Quantifying Spatio-Temporal River Morphological Change and Its Consequences in the Vietnamese Mekong River Delta Using Remote Sensing and Geographical Information System Techniques
Abstract
:1. Introduction
2. Study Area: VMD
3. Data and Methods
3.1. Data
3.1.1. Multi-Temporal Satellite Imagery Dataset
3.1.2. Population Density
3.1.3. Land Use and Land Cover
3.2. Water Classification Method and Accuracy Assessment
3.2.1. Water Classification
3.2.2. Accuracy Assessment of Water Extraction
3.3. Analysis of the Morphological Changes
3.4. Exposure of Riverbank and Islet Erosion on Population and LULC
3.5. Calculation of Economic Damages of Land Loss
4. Results
4.1. Validation of Riverbank Detection Result
4.2. Morphological Changes in the VMD over Three Decades
4.2.1. Changes in Riverbank
4.2.2. Changes in the Islets
4.2.3. Changes in River Sinuosity
4.2.4. Changes in RIVER width
4.3. Exposures to Riverbank and Islet Erosion
4.3.1. Exposure to LULC
4.3.2. Exposure of Population
4.4. Economic Damages of Land Loss
5. Discussion
5.1. Morphological Evolution in the VMD
5.2. Causes of Riverbank Erosion in the VMD
5.3. Exposure and Consequences of Erosion
5.4. Research Limitations and Future Outlooks
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Camporeale, C.; Perona, P.; Porporato, A.; Ridolfi, L. On the long-term behavior of meandering rivers. Water Resour. Res. 2005, 41, W12403. [Google Scholar] [CrossRef]
- Stamm, J.; Müller, N.; Muvdi, R.T.; Mietz, S.C.; Alshomaree, R. Innovative System Solutions for Transdisciplinary and Regional Ecological Flood Risk Management and Natural Water Development. Report of the BMBF ReWaM Project In_StröHmunG, Germany. 2018. Available online: https://www.ioew.de/en/project/innovative_system_solutions_for_a_transdisciplinary_and_regional_ecological_flood_risk_management_a (accessed on 30 November 2023).
- Ortega, J.A.; Razola, L.; Garzón, G. Recent human impacts and change in dynamics and morphology of ephemeral rivers. Nat. Hazards Earth Syst. Sci. 2014, 14, 713–730. [Google Scholar] [CrossRef]
- Surian, N.; Rinaldi, M. Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology 2003, 50, 307–326. [Google Scholar] [CrossRef]
- Hossain, M.A.; Gan, T.Y.; Baki, A.B.M. Assessing morphological changes of the Ganges River using satellite images. Quat. Int. 2013, 304, 142–155. [Google Scholar] [CrossRef]
- Darby, S.E.; Thorne, C.R. Development and Testing of Riverbank-Stability Analysis. J. Hydraul. Eng. 1995, 122, 8. [Google Scholar] [CrossRef]
- Brunier, G.; Anthony, E.J.; Goichot, M.; Provansal, M.; Dussouillez, P. Recent morphological changes in the Mekong and Bassac river channels, Mekong delta: The marked impact of riverbed mining and implications for delta destabilisation. Geomorphology 2014, 224, 177–191. [Google Scholar] [CrossRef]
- World Wide Fund for Nature (WWF). Ecological Footprint and Investment in Natural Capital in Asia and the Pacific. Gland, Switzerland. 2012. Available online: https://www.adb.org/publications/ecological-footprint-and-investment-natural-capital-asia-and-pacific (accessed on 30 November 2023).
- Jordan, C.; Visscher, J.; Dung, N.V.; Apel, H.; Schlurmann, T. Impacts of human activity and global changes on future morphodynamics within the tien river, Vietnamese Mekong delta. Water 2020, 12, 2204. [Google Scholar] [CrossRef]
- Vietnam Plus. Mekong Delta Hoped to See Development Breakthroughs. 2022. Available online: https://www.vietnamplus.vn/phat-trien-kinh-te-vung-dong-bang-song-cuu-long-khoi-day-dong-luc/787752.vnp (accessed on 1 December 2023). (In Vietnamese).
- Binh, D.V.; Kantoush, S.A.; Ata, R.; Tassi, P.; Tam, V.N.; Abderrezzak, K.E.K.; Bourban, E.S.; Hung, N.Q.; Doan, N.L.P.; Trung, L.V.; et al. Hydrodynamics, sediment transport, and morphodynamics in the Vietnamese Mekong Delta: Field study and numerical modelling. Geomorphology 2022, 413, 108368. [Google Scholar] [CrossRef]
- Binh, D.V.; Kantoush, S.; Sumi, T. Changes to long-term discharge and sediment loads in the Vietnamese Mekong Delta caused by upstream dams. Geomorphology 2020, 353, 107011. [Google Scholar] [CrossRef]
- Kummu, M.; Lu, X.X.; Rasphone, A.; Sarkkula, J.; Koponen, J. Riverbank changes along the Mekong River: Remote sensing detection in the Vientiane-Nong Khai area. Quat. Int. 2008, 186, 100–112. [Google Scholar] [CrossRef]
- Miyazawa, N.; Sunada, K.; Sokhem, P. Bank Erosion in the Mekong River Basin: Is Bank Erosion in My Town Caused by the Activities of My Neighbors? In Modern Myths of the Mekong, Water & Development Publications; Helsinki University of Technology: Helsinki, Finland, 2008; pp. 19–26. [Google Scholar]
- Van, V. Urgently Overcome Landslides in the Mekong Delta. 2023. Available online: https://cand.com.vn/doi-song/cap-bach-khac-phuc-sat-lo-tai-dong-bang-song-cuu-long-i703659/ (accessed on 1 December 2023). (In Vietnamese).
- Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of water indices for surface water extraction in a landsat 8 scene of Nepal. Sensors 2018, 18, 2580. [Google Scholar] [CrossRef]
- Batalla, R.J.; Iroumé, A.; Hernández, M.; Llena, M.; Mazzorana, B.; Vericat, D. Recent geomorphological evolution of a natural river channel in a Mediterranean Chilean basin. Geomorphology 2018, 303, 322–337. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Robert, D.A.; Lawrence, R.L. Spectrally based remote sensing of river bathymetry. Earth Surf. Process. Landf. 2009, 34, 1039–1059. [Google Scholar] [CrossRef]
- Langat, P.K.; Kumar, L.; Koech, R. Monitoring river channel dynamics using remote sensing and GIS techniques. Geomorphology 2018, 325, 92–102. [Google Scholar] [CrossRef]
- Smith, L.C. Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrol. Process. 1997, 11, 1427–1439. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.P.; Saito, Y.; Nguyen, V.L. Recent evolution of the Mekong Delta and the impacts of dams. Earth-Sci. Rev. 2017, 175, 1–17. [Google Scholar] [CrossRef]
- Aadland, T.; Helland-Hansen, W. Progradation rates measured at modern river outlets: A first-order constraint on the pace of deltaic deposition. J. Geophys. Res Earth Surf. 2019, 124, 347–364. [Google Scholar] [CrossRef]
- Markert, K.N.; Schmidt, C.M.; Griffin, R.E.; Flores, A.I.; Poortinga, A.; Saah, D.S.; Muench, R.E.; Clinton, N.E.; Chishtie, F.; Kityuttachai, K.; et al. Historical and Operational Monitoring of Surface Sediments in the Lower Mekong Basin Using Landsat and Google Earth Engine Cloud Computing. Remote Sens. 2018, 10, 909. [Google Scholar] [CrossRef]
- Khoi, D.N.; Dang, T.D.; Pham, L.T.H.; Loi, P.T.; Thuy, N.T.D.; Phung, N.K.; Bay, N.T. Morphological change assessment from intertidal to river-dominated zones using multiple-satellite imagery: A case study of the Vietnamese Mekong Delta. Reg. Stud. Mar. Sci. 2020, 34, 101087. [Google Scholar] [CrossRef]
- Lam, N.D.; Thy, P.T.M.; Phung, H.P. Change detection of land use and riverbank in Mekong Delta, Vietnam using time series remotely sensed data. J. Resour. Ecol. 2011, 2, 370–374. [Google Scholar]
- Tha, T.; Piman, T.; Bhatpuria, D.; Ruangrassamee, P. Assessment of riverbank erosion hotspots along the Mekong River in Cambodia using remote sensing and hazard exposure mapping. Water 2022, 14, 1981. [Google Scholar] [CrossRef]
- Gugliotta, M.; Saito, Y.; Nguyen, V.L.; Ta, T.K.O.; Nakashima, R.; Tamura, T.; Uehara, K.; Katsuki, K.; Yamamoto, S. Process regime, salinity, morphological, and sedimentary trends along the fluvial to marine transition zone of the mixed-energy Mekong River delta, Vietnam. Cont. Shelf Res. 2017, 147, 7–26. [Google Scholar] [CrossRef]
- Binh, D.V.; Wietlisbach, B.; Kantoush, S.; Loc, H.H.; Park, E.; Cesare, G.D.; Cuong, D.H.; Tung, N.X.; Sumi, T. A Novel Method for River Bank Detection from Landsat Satellite Data: A Case Study in the Vietnamese Mekong Delta. Remote Sens. 2020, 12, 3298. [Google Scholar] [CrossRef]
- Bizzi, S.; Demarchi, L.; Grabowski, R.C.; Weissteiner, C.J.; Bund, W.V.D. The use of remote sensing to characterise hydromorphological properties of European rivers. Aquat. Sci. 2016, 78, 57–70. [Google Scholar] [CrossRef]
- Shrestha, B.; Cochrane, T.A.; Caruso, B.S.; Arias, M.E.; Piman, T. Uncertainty in flow and sediment projections due to future climate scenarios for the 3S Rivers in the Mekong Basin. J. Hydrol. 2016, 540, 1088–1104. [Google Scholar] [CrossRef]
- Kim, T.T.; Ngoc, P.; Nga, T.N.Q.; Nguyet, T.T.N.; Truong, N.H.; Diem, M.T.P.; Phung, K.N.; Bay, T.N. Modifying BEHI (Bank Erosion Hazard Index) to map and assess the levels of potential riverbank erosion of highly human impacted rivers: A case study for Vietnamese Mekong river system. Environ. Earth Sci. 2023, 82, 554. [Google Scholar] [CrossRef]
- Anh, H.H.; Thuy, N.N. Socio-economic assessment of riverbank erosion from heavy boat traffic: A case study at the Cho Gao Canal, Tien Giang, Vietnam. IOP Conf. Ser. Earth Environ. Sci. 2022, 967, 012005. [Google Scholar] [CrossRef]
- Tri, V.P.D.; Trung, P.K.; Trong, T.M.; Parsons, D.R.; Darby, S.E. Assessing social vulnerability to riverbank erosion across the Vietnamese Mekong Delta. Int. J. River Basin Manag. 2023, 21, 501–512. [Google Scholar] [CrossRef]
- Bizzi, S.; Piégay, H.; Demarchi, L.; Van de Bund, W.; Weissteiner, C.J.; Gob, F. LiDAR-based fluvial remote sensing to assess 50–100-year human-driven channel changes at a regional level: The case of the Piedmont Region, Italy. Earth Surf. Process. Landf. 2018, 44, 471–489. [Google Scholar] [CrossRef]
- Jordan, C.; Tiede, J.; Lojek, O.; Visscher, J.; Apel, H.; Nguyen, H.Q.; Quang, C.N.X.; Schlurmann, T. Sand mining in the Mekong Delta revisited—Current scales of local sediment deficits. Sci. Rep. 2019, 9, 17823. [Google Scholar] [CrossRef] [PubMed]
- Binh, D.V.; Kantoush, S.A.; Saber, M.; Mai, N.P.; Maskey, S.; Phong, D.T.; Sumi, T. Long-term alterations of flow regimes of the Mekong River and adaptation strategies for the Vietnamese Mekong Delta. J. Hydrol. Reg. Stud. 2020, 32, 100742. [Google Scholar] [CrossRef]
- Lu, X.X.; Siew, R.Y. Water discharge and sediment flux changes over the past decades in the Lower Mekong River: Possible impacts of the Chinese dams. Hydrol. Earth Syst. Sci. 2006, 10, 181–195. [Google Scholar] [CrossRef]
- Darby, S.E.; Hackney, C.R.; Leyland, J.; Kummu, M.; Lauri, H.; Parsons, D.R.; Best, J.L.; Nicholas, A.P.; Aalto, R. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity. Nature 2016, 539, 276–279. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Gao, Y.; Annandale, G.W.; Morris, G.L.; Jiang, E.; Zhang, J.; Cao, Y.; Carling, P.; Fu, K.; Guo, Q.; et al. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth’s Future 2014, 2, 256–280. [Google Scholar] [CrossRef]
- Nowacki, D.J.; Ogston, A.S.; Nittrouer, C.A.; Fricke, A.T.; Tri, V.P.D. Sediment dynamics in the lower Mekong River: Transition from tidal river to estuary. J. Geophys. Res. Ocean. 2015, 120, 6363–6383. [Google Scholar] [CrossRef]
- Koehnken, L. Discharge and Sediment Monitoring Program Review, Recommendations and Data Analysis: Part 2-Data Analysis of Preliminary Results. Information and Knowledge Management Programme (IKMP), Mekong River Commission, Phnom Penh. 2012. 53p. Available online: https://portal.mrcmekong.org/assets/v1/documents/Report-workshop/Technical-Report_DSMP/report_IKMP-Discharge-and-Sediment-Monitoring-Program-Review_Part1-May2012.pdf (accessed on 15 November 2023).
- Stephens, J.D.; Allison, M.A.; Leonardo, D.R.D.; Weathers, H.D.; Ogston, A.S.; McLachlan, R.L.; Xing, F.; Meselhe, E.A. Sand dynamics in the Mekong River channel and export to the coastal ocean. Cont. Shelf Res. 2017, 147, 38–50. [Google Scholar] [CrossRef]
- Tuyen, L.D. Mekong Delta Pays a High Price from Sand Mining. 2023. Available online: https://www.mekongeye.com/2023/05/01/mekong-delta-sand-mining/ (accessed on 15 November 2023).
- Thanh Liem. Landslides are Becoming More and More Serious, Can Tho Petitions the Central Government for Support. 2020. Available online: https://www.vietnamplus.vn/sat-lo-ngay-cang-nghiem-trong-can-tho-kien-nghi-trung-uong-ho-tro-post715493.vnp#google_vignette (accessed on 16 November 2023).
- Clément, R.; Adrien, A.; Mélanie, B.; Lise, V.; Hervé, P. “FluvialCorridor”: A new ArcGIS toolbox package for multiscale riverscape exploration. Geomorphology 2015, 242, 29–37. [Google Scholar]
- Yang, C.; Cai, X.; Wang, X.; Yan, R.; Zhang, T.; Zhang, Q.; Lu, X. Remotely Sensed Trajectory Analysis of Channel Migration in Lower Jingjiang Reach during the Period of 1983–2013. Remote Sens. 2015, 7, 16241–16256. [Google Scholar] [CrossRef]
- Rozo, M.G.; Nogueira, A.C.R.; Castro, C.S. Remote sensing-based analysis of the planform changes in the upper Amazon River over the period 1986–2006. J. S. Am. Earth Sci. 2014, 51, 28–44. [Google Scholar] [CrossRef]
- Wang, P.; Fu, K.; Huang, J.; Duan, X.; Yang, Z. Morphological changes in the lower Lancang River due to extensive human activities. PeerJ 2020, 8, e9471. [Google Scholar] [CrossRef] [PubMed]
- Bright, E.; Rose, A.; Urban, M. LandScan Global 2015 [Data Set]. Oak Ridge National Laboratory. 2016. Available online: https://landscan.ornl.gov (accessed on 16 November 2023).
- Bright, E.; Coleman, P.; King, A.; Rose, A.; Urban, M. LandScan Global 2008 [Data Set]. Oak Ridge National Laboratory. 2009. Available online: https://landscan.ornl.gov (accessed on 16 November 2023).
- Bright, E.; Coleman, P. LandScan Global 2002 [Data Set]. Oak Ridge National Laboratory. 2003. Available online: https://landscan.ornl.gov (accessed on 16 November 2023).
- Duong, C.P.; Ta, H.T.; Van, T.T.; Taiga, S.; Thuy, P.T.V.; Dieu, T.B.; Masato, H.; Takeo, T.; Kenlo, N.N. First comprehensive quantification of annual land use/cover from 1990 to 2020 across mainland Vietnam. Sci Rep. 2021, 11, 9979. [Google Scholar]
- Zou, Z.; Xiao, X.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Zhang, G.; Wang, J. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl. Acad. Sci. USA 2018, 115, 3810–3815. [Google Scholar] [CrossRef] [PubMed]
- Boothroyd, R.J.; Williams, R.D.; Hoey, T.B.; Barrett, B.; Prasojo, O.A. Applications of Google Earth Engine in fluvial geomorphology for detecting river channel change. WIREs Water 2020, 8, e21496. [Google Scholar] [CrossRef]
- Baki, A.B.M.; Gan, T.Y. Riverbank migration and island dynamics of the braided Jamuna River of the Ganges-Brahmaputra basin using multi-temporal Landsat images. Quat. Int. 2012, 263, 148–161. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.H.; Islam, S.M.D.; Azam, G. Exploring impacts and livelihood vulnerability of riverbank erosion hazard among rural household along the river Padma of Bangladesh. Env. Syst Res. 2017, 6, 25. [Google Scholar] [CrossRef]
- Hung, L.M.; San, D.C.; Chuong, L.T.; Long, N.T.; Hoang, T.B.; Nghi, V.V.; Tuong, T.N.; Nguyen, L.D.; Viet, P.B.; Khiet, D.V. Prediction of riverbank sliding and deposition in lower Mekong delta, mitigations measurement strategies. Report of National Project, Vietnam. 2003. Available online: http://tailieudientu.lrc.tnu.edu.vn/Upload/Collection/brief/brief_25027_28481_4544.pdf (accessed on 16 November 2023).
- Pilarczyk, K.W. Bank Erosion Mekong Delta and Red River. Delft: HYDROpil Consultancy. 2004. Available online: https://www.researchgate.net/publication/294892187_Bank_erosion_Mekong_Delta_and_Red_River (accessed on 1 November 2023).
- Bussi, G.; Darby, S.E.; Whitehead, P.G.; Jin, L.; Dadson, S.J.; Voepel, H.E.; Vasilopoulos, G.; Hackney, C.R.; Hutton, C.; Berchoux, T.; et al. Impact of dams and climate change on suspended sediment flux to the Mekong delta. Sci. Total Environ. 2020, 755, 142468. [Google Scholar] [CrossRef] [PubMed]
- Stimson. Mekong Mainstream Dams. 2020. Available online: https://www.stimson.org/2020/mekong-mainstream-dams/ (accessed on 1 November 2023).
- Bravard, J.P.; Goichot, M.; Gaillot, S. Geography of sand and gravel mining in the Lower Mekong River. EchoGéo 2013, 26. [Google Scholar] [CrossRef]
- Gruel, C.R.; Park, E.; Switzer, A.D.; Kumar, S.; Loc, H.H.; Kantoush, S.; Binh, D.V.; Feng, L. New systematicaly measured sand mining budget for the Mekong Delta reveals rising trends and significant volume underestimations. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102736. [Google Scholar]
- Anthony, E.J.; Brunier, G.; Besset, M.; Goichot, M.; Dussouillez, P.; Nguyen, V.L. Linking rapid erosion of the Mekong River delta to human activities. Sci. Rep. 2015, 5, 14745. [Google Scholar] [CrossRef]
- Ta, T.K.O.; Nguyen, V.L.; Tateishi, M.; Kobayashi, I.; Tanabe, S.; Saito, Y. Holocene delta evolution and sediment discharge of the Mekong River, southern Vietnam. Quat. Sci. Rev. 2002, 21, 1807–1819. [Google Scholar] [CrossRef]
- Tho, N.V. Coastal Erosion, River Bank Erosion and Landslides in the Mekong Delta: Causes, Effects and Solutions. In Geotechnics for Sustainable Infrastructure Development, Lecture Notes in Civil Engineering; Springer: Singapore, 2020; pp. 957–962. [Google Scholar]
- Saito, Y.; Yang, Z.; Hori, K. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: A review on their characteristics, evolution and sediment discharge during the Holocene. Geomorphology 2001, 41, 219–231. [Google Scholar] [CrossRef]
- Canestrelli, A.; Lanzoni, S.; Fagherazzi, S. One-dimensional numerical modeling of the long-term morphodynamic evolution of a tidally-dominated estuary: The Lower Fly River (Papua New Guinea). Sediment. Geol. 2014, 301, 107–119. [Google Scholar] [CrossRef]
- Long, J.; Li, H.; Wang, Z.; Wang, B.; Xu, Y. Three decadal morphodynamic evolution of a large channel bar in the middle Yangtze River: Influence of natural and anthropogenic interferences. Catena 2021, 199, 105128. [Google Scholar] [CrossRef]
- Tri, V.K. Hydrology and Hydraulic Infrastructure Systems in the Mekong Delta, Vietnam. In The Mekong Delta System: Inter disciplinary Analyses of a River Delta, Springer Environmental Science and Engineering; Springer: Dordrecht, The Netherlands, 2012; pp. 49–81. [Google Scholar]
- Mohammad, A.; Stamm, J. Optimizing multi-purpose reservoir operation using Swarm-Intelligence-methods. In Hydrodynamic and Mass Transport at Freshwater Aquatic Interfaces, GeoPlanet: Earth and Planetary Sciences; Springer: Cham, Switzerland, 2015; pp. 209–220. [Google Scholar]
- Allison, M.A.; Dallon, W.H.; Meselhe, E.A. Bottom morphology in the Song Hau distributary channel, Mekong River Delta, Vietnam. Cont. Shelf Res. 2017, 147, 51–61. [Google Scholar] [CrossRef]
- Darby, S.E.; Leyland, J.; Kummu, M.; Räsänen, T.A.; Lauri, H. Decoding the drivers of bank erosion on the Mekong river: The roles of the Asian monsoon, tropical storms, and snowmelt. Water Resour. Res. 2013, 49, 2146–2163. [Google Scholar] [CrossRef]
- Kondolf, G.M. Hungry water: Effects of dams and gravel mining on river channels. Environ. Manag. 1997, 21, 533–551. [Google Scholar] [CrossRef]
- Binh, D.V.; Kantoush, A.A.; Sumi, T.; Mai, N.P.; Ngoc, T.A.; Trung, L.V.; An, T.D. Effects of riverbed incision on the hydrology of the Vietnamese Mekong Delta. Hydrol. Process. 2021, 35, e14030. [Google Scholar] [CrossRef]
- Hackney, C.R.; Darby, S.E.; Parsons, D.R.; Leyland, J.; Best, J.L.; Aalto, R.; Nicholas, A.P.; Houseago, R.C. River bank instability from unsustainable sand mining in the lower Mekong River. Nat. Sustain. 2020, 3, 217–225. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Smeltzer, M.; Kimball, L. Freshwater Gravel Mining and Dredging Issues. Prepared for Washington Department of Fish and Wildlife, Washington Department of Ecology, Washington Department of Transportation. April 2002. Available online: https://wdfw.wa.gov/sites/default/files/publications/00056/wdfw00056.pdf (accessed on 1 November 2023).
- Padmalal, D.; Maya, K.; Sreebha, S.; Sreeja, R. Environmental effects of river sand mining: A case from the river catchments of Vembanad lake, Southwest coast of India. Environ. Geol. 2008, 54, 879–889. [Google Scholar] [CrossRef]
- Vu, T.H.H.; Duong, V. Morphology of water-based housing in Mekong delta, Vietnam. MATEC Web Conf. 2018, 193, 04005. [Google Scholar]
No. | Data | Path/Row | Date | Water Level | |
---|---|---|---|---|---|
Tan Chau (m) | Chau Doc (m) | ||||
1 | Landsat 5 | 125/53 | 30 January 1988 | 0.87 | 0.80 |
2 | Landsat 5 | 126/52 | 9 March 1988 | 0.74 | 0.75 |
3 | Landsat 5 | 125/53 | 2 February 1995 | 1.00 | 1.09 |
4 | Landsat 5 | 126/52 | 17 June 1995 | 0.89 | 0.78 |
5 | Landsat 7 | 126/52 | 20 February 2002 | 0.91 | 0.78 |
6 | Landsat 7 | 125/53 | 2 April 2002 | 0.70 | 0.63 |
7 | Landsat 7 | 125/53 | 4 May 2002 | 0.68 | 0.60 |
8 | Landsat 5 | 126/52 | 13 February 2008 | 0.88 | 0.78 |
9 | Landsat 5 | 125/53 | 9 March 2008 | 0.80 | 0.76 |
10 | Landsat 5 | 125/53 | 25 March 2008 | 0.63 | 0.60 |
11 | Landsat 8 | 126/52 | 15 January 2015 | 0.82 | 0.83 |
12 | Landsat 8 | 125/53 | 24 January 2015 | 1.01 | 1.01 |
13 | Landsat 7 | 126/53 | 22 February 2020 | 0.71 | 0.84 |
14 | Landsat 8 | 125/53 | 23 February 2020 | 0.68 | 0.80 |
Classified Data | Reference Data | |
---|---|---|
Non-Water | Water | |
Non-water | a1 | a2 |
Water | b1 | b2 |
No. | Land Type | Price (VND/m2) | Price (US $/m2) |
---|---|---|---|
1 | Built-up land (in rural areas) | 7,520,000 | 309.75 |
2 | Built-up land (in urban areas) | 10,037,500 | 413.45 |
3 | Rice paddies | 113,500 | 4.68 |
4 | Woody crops | 132,500 | 5.46 |
5 | Aquaculture | 131,000 | 5.40 |
6 | Grassland and barren land (in rural areas) | 4,512,000 | 185.85 |
7 | Grassland and barren land (in urban areas) | 6,022,500 | 248.07 |
8 | Deciduous broadleaf forest | 75,000 | 3.09 |
9 | Mangrove | 75,000 | 3.09 |
Classified Data | Reference Data | UA% | |
---|---|---|---|
Non-Water | Water | ||
Non-water | 56 | 1 | 98.2 |
Water | 22 | 217 | 90.8 |
PA (%) | 71.8 | 99.5 | |
OA (%) | 92.2 | ||
Kappa (%) | 78.1 |
Period | Reach | Erosion | Accretion | ||||
---|---|---|---|---|---|---|---|
Area | Width | Length | Area | Width | Length | ||
(km2/yr) | (m/yr) | (km/yr) | (km2/yr) | (m/yr) | (km/yr) | ||
1988–1995 | Mekong | 1.3 | 3.4 | 382 | 2.3 | 8.5 | 271 |
Bassac | 0.8 | 2.7 | 296 | 0.5 | 3.8 | 132 | |
VMD | 2.1 | 3.1 | 677 | 2.8 | 7.1 | 394 | |
1995–2002 | Mekong | 1.2 | 4.9 | 245 | 1.9 | 4.8 | 396 |
Bassac | 0.4 | 2.7 | 148 | 0.8 | 3.5 | 229 | |
VMD | 1.6 | 4.1 | 390 | 2.7 | 4.3 | 628 | |
2002–2008 | Mekong | 1.5 | 4.0 | 375 | 2.2 | 8.3 | 265 |
Bassac | 0.6 | 2.3 | 261 | 0.8 | 4.6 | 174 | |
VMD | 2.1 | 3.4 | 618 | 3.0 | 7.0 | 429 | |
2008–2015 | Mekong | 1.4 | 2.9 | 483 | 1.1 | 3.4 | 324 |
Bassac | 0.5 | 2.1 | 238 | 0.7 | 3.3 | 212 | |
VMD | 1.9 | 2.6 | 731 | 1.8 | 3.4 | 529 | |
2015–2020 | Mekong | 1.9 | 5.2 | 365 | 1.3 | 4.9 | 265 |
Bassac | 1.1 | 3.3 | 333 | 0.3 | 2.5 | 120 | |
VMD | 3.0 | 4.4 | 682 | 1.6 | 4.3 | 372 | |
1988–2020 | Mekong | 1.5 | 4.1 | 370 | 1.8 | 6.0 | 304 |
(Average) | Bassac | 0.7 | 2.6 | 255 | 0.6 | 3.5 | 173 |
VMD | 2.1 | 3.5 | 620 | 2.4 | 5.2 | 470 |
Period | 2002–2008 | 2008–2015 | 2015–2020 | Total (ha) | Rate (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LULC | Total (ha) | Rate (ha/yr) | Rate (%) | Total (ha) | Rate (ha/yr) | Rate (%) | Total (ha) | Rate (ha/yr) | Rate (%) | |||
Built-up land | 35.13 | 5.85 | 2.74 | 20.84 | 2.98 | 1.77 | 191.54 | 38.31 | 14.70 | 247.51 | 6.58 | |
Rice paddies | 329.44 | 54.91 | 25.76 | 322.62 | 46.09 | 27.35 | 86.13 | 17.23 | 6.61 | 738.19 | 19.63 | |
Woody crops | 653.73 | 108.96 | 51.11 | 571.96 | 81.71 | 48.50 | 475.96 | 95.19 | 36.53 | 1701.65 | 45.24 | |
Aquaculture | 145.57 | 24.26 | 11.38 | 161.08 | 23.01 | 13.66 | 488.98 | 97.8 | 37.53 | 795.62 | 21.15 | |
Grassland and barren land | 10.45 | 1.74 | 0.82 | 4.87 | 0.7 | 0.42 | 22.05 | 4.41 | 1.69 | 37.36 | 0.99 | |
Deciduous broadleaf forest | 0.43 | 0.07 | 0.03 | 0.41 | 0.06 | 0.04 | 1.06 | 0.21 | 0.08 | 1.9 | 0.05 | |
Mangrove | 104.46 | 17.41 | 8.17 | 97.65 | 13.95 | 8.28 | 37.06 | 7.41 | 2.84 | 239.16 | 6.36 | |
Total | 1279.2 | 213.2 | 100 | 1179.42 | 168.49 | 100 | 1302.78 | 260.56 | 100 | 3761.4 | 100 |
LULC | 2002–2008 | 2008–2015 | 2015–2020 | Total | ||||
---|---|---|---|---|---|---|---|---|
Period | Total | Annual | Total | Annual | Total | Annual | ||
Built-up land | 81.86 | 13.64 | 42.88 | 6.13 | 439.72 | 87.94 | 564.46 | |
Rice paddies | 15.56 | 2.59 | 15.17 | 2.17 | 4.39 | 0.88 | 35.12 | |
Woody crops | 35.68 | 5.95 | 31.22 | 4.46 | 25.98 | 5.20 | 92.87 | |
Aquaculture | 8.48 | 1.41 | 9.12 | 1.30 | 30.01 | 6.00 | 47.61 | |
Grassland and barren land | 14.72 | 2.45 | 5.86 | 0.84 | 31.42 | 6.28 | 52.00 | |
Deciduous broadleaf forest | 0.01 | 0.002 | 0.01 | 0.002 | 0.03 | 0.01 | 0.06 | |
Mangrove | 3.23 | 0.54 | 3.02 | 0.43 | 1.14 | 0.23 | 7.39 | |
Total | 159.54 | 26.59 | 107.27 | 15.32 | 532.69 | 106.54 | 799.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, T.H.; Binh, D.V.; Tran, H.N.; Khan, M.A.; Bui, D.D.; Stamm, J. Quantifying Spatio-Temporal River Morphological Change and Its Consequences in the Vietnamese Mekong River Delta Using Remote Sensing and Geographical Information System Techniques. Remote Sens. 2024, 16, 707. https://doi.org/10.3390/rs16040707
Vu TH, Binh DV, Tran HN, Khan MA, Bui DD, Stamm J. Quantifying Spatio-Temporal River Morphological Change and Its Consequences in the Vietnamese Mekong River Delta Using Remote Sensing and Geographical Information System Techniques. Remote Sensing. 2024; 16(4):707. https://doi.org/10.3390/rs16040707
Chicago/Turabian StyleVu, Thi Huong, Doan Van Binh, Huan Ngoc Tran, Muhammad Adnan Khan, Duong Du Bui, and Jürgen Stamm. 2024. "Quantifying Spatio-Temporal River Morphological Change and Its Consequences in the Vietnamese Mekong River Delta Using Remote Sensing and Geographical Information System Techniques" Remote Sensing 16, no. 4: 707. https://doi.org/10.3390/rs16040707