An Algorithm to Retrieve Range Ocean Current Speed under Tropical Cyclone Conditions from Sentinel-1 Synthetic Aperture Radar Measurements Based on XGBoost
Abstract
:1. Introduction
2. Datasets
2.1. S-1 SAR Data and CyclObs Wind
2.2. WW3-Simulated Wave
2.3. Ocean Current Data
3. Methodology
3.1. Relationship between Upper Oceanic Dynamics and DCA
3.2. XGBoost
3.3. Empirical Algorithm
4. Results and Discussion
4.1. Validation
4.2. Discussion
5. Conclusions
- (1)
- (2)
- The range component of the ocean current obtained as output of the trained XGBoost machine learning model is compared with HYCOM data and two collocated HF phased-array radar measurements. It results in RMSE = 0.11 m/s and r = 0.97, and RMSE = 0.12 m/s and r = 0.75, respectively. The above result is better than the empirical CDOP model with an RMSE = 0.68 m/s and r = 0.22 for HYCOM and an RMSE = 0.22 m/s and r = 0.28 for HF data.
- (3)
- The error analysis confirms the steady performance of XGBoost at a range wind speed between −60 m/s and 40 m/s, a range Stokes drift between −0.75 m/s and 0.6 m/s, and a DCs between −75 Hz and 75 Hz. However, the accuracy is gradually reduced by XGBoost with increasing current speed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fetterer, F.; Gineris, D.; Wackerman, C.C. Validating a scatterometer wind algorithm for ERS-1 SAR. IEEE Trans. Geosci. Remote Sens. 1998, 36, 479–492. [Google Scholar] [CrossRef]
- Lemoine, F.G.; Zelensky, N.P.; Chinn, D.S.; Pavlis, D.E.; Luceri, V. Towards development of a consistent orbit series for Topex, Jason-1, and Jason-2. Adv. Space Res. 2010, 46, 1513–1540. [Google Scholar] [CrossRef]
- Ni, W.C.; Stoffelen, A.; Ren, K.J.; Yang, X.F.; Vogelzang, J. SAR and ASCAT tropical cyclone wind speed reconciliation. Remote Sens. 2022, 14, 5535. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W. Cross-polarized synthetic aperture radar: A new potential technique for hurricanes. Bull. Am. Meteorol. Soc. 2012, 93, 531–541. [Google Scholar] [CrossRef]
- Hwang, P.A. Fetch- and duration-limited nature of surface wave growth inside tropical cyclones: With applications to air-sea exchange and remote sensing. J. Phys. Oceanogr. 2016, 46, 41–56. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, J.; Zhang, J.; Guan, C.L. Extreme wind speeds retrieval using Sentinel-1 IW mode SAR data. Remote Sens. 2021, 13, 1867. [Google Scholar] [CrossRef]
- Hersbach, H.; Stoffelen, A.; Haan, S. An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res. 2007, 112, C03006. [Google Scholar] [CrossRef]
- Hersbach, H. Comparison of C-band scatterometer CMOD5.N equivalent neutral winds with ECMWF. J. Atmos. Ocean. Technol. 2010, 27, 721–736. [Google Scholar] [CrossRef]
- Stoffelen, A.; Verspeek, J.; Vogelzang, J.; Verhoef, A. The CMOD7 geophysical model function for ASCAT and ERS wind retrievals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2123–2134. [Google Scholar] [CrossRef]
- Lu, Y.R.; Zhang, B.; Perrie, W.; Li, X.F.; Wang, H. A C-band geophysical model function for determining coastal wind speed using synthetic aperture radar. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2417–2428. [Google Scholar] [CrossRef]
- Shao, W.Z.; Jiang, X.W.; Sun, Z.F.; Hu, Y.Y.; Marino, A.; Zhang, Y.G. Evaluation of wave retrieval for Chinese Gaofen-3 synthetic aperture radar. Geo-Spat. Inf. Sci. 2022, 25, 229–243. [Google Scholar] [CrossRef]
- Li, X.M.; Lehner, S. Algorithm for sea surface wind retrieval from TerraSAR-X and TanDEM-X data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 928–2939. [Google Scholar] [CrossRef]
- Hwang, P.A.; Fois, F. Surface roughness and breaking wave properties retrieved from polarimetric microwave radar backscattering. J. Geophys. Res.-Oceans 2015, 120, 3640–3657. [Google Scholar] [CrossRef]
- Gao, Y.; Guan, C.L.; Sun, J.; Xie, L. A new hurricane wind direction retrieval method for SAR images without hurricane eye. J. Atmos. Ocean. Technol. 2018, 35, 2229–2239. [Google Scholar] [CrossRef]
- Zhang, G.S.; Li, X.F.; Perrie, W.; Hwang, P.; Zhang, B.; Yang, X.F. A hurricane wind speed retrieval model for C-band RADARSAT-2 cross-polarization ScanSAR images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4766–4774. [Google Scholar] [CrossRef]
- Mouche, A.A.; Chapron, B. Global C-band Envisat, RADARSAT-2 and Sentinel-1 SAR measurements in copolarization and cross-polarization. J. Geophys. Res. 2016, 120, 7195–7207. [Google Scholar] [CrossRef]
- Mouche, A.A.; Chapron, B.; Zhang, B.; Husson, R. Combined co- and cross-polarized SAR measurements under extreme wind condition. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6476–6755. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Shao, W.Z.; Shen, W.; Zhou, Y.H.; Jiang, X.W. Machine learning applied to a dual-polarized Sentinel-1 image for wind retrieval of tropical cyclones. Remote Sens. 2023, 15, 3948. [Google Scholar] [CrossRef]
- Corcione, V.; Grieco, G.; Portabella, M.; Nunziata, F.; Migliaccio, M. A novel azimuth cutoff implementation to retrieve sea surface wind speed from SAR imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3331–3340. [Google Scholar] [CrossRef]
- Hasselmann, K.; Hasselmann, S. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum. J. Geophys. Res.-Oceans 1991, 96, 10713–10729. [Google Scholar] [CrossRef]
- Sun, J.; Guan, C.L. Parameterized first-guess spectrum method for retrieving directional spectrum of swell-dominated waves and huge waves from SAR images. Chin. J. Oceanol. Limnol. 2006, 24, 12–20. [Google Scholar]
- Shao, W.Z.; Hu, Y.Y.; Jiang, X.W.; Zhang, Y.G. Wave retrieval from quad-polarized Chinese Gaofen-3 SAR image using an improved tilt modulation transfer function. Geo-Spat. Inf. Sci. 2023, 1–19. [Google Scholar] [CrossRef]
- Schulz-Stellenfleth, J.; Konig, T.; Lehner, S. An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data. J. Geophys. Res.-Oceans 2007, 112, C03019. [Google Scholar] [CrossRef]
- Pleskachevsky, A.; Jacobsen, S.; Tings, B.; Schwarz, E. Estimation of sea state from Sentinel-1 synthetic aperture radar imagery for maritime situation awareness. Int. J. Remote Sens. 2019, 40, 4104–4142. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.S.; Lin, M.S.; Li, W.W.; Zhu, J.H.; Ren, L.; Cui, L.M. Quad-polarimetric SAR sea state retrieval algorithm from Chinese Gaofen-3 wave mode imagettes via deep learning. Remote Sens. Environ. 2022, 273, 112969. [Google Scholar] [CrossRef]
- Pleskachevsky, A.; Tings, B.; Wiehle, S.; Imber, J.; Jacobsen, S. Multiparametric sea state fields from synthetic aperture radar for maritime situational awareness. Remote Sens. Environ. 2022, 280, 113200. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Hao, M.Y.; Shao, W.Z.; Shen, W.; Jiang, X.W. Wave retrieval for Sentinel-1 synthetic aperture radar under complex sea state. Int. J. Remote Sens. 2024, 45, 3807–3826. [Google Scholar] [CrossRef]
- Zhao, X.B.; Shao, W.Z.; Zhao, L.B.; Gao, Y.; Hu, Y.Y.; Yuan, X.Z. Impact of rain on wave retrieval from Sentinel-1 synthetic aperture radar images in tropical cyclones. Adv. Space Res. 2021, 67, 3072–3086. [Google Scholar] [CrossRef]
- Bao, L.W.; Zhang, X.; Cao, C.H.; Wang, X.C.; Jia, Y.J.; Gao, G.; Zhang, Y.; Wan, Y.; Zhang, J. Impact of polarization basis on wind and wave parameters estimation using the azimuth cutoff from GF-3 SAR imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 22070380. [Google Scholar] [CrossRef]
- Hansen, M.; Collard, F.; Dagestad, K.F.; Johannessen, J.A.; Chapron, B. Retrieval of sea surface range velocities from Envisat ASAR doppler centroid measurements. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3582–3592. [Google Scholar] [CrossRef]
- Chapron, B.; Collard, F.; Ardhuin, F. Direct measurements of ocean surface velocity from space: Interpretation and validation. J. Geophys. Res.-Oceans 2005, 110, C07008. [Google Scholar] [CrossRef]
- Moiseev, A.; Johnsen, H.; Hansen, M.W.; Johannessen, J.A. Evaluation of radial ocean surface currents derived from Sentinel-1 IW doppler shift using coastal radar and Lagrangian surface drifter observations. J. Geophys. Res.-Oceans 2020, 125, e2019JC015743. [Google Scholar] [CrossRef]
- Shao, W.Z.; Zhou, Y.H.; Hu, Y.Y.; Li, Y.; Zhou, Y.S.; Zhang, Q.J. Range current retrieval fromsentinel-1 SAR ocean product based on deep learning. Remote Sens. Lett. 2024, 15, 145–156. [Google Scholar] [CrossRef]
- Yang, X.B.; He, Y.J. Retrieval of a real-time sea surface vector field from SAR doppler centroid: 2. on the radial velocity. J. Geophys. Res.-Oceans 2023, 128, 1. [Google Scholar] [CrossRef]
- Mouche, A.A.; Collard, F.; Chapron, B.; Dagestad, K.F.; Guitton, G.; Johannessen, J.A.; Kerbaol, V.; Hansen, M.W. On the use of doppler shift for sea surface wind retrieval from SAR. IEEE Trans. Geosci. Remote Sens. 2012, 50, 901–2909. [Google Scholar] [CrossRef]
- Johannessen, J.A.; Chapron, B.; Collard, F.; Kudryavtsev, V.; Mouche, A.; Akimov, D.; Dagestad, K.F. Direct ocean surface velocity measurements from space: Improved quantitative interpretation of Envisat ASAR observations. Geophys. Res. Lett. 2008, 35, L22608. [Google Scholar] [CrossRef]
- Fan, S.R.; Zhang, B.; Kudryavtsev, V.; Perrie, W. Mapping radial ocean surface currents in the outer core of hurricane maria from synthetic aperture radar doppler measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 2090–2097. [Google Scholar] [CrossRef]
- Tan, B.H.; Wang, L.H.; Ge, D.C.; Fang, Z.; Sun, W.W.; Feng, T. An investigation of inversion method to measure the radial velocity of Kuroshio from Sentinel-1 SAR data. GISci. Remote Sens. 2024, 61, 1. [Google Scholar] [CrossRef]
- Elyouncha, A.; Eriksson, L.E.B.; Johnsen, H. Direct Comparison of Sea Surface Velocity Estimated from Sentinel-1 and TanDEM-X SAR Data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 2425–2436. [Google Scholar] [CrossRef]
- Wang, W.L.; Forget, P.; Guan, C.L. Inversion and assessment of swell waveheights from HF radar spectra in the Iroise sea. Ocean Dyn. 2016, 66, 527–538. [Google Scholar] [CrossRef]
- Cui, H.; He, H.L.; Liu, X.H.; Li, Y. Effect of oceanic current on typhoon-wave modeling in the east China sea. Chin. Phys. B 2012, 21, 109201. [Google Scholar] [CrossRef]
- Li, J.K.; Alison, L.K.; Hayley, H.S. Comparison of wave propagation through ice covers in calm and storm conditions. Geophys. Res. Lett. 2015, 42, 5935–5941. [Google Scholar] [CrossRef]
- Liu, Q.X.; Babanin, A.; Fan, Y.L.; Zieger, S.; Guan, C.L.; Moon, I.J. Numerical simulations of ocean surface waves under hurricane conditions: Assessment of existing model performance. Ocean Modell. 2017, 118, 73–93. [Google Scholar] [CrossRef]
- Sheng, Y.X.; Shao, W.Z.; Li, S.Q.; Zhang, Y.M.; Yang, H.W.; Zuo, J.C. Evaluation of typhoon waves simulated by WaveWatch-III model in shallow waters around Zhoushan islands. J. Ocean Univ. China 2019, 18, 365–375. [Google Scholar] [CrossRef]
- Wang, J.B.; Xu, H.; Yang, L.; Song, Q.J.; Ma, C.F. Cross-calibrations of the HY-2B altimeter using Jason-3 satellite during the period of April 2019–September 2020. Front. Earth Sci. 2021, 9, 647583. [Google Scholar] [CrossRef]
- Yao, R.; Shao, W.Z.; Zhang, Y.; Wei, M.; Hu, S.; Zuo, J.C. Feasibility of wave simulation in typhoon using WAVEWATCH-III forced by remote-sensed wind. J. Mar. Sci. Eng. 2023, 11, 2010. [Google Scholar] [CrossRef]
- Yang, Z.H.; Shao, W.Z.; Ding, Y.; Shi, J.; Ji, Q.Y. Wave simulation by the SWAN model and FVCOM considering the sea-water level around the Zhoushan Islands. J. Mar. Sci. Eng. 2020, 8, 783. [Google Scholar] [CrossRef]
- Guyon, I.; Luxburg, U.V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; Garnett, R. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4768–4777. [Google Scholar]
- Collard, F.; Mouche, A.A.; Chapron, B.; Danil, C.; Johannessen, J. Routine high resolution observation of selected major surface currents from space. Adv. SAR Oceanogr. Envisat. ERS Missions 2008, 679, 21–25. [Google Scholar]
- Sun, J.B.; Li, H.M.; Lin, W.M.; He, Y.J. Joint inversion of sea surface wind and current velocity based on Sentinel-1 synthetic aperture radar observations. J. Mar. Sci. Eng. 2024, 11, 450. [Google Scholar] [CrossRef]
Hyperparameter | Value |
---|---|
max_depth | 15 |
learning_rate | 0.05 |
n_estimators | 400 |
objective | reg: linear |
booster | gbtree |
gamma | 0.3 |
min_child_weight | 1 |
subsample | 1 |
colsample_bytree | 1 |
reg_alpha | 0 |
reg_lambda | 1 |
eval_metric | rmse |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Shao, W.; Nunziata, F.; Wang, W.; Li, C. An Algorithm to Retrieve Range Ocean Current Speed under Tropical Cyclone Conditions from Sentinel-1 Synthetic Aperture Radar Measurements Based on XGBoost. Remote Sens. 2024, 16, 3271. https://doi.org/10.3390/rs16173271
Zhou Y, Shao W, Nunziata F, Wang W, Li C. An Algorithm to Retrieve Range Ocean Current Speed under Tropical Cyclone Conditions from Sentinel-1 Synthetic Aperture Radar Measurements Based on XGBoost. Remote Sensing. 2024; 16(17):3271. https://doi.org/10.3390/rs16173271
Chicago/Turabian StyleZhou, Yuhang, Weizeng Shao, Ferdinando Nunziata, Weili Wang, and Cheng Li. 2024. "An Algorithm to Retrieve Range Ocean Current Speed under Tropical Cyclone Conditions from Sentinel-1 Synthetic Aperture Radar Measurements Based on XGBoost" Remote Sensing 16, no. 17: 3271. https://doi.org/10.3390/rs16173271