels were labeled as a specific A12 class, the procedure assigned to the same label as the dominant class together with the C1 code (i.e., continuous spatial distribution) to the LO investigated (Figure 7a).
- When inside the LO, there was a class dominance, i.e., more than 50 percent but less than 80 of pixels labeled as a specific A12 class, and if neither of the other SO elements reached a cover exceeding 20 percent, the procedure assigned to the analyzed LO the same label as that of the dominant class together with the C2 code (Figure 7b).
- When more than 50 percent of cultivated SOs were found inside the LO analyzed, LO is to have A11 label with Continuous Spatial Aspect code (B5) (Figure 7c).
- When LO pixels belonging to a SO class X covered less than 80% but more than 50% of the LO extension, and a second SO class Y covered more than 20% but less than 50%, the LO was labelled as X/Y. This labelling indicates that both classes X and Y from SOs are present in the LO (co-presence), with class X covering the majority of the LO area. Specifically, when class X belonged to A12, the C2 code was added. When Y class belonged to class A11, code B6 (scattered clustered) was added to the Y class label [58] (Figure 7d)
- When the LO pixels met none of the above-mentioned rules, the LO was labeled as Mixed Unit.
- Due to the lack of specific rules for non-vegetated classes, in this study, we adopted the label “Mixed Units with artificial” to identify classes including both vegetated and artificial components. Instead when LOs included only SO of either B15 or B16 classes, the LO was labeled as single B15 or B16 unit.
3.4. Accuracy Assessment
4. Results
4.1. SO Classification
- (a)
- The rule sets implemented perform well to discriminate natural vegetation classes. In particular, with exception to A12/A1.D1.E1 (natural/woody.broadleaved.evergreen), the F1-score resulted greater than or equal to 90%.
- (b)
- The rules appear to be less effective for cultivated woody classes discrimination. The F1-score values of A11/A1orA2.A7.A9 (cultivated/trees or shrubs.broadleaved.evergreen) and A11/A1orA2.A7.A10 (cultivated/trees or shrubs.broadleaved.deciduous) resulted to be 37.9 and 66.5, respectively.
- (c)
- The CM indicates that cultivated and natural woody classes were effectively discriminated, based on DTM measurements, whereas core and context components of the cultivated classes were less distinguishable. This might be due to both ortho-rectification issues as well as to different tree crown cover.
- (d)
- The F1-score of A12/A2.A6 (natural/herbaceous.graminoids) resulted quite high, i.e., 96.1%. However, the CM evidenced some misclassifications between such class and A11/A3 (cultivated/ herbaceous). On the contrary, A12/A2.A6 (natural herbaceous.graminoids) resulted to be well discriminated from all natural woody classes.
Hierarchical Accuracy Assessment
4.2. LO Classification
- The classifier parameter selection by a trial and error procedure can generate an LO segmentation inadequate to represent the structure of landscape patches. As a result, non-existing LO classes can occur, such as the ones indicated with (+) in Table 9.
- LO map accuracy can be influenced by the SO map accuracy as well as by the lack of specific FAO-LCCS rules for non-vegetated classes.
5. Discussion
5.1. SO Results Discussion
5.2. LO Results Discussion
6. Conclusions
- (1)
- A multi-temporal approach to identify different phenological vegetation attributes, combined with expert-knowledge from ecologists. This approach yielded satisfactory results in the discrimination of perennial and annual vegetation.
- (2)
- VHR imagery to reveal the suitability of features (i.e., context–sensitive) obtained through this approach. Without requiring additional data sources (i.e., CHM), entropy proved reliable in discriminating between high (trees and shrubs) and low vegetation (herbaceous).
- (3)
- R, G, B and NIR bands and derived indices were sufficient to recognize different ground targets. The choice to use only these bands was in light of the fact that VHR satellite data are very costly, whereas drone-flights with VIS-NIR bands become more and more frequently used to collect VHR images of local areas. As confirmed by Jabbour et al. 2020 [91], due to the cost of satellite images with spatial resolution lower than 5 m, end-users seem to prefer drone based acquisition of such data for decision making at local level. Thus, the proposed methodology can be applied to VHR data from drones.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maes, J.; Teller, A.; Erhard, M.; Liquete, C.; Braat, L.; Berry, P.; Egoh, B.; Puydarrieux, P.; Fiorina, C.; Santos, F.; et al. Mapping and Assessment of Ecosystems and Their Services. An Analytical Framework for Ecosystem Assessments under Action 5 of the EU Biodiversity Strategy to 2020; 1st Technical Report; Publications Office of the European Union: Luxembourg, 2013. [CrossRef]
- Maes, J.; Teller, A.; Markus Erhard, M.; Murphy, P.; Paracchini, M.L.; Barredo, J.I.; Grizzetti, B.; Cardoso, A.; Somma, F.; Petersen, J.E.; et al. Mapping and Assessment of Ecosystems and Their Services (MAES). Indicators for Ecosystem Assessments under Action 5 of the EU Biodiversity Strategy to 2020; Second Technical Report (2014-080); Publications Office of the European Union: Luxembourg, 2014. [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite remote sensing of grasslands: From observation to management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Liu, Z.; Wu, J. Grassland ecosystem services: A systematic review of research advances and future directions. Landsc. Ecol. 2020, 35, 793–814. [Google Scholar] [CrossRef]
- Tilman, D.; Socolow, R.; Foley, J.; Hill, J.; Larson, E.; Lynd, L.; Pacala, S.; Reilly, J.; Searchinger, T.; Sommerville, C.; et al. Beneficial biofuels–The food, energy, and environment trilemma. Science 2009, 325, 270–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimek, S.; Richter, A.; Hofmann, M.; Isselstein, J. Plant species richness and composition in managed grasslands: The relative importance of field management and environmental factors. Biol. Conserv. 2007, 134, 559–570. [Google Scholar] [CrossRef]
- Sullivan, C.A.; Sheey Skeffington, M.; Gormally, M.J.; Finn, J.A. The ecological status of grasslands on lowland farmlands in western Ireland and implications for grassland classification and nature value assessment. Biol. Conserv. 2010, 143, 1529–1539. [Google Scholar] [CrossRef]
- Wright, C.K.; Wimberley, M.C. Recent land use change in the Western Corn belt threatens grasslands and wetlands. Proc. Natl. Acad. Sci. USA 2013, 110, 4134–4139. [Google Scholar] [CrossRef] [Green Version]
- Scholes, R.J.; Mace, G.M.; Turner, W.; Geller, G.N.; Jurgens, N.; Larigauderie, D.; Muchoney, B.A.; Walther, H.A. Toward a global biodiversity observing system. Science 2008, 321, 1044–1045. [Google Scholar] [CrossRef]
- De Bello, F.; Lavorel, S.; Gerhold, P.; Reier, U.; Partel, M. A biodiversity monitoring framework for practical conservation of grasslands and shrublands. Biol. Conserv. 2010, 143, 9–17. [Google Scholar] [CrossRef]
- Schuster, C.; Schmidt, T.; Conrad, C.; Kleinschmit, B.; Forster, M. Grassland habitat mapping by intra-annual time series analysis–Comparison of RapidEye and TerraSAR-X satellite data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 25–34. [Google Scholar] [CrossRef]
- Hill, M.J.; Ticehurst, C.J.; Lee, J.; Fellow, L.; Grunes, M.R.; Donald, G.E.; Henry, D. Integration of optical and radar classifications for mapping pasture type in Western Australia. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1665–1681. [Google Scholar] [CrossRef]
- Bock, M.; Xofis, P.; Mitchley, J.; Rossner, G.; Wissen, M. Object-oriented methods for habitat mapping at multiple scales–Case studies from Northern Germany and Wye Downs, UK. J. Nat. Conserv. 2005, 13, 75–89. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Radeloff, V.C.; Dubinin, M.; Alcantara, C. The effect of Landsat ETM/ETM+ image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sens. Environ. 2012, 126, 195–209. [Google Scholar] [CrossRef]
- Franke, J.; Keuck, V.; Siegert, F. Assessment of grassland use intensity by remote sensing to support conservation schemes. J. Nat. Conserv. 2012, 20, 125–134. [Google Scholar] [CrossRef]
- Mehner, H.; Cutler, M.; Fairbaim, D.; Thompson, G. Remote sensing of upland vegetation: The potential of high spatial resolution satellite sensors. Glob. Ecol. Biogeogr. 2004, 13, 359–369. [Google Scholar] [CrossRef]
- Schmidtlein, S.; Zimmermann, P.; Schupferling, R.; Weib, C. Mapping the floristic continuum: Ordination space position estimated from imaging spectroscopy. J. Veg. Sci. 2007, 18, 131–140. [Google Scholar] [CrossRef]
- Schuster, C.; Ali, I.; Lohmann, P.; Frick, A.; Forster, M.; Kleinschmit, B. Towards detecting swath events in TerraSAR-X time series to establish Natura 2000 grassland habitat swath management as monitoring parameter. Remote Sens. 2011, 3, 1308–1322. [Google Scholar] [CrossRef] [Green Version]
- Feilhauer, H.; Thonfeld, F.; Faude, U.; He, K.S.; Rocchini, D.; Schmidtlein, S. Assessing floristic composition with multispectral sensors–A comparison based on monotemporal and multiseasonal field spectra. Int. J. Appl. Earth Observ. Geoinf. 2013, 21, 218–229. [Google Scholar] [CrossRef]
- Si, Y.; Schlerf, M.; Zurita-Milla, R.; Skidmore, A.; Wang, T. Mapping spatio-temporal variation of grassland quantity and quality using MERIS data and the PROSAIL. Remote Sens. Environ. 2012, 121, 415–425. [Google Scholar] [CrossRef]
- Li, Z.; Huffman, T.; McConkey, B.; Townley-Smith, L. Monitoring and modeling spatial and temporal patterns of grassland dynamics using time-series MODIS NDVI with climate and stocking data. Remote Sens. Environ. 2013, 138, 232–244. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.; Jin, Y.; Yang, Z.; Huang, W.; Zhao, L.; Gao, T.; Yu, H.; Ma, H.; Qin, Z.; et al. Monitoring and analysis of grassland desertification dynamics using Landsat images in Ningxia, China. Remote Sens. Environ. 2013, 138, 19–26. [Google Scholar] [CrossRef]
- Barret, B.; Nitze, I.; Green, S.; Cawkwell, F. Assessment of multi-temporal, multi-sensor radar and ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches. Remote Sens. Environ. 2014, 152, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Lehnert, L.W.; Meyer, H.; Wang, Y.; Miehe, G.; Thies, B.; Reudenbach, C.; Bendix, J. Retrieval of grassland plant coverage on the Tibetan Plateau based on a multi-scale, multi-sensor and multi-method approach. Remote Sens. Environ. 2015, 164, 197–207. [Google Scholar] [CrossRef]
- Estel, S.; Mader, S.; Levers, C.; Verburg, P.H.; Baumann, M.; Kuemmerle, T. Combining satellite data and agricultural statistics to map grassland management intensity in Europe. Env. Res. Lett. 2018, 13, 074020. [Google Scholar] [CrossRef]
- Hubert-Moy, L.; Thibault, J.; Fabre, E.; Rozo, C.; Arvor, D.; Corpetti, T.; Rapinel, S. Mapping Grassland Frequency Using Decadal MODIS 250 m Time-Series: Towards a National Inventory of Semi-Natural Grasslands. Remote Sens. 2019, 11, 3041. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Chen, B.; Shen, B.; Wang, X.; Yan, Y.; Xu, L.; Xin, X. The Classification of Grassland Types Based on Object-Based Image Analysis with Multisource Data. Rangel. Ecol. Manag. 2019, 72, 318–326. [Google Scholar]
- Shoko, C.; Mutanga, O. Seasonal discrimination of C3 and C4 grasses functional types: An evaluation of the prospects of varying spectral configurations of new generation sensors. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 47–55. [Google Scholar] [CrossRef]
- Dusseux, P.; Corpetti, T.; Hubet-Moy, L.; Corgne, S. Combined use of Multi-temporal optical and radar satellite images for grassland monitoring. Remote Sens. 2014, 6, 6163–6182. [Google Scholar] [CrossRef] [Green Version]
- Melville, B.; Lucieer, A.; Aryal, J. Object-based random forest classification of Landsat ETM+ and worldview-2 satellite imagery for mapping lowland native grassland communities in Tasmania, Australia. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 46–55. [Google Scholar] [CrossRef]
- Raab, C.; Stroh, H.; Tonn, B.; Meißner, M.; Rohwer, N.; Balkenhol, N.; Isselstein, J. Mapping Semi-Natural Grassland Communities Using Multitemporal RapidEye Remote Sensing Data. Int. J. Remote Sens. 2018, 39, 5638–5659. [Google Scholar] [CrossRef]
- Garcia-Pedrero, A.; Gonzalo-Martin, C.; Fonseca-Luengo, D.; Lillo-Saavedra, M. A geobia methodology for fragmented agricultural landscapes. Remote Sens. 2015, 7, 767–787. [Google Scholar] [CrossRef] [Green Version]
- Watmough, G.R.; Palm, C.A.; Sullivan, C. An operational framework for object based land use classification of heterogeneous rural landscapes. Int. J. Appl. Earth Obs. Geogr. Inf. 2017, 54, 134–144. [Google Scholar] [CrossRef]
- Momeni, R.; Aplin, P.; Boyd, D. Mapping Complex Urban Land Cover from Spaceborne Imagery: The Influence of Spatial Resolution, Spectral Band Set and Classification Approach. Remote Sens. 2016, 8, 88. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, A.; Warner, T.; Strager, M.; Conley, J.; Sharp, J. Assessing machine learning algorithms and image and lidar derived variables for GEOBIA classification of mining and mine reclamation. Int. J. Remote Sens. 2015, 36, 954–978. [Google Scholar] [CrossRef]
- Clerici, N.; Valbuena Calderón, C.A.; Posada, J.M. Fusion of Sentinel-1A and Sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia. J. Maps 2017, 13, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Onojeghuo, A.O.; Onojeghuo, A.R. Object-based habitat mapping using very high spatial resolution multispectral and hyperspectral imagery with LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 79–91. [Google Scholar] [CrossRef]
- Lopes, M.; Fauvel, M.; Girard, S.; Sheeren, D. Object-based classification of grasslands from high resolution satellite image time series using Gaussian mean map kernels. Remote Sens. 2017, 9, 688. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Cheng, L.; Li, M.C.; Liu, Y.X.; Ma, X.X. Training set size scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery. ISPRS J. Photogram. Remote Sens. 2015, 102, 14–27. [Google Scholar] [CrossRef]
- Arvor, D.; Belgiu, M.; Falomir, Z.; Mougenot, I.; Durieux, L. Ontologies to interpret remote sensing images: Why do we need them? GIScience Remote Sens. 2019, 56, 911–939. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Weng, Q.; Hay, G.J.; He, Y. Geographic Object-Based Image Analysis (GEOBIA): Emerging Trends and Future Opportunities. GIScience Remote Sens. 2018, 55, 159–182. [Google Scholar] [CrossRef]
- Gu, H.; Li, H.; Yan, L.; Liu, Z.; Blaschke, T.; Soergel, U. An object-based semantic classification method for high resolution remote sensing imagery using ontology. Remote Sens. 2017, 9, 329. [Google Scholar] [CrossRef] [Green Version]
- Arvor, D.; Durieux, L.; Andrés, S.; Laporte, M.A. Advances in Geographic Object-Based Image Analysis with Ontologies: A Review of Main Contributions and Limitations from a Remote Sensing Perspective. ISPRS J. Photogramm. Remote Sens. 2013, 82, 125–137. [Google Scholar] [CrossRef]
- Lucas, R.; Bunting, P.; Jones, G.; Arias, M.; Inglada, J.; Kosmidou, V.; Petrou, Z.; Manakos, I.; Adamo, M.; Tarantino, C.; et al. The Earth Observation Data for Habitat Monitoring (EODHaM) system. Int. J. Appl. Earth Obs. Geoinf. 2015, 37, 17–28. [Google Scholar] [CrossRef]
- Lucas, R.; Mitchell, A. Integrated land cover and change classification. In The Roles of Remote Sensing in Nature Conservation; Díaz-Delgado, R., Lucas, R., Hurford, C., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 295–308. [Google Scholar]
- Tomaselli, V.; Dimopoulos, P.; Marangi, C.; Kallimanis, A.S.; Adamo, M.; Tarantino, C.; Panitsa, M.; Terzi, M.; Veronico, G.; Lovergine, F.; et al. Translating land cover/land use classifications to habitat taxonomies for landscape monitoring: A Mediterranean assessment. Landsc. Ecol. 2013, 28, 905–930. [Google Scholar] [CrossRef] [Green Version]
- Lucas, R.; Mueller, N.; Siggins, A.; Owers, C.; Clewley, D.; Bunting, P.; Kooymans, C.; Tissott, B.; Lewis, B.; Lymburner, L.; et al. Lan Cover Mapping using Digital Earth Australia. Remote Sens. Environ. 2019, 4, 143. [Google Scholar]
- Ding, L.; Zhang, J.; Bruzzone, L. Semantic Segmentation of Large-Size VHR Remote Sensing Images Using a Two-Stage Multiscale Training Architecture. IEEE Trans. Geosci. Remote Sens. 2020, 1–10. [Google Scholar] [CrossRef]
- Caldara, M.; Fatiguso, R.; Garganese, A.; Pennetta, L. Bibliografia Geologica Della Puglia; Safra Edizioni: Bari, Italy, 1990. [Google Scholar]
- Labadessa, R.; Alignier, A.; Cassano, S.; Forte, L.; Mairota, P. Quantifying edge influence on plant communitystructure and composition in semi-natural drygrasslands. Appl. Veg. Sci. 2017, 20, 572–581. [Google Scholar] [CrossRef] [Green Version]
- Forte, L.; Perrino, E.V.; Terzi, M. Le praterie a Stipa austroitalica Martinovsky ssp. austroitalica dell’Alta Murgia (Puglia) e della Murgia Materana (Basilicata). Fitosociologia 2005, 42, 83–103. [Google Scholar]
- Terzi, M.; Di Pietro, R.; D’Amico, F.S. Analisi delle specie indicatrici applicata alle comunità a Stipa austroitalica Martinovsky e relative problematiche sin tassonomiche. Fitosociologia 2010, 47, 3–28. [Google Scholar]
- Boccaccio, L.; Labadessa, R.; Leronni, V.; Mairota, P. Landscape change in the Natura 2000 ‘Murgia Alta’ site and dry grassland fragmentation. In Proceedings of the IX Biodiversity National Congress; CIHEAM-IAMB: Valenzano, Italy, 2013; Volume 3, pp. 351–357. [Google Scholar]
- Labadessa, R.; Pagone, P.; Lomoro, A.; Guido, M. Grassland recovery in a landfill site in alta murgia. Procedia Environ. Sci. Eng. Manag. 2016, 3–4, 113–118. [Google Scholar]
- Sutter, G.C.; Brigham, R.M. Avifaunal and habitat changes resulting from conversion of native prairie to crested wheat grass: Patterns at songbird community and species levels. Can. J. Zool. 1998, 76, 869–875. [Google Scholar] [CrossRef]
- Brotons, L.; Pons, P.; Herrando, S. Colonization of dynamic Mediterranean landscapes: Where do birds come from after fire? J. Biogeogr. 2005, 32, 789–798. [Google Scholar] [CrossRef]
- Balletto, E.; Kudrna, O. Some aspects of the conservation of butterflies in Italy, with recommendations for a future strategy (Lepidoptera hesperiidae & Papilionoidea). Boll. della Soc. Entomol. Ital. 1985, 117, 39–59. [Google Scholar]
- Suarez, F. Mediterranean Steppe Conservation: A Background for the Development of a Future Strategy; DGXI/153/94; Commission of Europe: Brussels, Belgium, 1994. [Google Scholar]
- Turbé, A.; Toni, A.; Benito, P.; Lavelle, P.; Ruiz, N.; Van der Putten, W.H.; Labouze, E.; Mudgal, S. Soil Biodiversity: Functions, Threats and Tools for Policy Makers. 2010; Available online: https://ec.europa.eu/environment/archives/soil/pdf/biodiversity_report.pdf (accessed on 3 May 2020).
- Wilson, J.S.; Williams, K.A.; Forister, M.L.; Von Dohlen, C.D.; Pitts, J.P. Repeated evolution in overlapping mimicry rings among North American velvet ants. Nat. Commun. 2012, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Congalton, R.G.; Gu, J.; Yadav, K.; Thenkabail, P.; Ozdogan, M. Global Land Cover Mapping: A Review and Uncertainty Analysis. Remote Sens. 2014, 6, 12070–12093. [Google Scholar] [CrossRef] [Green Version]
- Di Gregorio, A.; Jansen, L.J.M. Land Cover Classification System (LCCS): Classification Concepts and User Manual; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005. [Google Scholar]
- Lucas, R.; Tomaselli, V.; Mitchell, A. Deliverable 4.2 (EO Biophysical Parameters, Land Use and Habitats Extraction Modules) of the Horizon2020 Project “ECOPOTENTIAL: Improving future ecosystem benefits through Earth Observations” (G.A. 641762). LCCS (Land Cover Classification System) Guide. Research Report. 2017. Available online: http://www.ECOPOTENTIAL-project.eu (accessed on 5 March 2020).
- Masó, J.; Domingo-Marimon, C.; Lucas, R. Deliverable 10.3 of the Horizon2020 Project “ECOPOTENTIAL: Improving future ecosystem benefits through Earth Observations” (G.A. 641762). Implementation of Apps. Research Report. 2018. Available online: http://www.ECOPOTENTIAL-project.eu (accessed on 5 March 2020).
- Baraldi, A.; Gironda, M.; Simonetti, D. Operational two-stage stratified topographic correction of spaceborne multi-spectral imagery employing an automatic spectral rule-based decision-tree preliminary classifier. IEEE Trans. Geosci. Remote Sens. 2010, 48, 112–146. [Google Scholar] [CrossRef]
- Arvor, D.; Kosmidou, V.; Libourel, T.; Adamo, M.; Tarantino, C.; Lucas, R.; O’Connor, B.; Blonda, P.; Pierkot, C.; Fargette, M.; et al. Semantic nets for object-oriented land cover mapping: A preliminary example. In Proceedings of the 4th International Conference on GEographic Object Based Image Analysis (GEOBIA 2012), Rio de Janeiro, Brazil, 7–9 May 2012; Brazilian National Institute for Space Research (INPE): São José dos Campos, Brazil, 2012; pp. 303–308. [Google Scholar]
- Tomaselli, V.; Adamo, M.; Veronico, G.; Sciandrello, S.; Tarantino, C.; Dimopoulos, P.; Medagli, P.; Nagendra, H.; Blonda, P. Definition and application of expert knowledge on vegetation pattern, phenology and seasonality for habitat mapping, as exemplified in a Mediterranean coastal site. Plant Biosyst. 2016, 151, 887–899. [Google Scholar] [CrossRef] [Green Version]
- Adamo, M.; Tarantino, C.; Tomaselli, V.; Kosmidou, V.; Petrou, Z.; Manakos, I.; Lucas, R.; Mucher, S.; Veronico, G.; Marangi, C.; et al. Expert knowledge for translating land cover/use maps to General Habitat Categories (GHC). Landsc. Ecol. 2014, 2, 1045–1067. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Schwartz, M.D. Landscape phenology: An integrative approach to seasonal vegetation dynamics. Landsc. Ecol. 2009, 24, 465–472. [Google Scholar] [CrossRef]
- Adamo, M.; Tarantino, C.; Tomaselli, V.; Veronico, G.; Nagendra, H.; Blonda, P. Habitat mapping of coastal wetlands using expert knowledge and Earth observation data. J. Appl. Ecol. 2016, 53, 1521–1532. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, K.; Li, X.S.; Yuan, Q.Z.; Zhao, X.F. Multi-scale segmentation approach for object-based land-cover classification using high-resolution imagery. Remote Sens. Lett. 2014, 5, 73–82. [Google Scholar] [CrossRef]
- Trimble. Ecognition Developer 9.5. Reference Book. 2019. Available online: https://docs.ecognition.com/v9.5.0// (accessed on 4 January 2020).
- Hao, P.; Zhan, Y.; Wang, L.; Niu, Z.; Shakir, M. Feature selection of time series MODIS data for early crop classification using random forest: A case study in kansas, USA. Remote Sens. 2015, 7, 5347–5369. [Google Scholar] [CrossRef] [Green Version]
- Bruzzone, L.; Roli, F.; Serpico, S.B. An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1318–1321. [Google Scholar] [CrossRef] [Green Version]
- Petrou, Z.I.; Manakos, I.; Stathaki, T.; Mücher, C.A.; Adamo, M. Discrimination of vegetation height categories with passive satellite sensor imagery using texture analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1442–1455. [Google Scholar] [CrossRef]
- Thenkabail, P.S. Remotely Sensed Data Characterization, Classification, and Accuracies; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Saba, F.; Valadanzouj, M.; Mokhtarzade, M. The optimazation of multi resolution segmentation of remotely sensed data using genetic alghorithm. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 1, 345–349. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, G.L.; Sullivan, D.G.; Vencill, W.K.; Bednarz, C.W.; Hook, J.E. Sensitivities of normalized difference vegetation index and a green/red ratio index to cotton ground cover fraction. Crop Sci. 2010, 50, 1000–1010. [Google Scholar] [CrossRef]
- Motohka, T.; Nasahara, K.N.; Oguma, H.; Tsuchida, S. Applicability of green-red vegetation index for remote sensing of vegetation phenology. Remote Sens. 2010, 2, 2369–2387. [Google Scholar] [CrossRef] [Green Version]
- Morris, B.; Dupigny-Giroux, L. Using the Nir/blue surface moisture index to explore feature identification at multiple spatial resolutions. In Proceedings of the Abstracts of AGU Fall Meeting, San Francisco, CA, USA, 13–17 December 2010; Volume 1, p. 1298. [Google Scholar]
- Baraldi, A.; Boschetti, L. Operational Automatic Remote Sensing Image Understanding Systems: Beyond Geographic Object-Based and Object-Oriented Image Analysis (GEOBIA/GEOOIA). Part 1: Introduction. Remote Sens. 2012, 4, 2694–2735. [Google Scholar] [CrossRef] [Green Version]
- Anys, H.; Bannari, A.; He, D.C.; Morin, D. Texture analysis for the mapping of urban areas using airborne MEIS-II images. In Proceedings of the First International Airborne Remote Sensing Conference and Exhibition, Strasbourg, France, 12–15 September 1994; Volume 3, pp. 231–245. [Google Scholar]
- Witt, G. A brief history of rules. In Writing Effective Business Rules; Morgan Kaufmann: Waltham, MA, USA, 2012; pp. 25–63. [Google Scholar] [CrossRef]
- Valverde-Albacete, F.J.; Peláez-Moreno, C. 100% classification accuracy considered harmful: The normalized information transfer factor explains the accuracy paradox. PLoS ONE 2014, 9, e84217. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Pontius, R.; Rakshit, R. A review of accuracy assessment for object-based image analysis: From per-pixel to per-polygon approaches. ISPRS J. Photogramm. Remote Sens. 2018, 141, 137–147. [Google Scholar] [CrossRef]
- Radoux, J.; Bogaert, P. Good Practices for Object-Based Accuracy Assessment. Remote Sens. 2017, 9, 646. [Google Scholar] [CrossRef] [Green Version]
- Mosley, L. A Balanced Approach to the Multi-Class Imbalance Problem. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2013. Paper 13537. [Google Scholar]
- Nativi, S.; Santoro, M.; Giuliani, G.; Mazzetti, P. Towards a Knowledge base to support global change policy goals. Int. J. Digit. Earth 2019, 13, 188–216. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Dowman, I.; Li, S.; Li, Z.; Madden, M.; Mills, J.; Paparoditis, N.; Rottensteiner, F.; Sester, M.; Toth, C.; et al. Information from Imagery: ISPRS Scientific Vision and Research Agenda. ISPRS J. Photogramm. Remote Sens. 2016, 115, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Guérin, E.; Aydin, O.; Mahdavi-Amiri, A. Artificial Intelligence. In Manual of Digital Earth; Guo, H., Goodchild, M., Annoni, A., Eds.; Springer: Singapore, 2020. [Google Scholar]
- GEO. GEO Strategic Plan 2016–2025: Implementing GEOSS. 2015. Available online: https://www.earthobservations.org/documents/GEO_Strategic_Plan_2016_2025_Implementing_GEOSS.pdf (accessed on 5 March 2020).
- Jabbour, C.; Hoayek, A.; Maurel, P.; Rey-Valette, H.; Salles, J.M. How Much you pay for a satellite image? Lessons learned from a French spatial data infrastructure. IEEE Geosci. Remote Sens. Mag. 2020. [Google Scholar] [CrossRef]
Sensor | Date of Acquisition | Flush Period |
---|---|---|
WV-2 | 19 April 2011 | Peak of Biomass (PoB) |
5 October 2011 | Post-Peak of Biomass (PostPoB) | |
22 January 2012 | Pre-Peak of Biomass (PrePoB) | |
6 July 2012 | Dry Season (DS) |
Dichotomous Level 3 | Life Form Classifier | Leaf Type Classifier | Leaf Phenology Classifier | Spatial Distribution/Aspect Classifier |
---|---|---|---|---|
A11 (Cultivated and Managed Lands) | A1 (Trees) | A7 (Broadleaved) | A9 (Evergreen) | B5 (Continuous) |
A8 (Needleleaved) | A10 (Deciduous) | B6 (Scattered Clustered) | ||
A2 (Shrubs) | A7 (Broadleaved) | A9 (Evergreen) | B5 (Continuous) | |
A8 (Needleleaved) | A10 (Deciduous) | B6 (Scattered Clustered) | ||
A3 (Herbaceous) | A4 (Graminoids) | B5 (Continuous) | ||
A5 (Non-graminoids) | B6 (Scattered Clustered) | |||
A12 (Natural and semi-natural terrestrial vegetation) | A1.A3 (Woody.Trees) | D1 (Broadleaved) | E1 (Evergreen) | C1 (Continuous) |
D2 (Needleleaved) | E2 (Deciduous) | C2 (Fragmented) | ||
A1.A4 (Woody.Shrubs) | D1 (Broadleaved) | E1 (Evergreen) | C1 (Continuous) | |
D2 (Needleleaved) | E2 (Deciduous) | C2 (Fragmented) | ||
A2 (Herbaceous) | A5 (Forbs) | E6 (Perennial) | C1 (Continuous) | |
A6 (Graminoids) | E7 (Annual) | C2 (Fragmented) |
LCCS Level 4 Code | Class Description |
---|---|
A11/A1orA2.A7.A9 | Cultivated and Managed terrestrial Areas/Trees or Shrubs.Broadleaved.Evergreen |
A11/A1orA2.A7.A10 | Cultivated and Managed terrestrial Areas/Trees or Shrubs.Broadleaved.Deciduous |
A11/A3 | Cultivated and Managed terrestrial Areas/Herbaceous |
A12/A1.D2.E1 | Natural and semi-natural terrestrial vegetation/Woody.Needleleaved.Evergreen |
A12/A1.D1.E2 | Natural and semi-natural terrestrial vegetation/Woody.Broadleaved.Deciduous |
A12/A1.D1.E1 | Natural and semi-natural terrestrial vegetation/Woody.Broadleaved.Evergreen |
A12/A2.A6 | Natural and semi-natural terrestrial vegetation/Herbaceous.Graminoids |
B28/B27 | Natural or Artificial waterbodies |
B15 | Artificial surfaces |
B16 | Bare Soil |
Bare or vegetated context | Context of either class A11/A1orA2/A7.A9 or class A11/A1orA2/A7.A10 |
Spectral Indices | Formula |
---|---|
Normalized Difference Vegetation Index (NDVI) | |
Green/Red Ratio (GRR) | |
Blue/NIR Ratio (BNR) | |
Brightness |
Spectral Rules | Logical Operators | Level 1 Temporary Classes | LCCS Level 1 Final Classes |
---|---|---|---|
NDVI(PoB) < 0.2 | AND | Urban | Non-Vegetated (B) |
BNR(PoB) ≥ 1. | |||
Brightness(PoB) ≥ 0.15 | |||
NDVI(PoB) < 0.2 | AND | Barren Land | |
NDVI(PrePoB) < 0.2 | |||
NDVI(PostPoB < 0.2 | |||
NDVI(DS) < 0.2 | |||
NDVI(PoB) ≥ 0.2 | OR | Photosynthetic Vegetation | Vegetated (A) |
NDVI(PrePoB) ≥ 0.2 | |||
NDVI(PostPoB) ≥ 0.2 | |||
NDVI(DS) ≥ 0.2 | |||
Photosynthetic Vegetation = TRUE | AND | Shadowed Vegetation | |
BNR(PrePoB) ≥ 1.15 | |||
BNR(PoB) < 1. | |||
BNR(DS) < 1. |
Spectral Rules | Logical Operators | Level 2 Intermediate Classes |
---|---|---|
BNR(PoB) ≥ 1. | AND | Aquatic (2) |
BNR(PrePoB) ≥ 1. | ||
BNR(PostPoB) ≥ 1. | ||
BNR(DS) ≥ 1. | ||
Water = FALSE | Terrestrial (1) |
Classes | UA% | PA% | F1-Score |
---|---|---|---|
A11/A1orA2.A7.A9 Cultivated Terrestrial Vegetation/(Trees or Shrubs).Broadleaved.Evergreen | 59.0 | 27.9 | 37.9 |
A11/A1orA2.A7.A10 Cultivated Terrestrial Vegetation/(Trees or Shrubs).Broadleaved.Deciduous | 97.7 | 50.4 | 66.5 |
A11/A3 Cultivated Terrestrial Vegetation/Herbaceous.Graminoids | 99. | 99.3 | 99.1 |
Bare or Vegetated Context | 19.7 | 24.1 | 21.7 |
A12/A1.D1.E1 Natural Terrestrial Vegetation/Woody.Broadleaved.Evergreen | 53.5 | 77.6 | 63.4 |
A12/A1.D1.E2 Natural Terrestrial Vegetation/Woody.Broadleaved.Deciduous | 98.1 | 98.9 | 98.5 |
A12/A1.D2.E1 Natural Terrestrial Vegetation/Woody.Needleleaved.Evergreen | 99.69 | 91.4 | 95.4 |
A12/A2.A6 Natural Terrestrial Vegetation/Herbaceous.Graminoids | 92.6 | 99.9 | 96.1 |
B15 Artificial Surfaces | 97.0 | 63.1 | 76.5 |
B16 Bare Soil | 53.7 | 86.2 | 66.1 |
B27/B28 Natural or Artificial Waterbodies | 99.3 | 100 | 99.7 |
Shadow | 77.3 | 89.1 | 83.1 |
OA% | EMA% | P% | ||
---|---|---|---|---|
Level 3 | Dichotomous phase | 99.22 | 96.31 | 99.57 |
Level 4 | Life form classifier | 98.99 | 94.66 | 98.84 |
Leaf Type classifier | 97.02 | 88.95 | 17.83 | |
Leaf Phenology classifier | 99.05 | 95.25 | 17.83 | |
Overall Output map | SO | 97.35 | 89.75 | 100 |
Single Units | Continuous Spatial Distribution | A12/A2A6C1 |
A12/A1D2E1C1 | ||
A12/A1D1E1C1 | ||
A12/A1D1E2C1 | ||
Continuous Spatial Aspect | A11/A3B5 | |
A11/(A1ORA2)A7A9B5 | ||
A11/(A1ORA2)A7A10B5 | ||
Fragmented Spatial Distribution | A12/A1D1E1C2 + | |
A12/A1D2E1C2 | ||
A12/A2A6C2 | ||
A12/A1D1E2C2 * | ||
B15 | ||
B16 | ||
Mixed Units | Continuous Spatial Distribution | A12/A2A6C2/A12/A1D1E2 |
A12/A2A6C2/A12/A1D2E1 | ||
A12/A1D2E1C2/A12/A2A6 | ||
A12/A1D1E1C2/A12/A1D1E2 | ||
A12/A1D1E1C2/A12/A1D2E1 + | ||
A12/A1D1E2C2/A12/A1D1E1 | ||
A12/A1D2E1C2/A12/A1D1E1 + | ||
A12/A1D1E2C2/A12/A2A6 | ||
A12/A1D2E1C2/A12/A1D1E2 | ||
Continuous Spatial Distribution/Scattered Clustered | A12/A2A6C2/A11/A7A10B6 + | |
A12/A2A6C2/A11/A3.B6 | ||
A12/A1D1E2C2/A11/A7A10B6 | ||
A12/A2A6C2/A11/A7A9B6 | ||
A12/A1D1E2C2/A11/A3B6 + | ||
A12/A1D2E1C2/A11/A7A9B6 * | ||
Mixed Units | ||
Mixed Units with Artificial |
OA% | EMA% | P% | ||
---|---|---|---|---|
Level 3 | Dichotomous | 87.52 | 74.51 | 100 |
Level 4 Classifiers | Life form | 93.34 | 80.21 | 92.81 |
Leaf Type | 95.57 | 93.65 | 41.30 | |
Leaf Phenology | 89.31 | 80.16 | 41.30 | |
Spatial Distribution | 91.78 | 82.57 | 92.81 | |
Secondary | 98.06 | 98.90 | 64.94 | |
Level 4 Output map | LO | 75.09 | 63.02 | 100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamo, M.; Tomaselli, V.; Tarantino, C.; Vicario, S.; Veronico, G.; Lucas, R.; Blonda, P. Knowledge-Based Classification of Grassland Ecosystem Based on Multi-Temporal WorldView-2 Data and FAO-LCCS Taxonomy. Remote Sens. 2020, 12, 1447. https://doi.org/10.3390/rs12091447
Adamo M, Tomaselli V, Tarantino C, Vicario S, Veronico G, Lucas R, Blonda P. Knowledge-Based Classification of Grassland Ecosystem Based on Multi-Temporal WorldView-2 Data and FAO-LCCS Taxonomy. Remote Sensing. 2020; 12(9):1447. https://doi.org/10.3390/rs12091447
Chicago/Turabian StyleAdamo, Maria, Valeria Tomaselli, Cristina Tarantino, Saverio Vicario, Giuseppe Veronico, Richard Lucas, and Palma Blonda. 2020. "Knowledge-Based Classification of Grassland Ecosystem Based on Multi-Temporal WorldView-2 Data and FAO-LCCS Taxonomy" Remote Sensing 12, no. 9: 1447. https://doi.org/10.3390/rs12091447