On the Problem of the Sea Ice Detection by Orbital Microwave Doppler Radar at the Nadir Sounding
Abstract
:1. Introduction
2. Measurement at the Small Incidence Angles
2.1. A Backscattered Radar Cross Section
2.2. A Doppler Spectrum
2.3. Advanced View of the Doppler Spectrum
3. New Methods
3.1. Radar Cross Section
3.2. Numerical Simulation
3.3. Retrieval of of Large-Scale Sea Waves
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anderson, H.; Long, D. Sea Ice mapping method for SeaWinds. IEEE Trans. Geosci. Remote Sens. 2005, 43, 647–657. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.-L.; Cazenave, A. Satellite Altimetry and Earth Sciences; Academic Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Zhang, Z.; Yu, Y.; Li, X.; Hui, F.; Cheng, X.; Chen, Z. Arctic sea ice classification using microwave scatterometer and radiometer data during 2002–2017. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5319–5328. [Google Scholar] [CrossRef]
- Zakhatkina, N.Y.; Alexandrov, V.Y.; Johannessen, O.N.; Sandven, S.; Frolov, I.Y. Classification of sea ice types in ENVISAT synthetic aperture radar images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2587–2600. [Google Scholar] [CrossRef]
- Komarov, A.; Buehner, M. Detection of first-year and multi-year ice from dual-polarization SAR images under cold conditions. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9109–9123. [Google Scholar] [CrossRef]
- Leigh, S.; Wing, Z.; Clausi, D. Automated ice-water classification using dual polarization SAR satellite imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5529–5539. [Google Scholar] [CrossRef]
- Cooke, C.; Scott, A. Estimating sea ica concentration from SAR: Training convolutional neural networks with passive microwave data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4735–4747. [Google Scholar] [CrossRef]
- NASDA. TRMM Data Users Handbook; NASDA: Arlington, VA, USA, 2001; p. 226. [Google Scholar]
- JAXA. GPM Data Utilization Handbook, 1st ed.; JAXA: Tokyo, Japan, 2014; p. 92. [Google Scholar]
- Hauser, D.; Tison, C.; Amiot, T.; Delaye, L.; Corcoral, N.; Castillan, P. SWIM: The First Spaceborne Wave Scatterometer. Trans. Geosci. Remote Sens. 2017, 55, 3000–3014. [Google Scholar] [CrossRef] [Green Version]
- Peureux, C.; Longepe, N.; Mouche, A.; Tison, C.; Tourain, C.; Lachiver, J.-M.; Hauser, D. Sea-ice detection from near-nadir Ku-band echoes from CFOSAT/SWIM scatterometer. Earth Space Sci. 2022. [Google Scholar] [CrossRef]
- Rivas, M.B.; Stoffelen, A. New Bayesian algorithm for sea ice detection with Quikscat. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1894–1901. [Google Scholar] [CrossRef]
- Stoffelen, A.; Anderson, D. The ECMWF Contribution to the Characterization, Interpretation, Calibration and Validation of ERS-1 Scatterometer Backscatter Measurements and Their Use in Numerical Weather Prediction Models; ECMWF Contract Report 9097/90/NL/BI; ECMWF: Shinfield Park, UK, 1995; 92p. [Google Scholar]
- Wentz, F.J.; Smith D., K. A model function for the ocean-normalized radar cross section at 14 GHz derived from NSCAT observations. J. Geophys. Res. 1999, 104, 11499–11514. [Google Scholar] [CrossRef]
- Hersbach, H.; Stoffelen, A.; Haan, S. An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res. 2007, 112, C03006. [Google Scholar] [CrossRef]
- Stoffelen, A.; Verspeek J., A.; Vogelzang, J.; Verhoef, A. The CMOD7 geophysical model function for ASCAT and ERS wind retrievals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2123–2134. [Google Scholar] [CrossRef]
- Murtazin, A.; Efgrafova, K.; Kudryavtsev, V. Application of ASCAT scatterometer data to study the ice cover in the Arctic. Uchenye Zap. Ross. Gos. Gidrol. Univ. 2015, 40, 160–173. (In Russian) [Google Scholar]
- Nekrasov, A.; Khachaturian, A.; Labun, J.; Kurdel, P.; Bogachev, M. Towards the sea ice and wind measurement by a C-band scatterometer at dual VV/HH polarization: A prospective appraisal. Remote Sens. 2020, 12, 3382. [Google Scholar] [CrossRef]
- Rivas, M.; Stoffelen, A.; Zadelhoff, G.-J. The Benefit of HH and VH Polarizations in Retrieving Extreme Wind Speeds for an ASCAT-Type Scatterometer. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4273–4280. [Google Scholar] [CrossRef]
- Alexandrov, V. Satellite Radar Monitoring of Sea Ice Cover. Ph.D. Thesis, Nansen International Center for Environment and Remote Sensing—“Nansen Center”, Sankt-Petersburg, Russia, 2010; p. 349. [Google Scholar]
- Panfilova, M.; Shikov, S.; Karaev, V. Sea ice detection using Ku-band onboard GPM satellite. In Proceedings of the URSI GASS 2020, Rome, Italy, 29 August–5 September 2020. [Google Scholar] [CrossRef]
- Panfilova, M. Retrieval of Sea Wave Parameters, Wind Speed and Sea Ice Cover Position from Remote Sensing Data in the Microwave Range at Small Incidence Angles. Ph.D. Thesis, Institute of Applied Physics RAS, Nizhny Novgorod, Russia, 2022; p. 112. (In Russian). [Google Scholar]
- Bass, F.G.; Fuks, I.M. Scattering of Waves by Statistically Rough Surfaces; Pergamon Press: Oxford, UK, 1979; p. 528. [Google Scholar]
- Barrick, D.E. Rough surface scattering based on the specular point theory. IEEE Trans. AP-16 1968, 16, 449–554. [Google Scholar] [CrossRef]
- Valenzuela, G. Theories for the interaction of electromagnetic and oceanic waves—A review. Bound. Layer Meteorol. 1978, 13, 61–86. [Google Scholar] [CrossRef]
- Isakovich, M.A. Scattering of waves from a statistically rough surface. J. Theor. Exp. Phys. 1952, 23, 305–314. (In Russian) [Google Scholar]
- Freilich, M.; Vanhoff, B. The relationship between winds, surface roughness, and radar backscatter at low incidence angles from TRMM precipitation radar measurements. J. Atmos. Ocean. Technol. 2003, 20, 549–562. [Google Scholar] [CrossRef]
- Sea ice Remote Sensing. Available online: https://seaice.uni-bremen.de/start/ (accessed on 1 August 2022).
- Thompson, D.R. Calculation of microwave Doppler spectra from the ocean surface with a time-dependent composite model. In Radar Scattering from Modulated Wind Waves; Komen, J., Oost, W., Eds.; Kluwer Academic Publisher: Philip Drive Norwell, MA, USA, 1989; pp. 27–40. [Google Scholar] [CrossRef]
- Fois, F.; Hoogeboom, P.; Chevalier, F.L.; Stoffelen, A. An analytical model for the description of the full polarimetric sea surface Doppler signature. J. Geophys. Res. Ocean. 2015, 120, 988–1015. [Google Scholar] [CrossRef]
- Nouguier, F.; Guerin, C.; Soriano, G. Analytical techniques for the Doppler signature of sea surfaces in the microwave regime-I: Linear surfaces. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4856–4864. [Google Scholar] [CrossRef] [Green Version]
- Nouguier, F.; Guerin, C.; Soriano, G. Analytical techniques for the Doppler signature of sea surfaces in the microwave regime-II: Nonlinear surfaces. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4920–4927. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, Y.; Li, H.; Chen, G. Doppler spectrum of microwave SAR signals from two-dimensional time-varying sea surface. J. Electromagn. Waves Appl. 2016, 30, 1265–1276. [Google Scholar] [CrossRef] [Green Version]
- Toporkov, J.; Sletten, M.; Brown, G. Numerical scattering simulations from time-evolving ocean-like surfaces at L- and X-band: Doppler analysis and comparisons with a composite surface analytical model. In Proceedings of the XXVII URSI General Assembly, Maastricht, The Netherlands, 17–24 August 2002. [Google Scholar]
- Toporkov, J.V.; Brown, G. Numerical simulations of scattering from time varying, randomly rough surfaces. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1616–1625. [Google Scholar] [CrossRef]
- Li, X.; Xu, X. Scattering and Doppler spectral analysis for two-dimensional linear and nonlinear sea surfaces. IEEE Trans. Geosci. Remote Sens. 2011, 49, 603–611. [Google Scholar] [CrossRef]
- Yurovsky, Y.; Kudryavtsev, V.; A. Grodsky, S.; Chapron, B. Sea Surface Ka-Band Doppler Measurements: Analysis and Model Development. Remote Sens. 2019, 11, 839. [Google Scholar] [CrossRef]
- Karaev, V.; Titchenko, Y.; Panfilova, M.; Ryabkova, M.; Meshkov, E.; Ponur, K. Application of the Doppler spectrum of the backscattering microwave signal for monitoring of ice cover: A theoretical view. Remote Sens. 2022, 14, 2331. [Google Scholar] [CrossRef]
- Karaev, V.; Titchenko, Y.; Panfilova, M.; Ryabkova, M.; Meshkov, E.; Ponur, K. Doppler spectrum as the perspective instrument for detection of the ice cover. In Proceedings of the IGARSS, Kuala Lumpur, Malaysia, 17–22 July 2022; 2022; pp. 3919–3922. [Google Scholar]
- Karaev, V.; Kanevsky, M.; Meshkov, E.; Kovalenko, A. The concept of the scanning radar with knife-like beam for remote sensing of the ocean at small incidence angles. In Proceedings of the 4th Coastal altimetry Workshop, Porto, Portugal, 14–15 October 2010. [Google Scholar]
- Karaev, V.; Kanevsky, M.; Balandina, G.; Meshkov, E.; Challenor, P.; Srokosz, M.; Gommenginger, C. A rotating knife-beam altimeter for wide-swath remote sensing of the ocean: Wind and waves. Sensors 2006, 6, 260–281. [Google Scholar] [CrossRef] [Green Version]
- Karaev, V.; Kanevsky, M.; Balandina, G.; Challenor, P.; Gommenginger, C.; Srokosz, M. The concept of a microwave radar with asymmetric knife-like beam for the remote sensing of Ocean Waves. J. Atmos. Ocean. Technol. 2005, 22, 1809–1820. [Google Scholar] [CrossRef]
- Portabella, M. Wind Field Retrieval from Satellite Radar Systems. Ph.D. Thesis, University of Barcelona, Barcelona, Spain, 2002; p. 206. [Google Scholar]
- Winebrenner, D.; Hasselman, K. Specular point scattering contribution to the mean synthetic aperture radar image of the ocean. J. Geophys. Res. 1988, 93, 9281-92-94. [Google Scholar] [CrossRef]
- Bass, F.; Razskazovsky, V.; Andreenko, N.; Egorova, L.; Kivva, F.; Kostenko, A.; Kulemin, G.; Shestopalov, V. Radiophysical Researches of the World Ocean; Institute of Radiophysics and Electronics of the Academy of Sciences of Ukraine: Kharkov, Ukraine, 1992; 220p. [Google Scholar]
- Panfilova, M.; Karaev, V.; Mitnik, L.; Titchenko, Y.; Ryabkova, M.; Meshkov, E. Andvanced view at the Ocean Surface. J. Geophys. Researh Ocean. 2020, 125, e2020JC016531. [Google Scholar] [CrossRef]
- Li, X.; Karaev, V.; Panfilova, M.; Liu, B.; Wang, Z.; Xu, Y.; Liu, J.; He, Y. Measurements of total sea surface mean square slope field based on SWIM data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–9. [Google Scholar] [CrossRef]
Kurtosis Coefficient | ||
---|---|---|
Sea waves (not corrected) | 0.00669 +/− 0.000294 | −0.352 |
Sea waves (corrected) | 0.01653 +/− 0.00169 | 0.009 |
Ice (not corrected) | 41.0 | |
Ice (corrected) | 29.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaev, V.; Titchenko, Y.; Panfilova, M.; Ponur, K.; Ryabkova, M.; Meshkov, E.; Kovaldov, D. On the Problem of the Sea Ice Detection by Orbital Microwave Doppler Radar at the Nadir Sounding. Remote Sens. 2022, 14, 4937. https://doi.org/10.3390/rs14194937
Karaev V, Titchenko Y, Panfilova M, Ponur K, Ryabkova M, Meshkov E, Kovaldov D. On the Problem of the Sea Ice Detection by Orbital Microwave Doppler Radar at the Nadir Sounding. Remote Sensing. 2022; 14(19):4937. https://doi.org/10.3390/rs14194937
Chicago/Turabian StyleKaraev, Vladimir, Yury Titchenko, Maria Panfilova, Kiril Ponur, Maria Ryabkova, Eugeny Meshkov, and Dmitry Kovaldov. 2022. "On the Problem of the Sea Ice Detection by Orbital Microwave Doppler Radar at the Nadir Sounding" Remote Sensing 14, no. 19: 4937. https://doi.org/10.3390/rs14194937