Quantification of Forest Regeneration on Forest Inventory Sample Plots Using Point Clouds from Personal Laser Scanning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Data Collection, and Data Preparation
2.2. Reference Data
2.3. Calculation of Regeneration Coverage from LiDAR Data
2.3.1. General Approach
2.3.2. Methods for Estimating Regeneration Coverage
2.4. Comparison of Parameter Settings
2.5. Comparison of Methods
3. Results
3.1. Optimization of Parameters
3.2. Comparison of Methods
3.2.1. Comparison Between Modeling Methods
3.2.2. Comparison with Visual Estimation
4. Discussion
4.1. Definition of Forest Regeneration and Target Variables
4.2. Differentiation from Other Vegetational and Non-Vegetational Elements
4.3. Choice of Modeling Method
4.4. Comparison with Visual Estimation of Regeneration Coverage
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Miina, J.; Eerikäinen, K.; Hasenauer, H. Modeling Forest Regeneration. In Sustainable Forest Management: Growth Models for Europe; Springer: Berlin/Heidelberg, Germany, 2006; pp. 93–109. ISBN 3540260986. [Google Scholar]
- Makino, Y.; Rudolf-Miklau, F. The Protective Functions of Forests in a Changing Climate—European Experience; Forestry, W., Ed.; FAO and Austrian Federal Ministry for Agriculture, Regions and Tourism: Rome, Italy, 2021; ISBN 9789251343173. [Google Scholar]
- Motta, R.; Haudemand, J.C. Protective Forests and Silvicultural Stability. Mt. Res. Dev. 2000, 20, 180–187. [Google Scholar] [CrossRef]
- Amiri, N.; Yao, W.; Heurich, M.; Krzystek, P.; Skidmore, A.K. Estimation of Regeneration Coverage in a Temperate Forest by 3D Segmentation Using Airborne Laser Scanning Data. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 252–262. [Google Scholar] [CrossRef]
- Du, L.; Pang, Y. Identifying Regenerated Saplings by Stratifying Forest Overstory Using Airborne LiDAR Data. Plant Phenomics 2024, 6, 0145. [Google Scholar] [CrossRef] [PubMed]
- Korpela, I.; Hovi, A.; Morsdorf, F. Understory Trees in Airborne LiDAR Data—Selective Mapping Due to Transmission Losses and Echo-Triggering Mechanisms. Remote Sens. Environ. 2012, 119, 92–104. [Google Scholar] [CrossRef]
- Hamraz, H.; Contreras, M.A.; Zhang, J. Vertical Stratification of Forest Canopy for Segmentation of Understory Trees within Small-Footprint Airborne LiDAR Point Clouds. ISPRS J. Photogramm. Remote Sens. 2017, 130, 385–392. [Google Scholar] [CrossRef]
- Jarron, L.R.; Coops, N.C.; MacKenzie, W.H.; Tompalski, P.; Dykstra, P. Detection of Sub-Canopy Forest Structure Using Airborne LiDAR. Remote Sens. Environ. 2020, 244, 111770. [Google Scholar] [CrossRef]
- Dobrowolska, D.; Piasecka; Kuberski; Stereńczak, K. Canopy Gap Characteristics and Regeneration Patterns in the Białowieża Forest Based on Remote Sensing Data and Field Measurements. For. Ecol. Manag. 2022, 511, 120123. [Google Scholar] [CrossRef]
- Heinzel, J.; Ginzler, C. A Single-Tree Processing Framework Using Terrestrial Laser Scanning Data for Detecting Forest Regeneration. Remote Sens. 2019, 11, 60. [Google Scholar] [CrossRef]
- Brolly, G.; Király, G.; Czimber, K. Mapping Forest Regeneration from Terrestrial Laser Scans. Acta Silv. Lignaria Hung. 2013, 9, 135–146. [Google Scholar] [CrossRef]
- Lin, Y.; Holopainen, M.; Kankare, V.; Hyyppa, J. Validation of Mobile Laser Scanning for Understory Tree Characterization in Urban Forest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3167–3173. [Google Scholar] [CrossRef]
- Balenović, I.; Liang, X.; Jurjević, L.; Hyyppä, J.; Seletković, A.; Kukko, A. Hand-Held Personal Laser Scanning—Current Status and Perspectives for Forest Inventory Application. Croat. J. For. Eng. 2020, 42, 165–183. [Google Scholar] [CrossRef]
- Gollob, C.; Ritter, T.; Nothdurft, A. Forest Inventory with Long Range and High-Speed Personal Laser Scanning (PLS) and Simultaneous Localization and Mapping (SLAM) Technology. Remote Sens. 2020, 12, 1509. [Google Scholar] [CrossRef]
- Gehlker, H. Eine Hilfstafel Zur Schätzung von Deckungsgrad Und Artmächtigkeit. Mitt. Flor. Soz. Arbeitsgem. NF 1977, 19, 427–429. [Google Scholar]
- Girardeau-Montaut, D.C. 3D Point Cloud and Mesh Processing Software. 2017. Available online: https://www.danielgm.net/cc/ (accessed on 10 June 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 13 January 2024).
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 2018, 10, 439–446. [Google Scholar] [CrossRef]
- Koch, B.; Heyder, U.; Weinacker, H. Detection of Individual Tree Crowns in Airborne Lidar Data. Photogramm. Eng. Remote Sens. 2006, 72, 357–363. [Google Scholar] [CrossRef]
- LAS Specification 1.4—R14. The American Society for Photogrammetry & Remote Sensing (ASPRS). 2019. Available online: https://github.com/ASPRSorg/LAS (accessed on 24 July 2024).
- Tockner, A.; Gollob, C.; Kraßnitzer, R.; Ritter, T.; Nothdurft, A. Automatic Tree Crown Segmentation Using Dense Forest Point Clouds from Personal Laser Scanning (PLS). Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103025. [Google Scholar] [CrossRef]
- Roussel, J.-R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Sánchez Meador, A.; Bourdon, J.-F.; de Boissieu, F.; Achim, A. LidR: An R Package for Analysis of Airborne Laser Scanning (ALS) Data. Remote Sens. Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- Mathes, T.; Seidel, D.; Häberle, K.H.; Pretzsch, H.; Annighöfer, P. What Are We Missing? Occlusion in Laser Scanning Point Clouds and Its Impact on the Detection of Single-Tree Morphologies and Stand Structural Variables. Remote Sens. 2023, 15, 450. [Google Scholar] [CrossRef]
- Hijmans, R.J. Terra: Spatial Data Analysis. R Package Version 1.7-83. 2023. Available online: https://github.com/rspatial/terra (accessed on 22 July 2024).
- Plowright, A. ForestTools: Tools for Analyzing Remote Sensing Forest Data. 2023. Available online: https://github.com/andrew-plowright/ForestTools (accessed on 22 July 2024).
- Popescu, S.C.; Wynne, R.H. Seeing the Trees in the Forest: Using Lidar and Multispectral Data Fusion with Local Filtering and Variable Window Size for Estimating Tree Height. Photogramm. Eng. Remote Sens. 2004, 70, 589–604. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Kükenbrink, D.; Schneider, F.D.; Leiterer, R.; Schaepman, M.E.; Morsdorf, F. Quantification of Hidden Canopy Volume of Airborne Laser Scanning Data Using a Voxel Traversal Algorithm. Remote Sens. Environ. 2017, 194, 424–436. [Google Scholar] [CrossRef]
- Hill, R.A.; Broughton, R.K. Mapping the Understorey of Deciduous Woodland from Leaf-on and Leaf-off Airborne LiDAR Data: A Case Study in Lowland Britain. ISPRS J. Photogramm. Remote Sens. 2009, 64, 223–233. [Google Scholar] [CrossRef]
- Morsdorf, F.; Mårell, A.; Koetz, B.; Cassagne, N.; Pimont, F.; Rigolot, E.; Allgöwer, B. Discrimination of Vegetation Strata in a Multi-Layered Mediterranean Forest Ecosystem Using Height and Intensity Information Derived from Airborne Laser Scanning. Remote Sens. Environ. 2010, 114, 1403–1415. [Google Scholar] [CrossRef]
- Wing, B.M.; Ritchie, M.W.; Boston, K.; Cohen, W.B.; Gitelman, A.; Olsen, M.J. Prediction of Understory Vegetation Cover with Airborne Lidar in an Interior Ponderosa Pine Forest. Remote Sens. Environ. 2012, 124, 730–741. [Google Scholar] [CrossRef]
- Duncanson, L.I.; Cook, B.D.; Hurtt, G.C.; Dubayah, R.O. An Efficient, Multi-Layered Crown Delineation Algorithm for Mapping Individual Tree Structure across Multiple Ecosystems. Remote Sens. Environ. 2014, 154, 378–386. [Google Scholar] [CrossRef]
- Röder, M.; Latifi, H.; Hill, S.; Wild, J.; Svoboda, M.; Brůna, J.; Macek, M.; Nováková, M.H.; Gülch, E.; Heurich, M. Application of Optical Unmanned Aerial Vehicle-Based Imagery for the Inventory of Natural Regeneration and Standing Deadwood in Post-Disturbed Spruce Forests. Int. J. Remote Sens. 2018, 39, 5288–5309. [Google Scholar] [CrossRef]
- Hauk, E.; Niese, G.; Schadauer, K. Instruktion für Die Feldarbeit der Österreichischen Waldinventur 2016. Available online: https://www.bfw.gv.at/instruktion-feldarbeit-oesterreichische-waldinventur/ (accessed on 11 August 2024).
- Chirici, G.; Winter, S.; McRoberts, R.E. National Forest Inventories: Contributions for Forest Biodiversity Assessments; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 9789400704817. [Google Scholar]
- Nikolova, P.S.; Leuch, B.A.; Frehner, M.; Wohlgemuth, T.; Brang, P. Indicators of Forest Regeneration and Their Application. Schweiz. Z. Forstwes 2024, 175, 108–115. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, W.; Nytch, C.J.; Han, L.; Li, Z. A New Index to Differentiate Tree and Grass Based on High Resolution Image and Object-Based Methods. Urban For. Urban Green. 2020, 53, 126661. [Google Scholar] [CrossRef]
- Ayhan, B.; Kwan, C. Tree, Shrub, and Grass Classification Using Only RGB Images. Remote Sens. 2020, 12, 1333. [Google Scholar] [CrossRef]
- Moharram, D.; Yuan, X.; Li, D. Tree Seedlings Detection and Counting Using a Deep Learning Algorithm. Appl. Sci. 2023, 13, 895. [Google Scholar] [CrossRef]
- Jayathunga, S.; Pearse, G.D.; Watt, M.S. Unsupervised Methodology for Large-Scale Tree Seedling Mapping in Diverse Forestry Settings Using UAV-Based RGB Imagery. Remote Sens. 2023, 15, 5276. [Google Scholar] [CrossRef]
- Pearse, G.D.; Tan, A.Y.S.; Watt, M.S.; Franz, M.O.; Dash, J.P. Detecting and Mapping Tree Seedlings in UAV Imagery Using Convolutional Neural Networks and Field-Verified Data. ISPRS J. Photogramm. Remote Sens. 2020, 168, 156–169. [Google Scholar] [CrossRef]
- Hershey, J.L.; McDill, M.E.; Miller, D.A.; Holderman, B.; Michael, J.H. A Voxel-Based Individual Tree Stem Detection Method Using Airborne LiDAR in Mature Northeastern U.S. Forests. Remote Sens. 2022, 14, 806. [Google Scholar] [CrossRef]
- van Hees; Willem, W.S.; Mead, B.R. Ocular Estimates of Understory Vegetation Structure in a Closed Picea Glauca/Betula Papyrifera Forest. J. Veg. Sci. 2000, 11, 195–200. [Google Scholar] [CrossRef]
- Schmidt, W. Die Vegetationskundliche Untersuchung von Dauerprobeflächen. Mitt. Flor. Soz. Arbeitsgem. N. F. 1974, 17, 103–106. [Google Scholar]
- Tomppo, E.; Gschwantner, T.; Lawrence, M.; McRoberts, R.E. National Forest Inventories: Pathways for Common Reporting; Springer: Dordrecht, The Netherlands, 2010; pp. 1–612. [Google Scholar] [CrossRef]
- Storch, F.; Dormann, C.F.; Bauhus, J. Quantifying Forest Structural Diversity Based on Large-Scale Inventory Data: A New Approach to Support Biodiversity Monitoring. For. Ecosyst. 2018, 5, 34. [Google Scholar] [CrossRef]
Step No. | Step | Step Description | Method | Input Data/ Input Raster | Relevant Parameters | Setting of Relevant Parameters | Package/ Function |
---|---|---|---|---|---|---|---|
1 | Ground classification | The point cloud, with grown trees already cropped out, is classified into ground and non-ground points. | M1 | - | Class threshold/ cloth resolution | 0.2 m/0.3 m | lidR/ classify_ground() |
M2 | 0.2 m/0.1 m | ||||||
M3 | 0.15 m/0.5 m | ||||||
M4 | 0.15 m/0.5 m | ||||||
M5 | 0.2 m/0.1 m | ||||||
2 | Point cloud normalization | Based on the DTM, derived from the classified ground points, the point cloud is normalized. | M1–M5 | - | - | - | lidR/ normalize_height() |
3 | Voxelization | The normalized vegetation point cloud (without ground points) is converted into cubic voxels. Depending on the applied method, different voxel resolutions are applied. | M1 | - | Voxel resolution | 0.01 m | lidR/voxelize_points() |
M2 | 0.03 m | ||||||
M3 | 0.01 m | ||||||
M4 | 0.01 m | ||||||
M5 | 0.02 m | ||||||
4 | Rasterization | The resulting vegetation voxel cloud is then rasterized, to obtain a 2D raster image. Depending on the applied method, different properties of the voxel cloud (surface height, voxel count, or voxel density) are used as input for the pixel values of these raster images. | M1 | Surface | - | - | terra/rasterize() |
M2 | Voxel count | ||||||
M3 | Surface and voxel count | ||||||
M4 | Surface and voxel count | ||||||
M5 | Voxel density | ||||||
5 | Maxima detection | From the resulting raster images, local maxima, assumed to represent likely positions of treetops, are detected. A minimum value (height, voxel number, or voxel density—depending on raster image) for the maxima has to be chosen. | M1 | Surface Raster | ) | 0.1 | ForestTools/vwf() |
M2 | Voxel Count Raster | ||||||
M3 | Voxel Count Raster | 10 | |||||
M4 | Voxel Count Raster | 10 | |||||
M5 | Voxel Density Raster | 0.4 | |||||
6 | Crown segmentation | Based on one of the raster images computed in step 4, tree crowns are segmented, starting from the treetops detected in step 5. A threshold (height, voxel number, or voxel density—depending on raster image), above which crown areas are segmented, has to be chosen. | M1 | Surface Raster | Segmentation ) | 0.1 | ForestTools/mcws() |
M2 | Voxel Count Raster | ||||||
M3 | Surface Raster | 0.1 | |||||
M4 | Voxel Count Raster | 10 | |||||
M5 | Voxel Density Raster | 0.1 | |||||
7 | Maxima detection | For method M4, the treetop detection is repeated, but this time on the surface raster and only within the polygons of the crown areas segmented in step 6. | M4 | Surface Raster | ) | 0.1 | ForestTools/vwf() |
8 | Crown segmentation | Afterward, a final crown segmentation is applied using the treetops detected in step 7, this time on the Surface Raster. | M4 | Surface Raster | Segmentation ) | 0.1 | ForestTools/mcws() |
Reference | Platform | Target Variable | Method | Size of Detected Trees | Reference Data | MAE [pp] | Tree Detection Accuracy |
---|---|---|---|---|---|---|---|
This study | PLS | Regeneration coverage | Tree top detection and crown delineation on Voxel Density Raster | 0.1 m (height)–0.05 m (DBH) | Delineation of crowns from TLS point cloud | 2.59 (M2) 3.87 (M5) | |
[11] | TLS | Number of trees | Reconstruction of stems from voxelized point cloud by aggregation of stem fragments (deciduous trees) | 3–6 m (height) | Manual cropping of trees from point cloud | 87.9–90.2% 85.8% | |
[10] | TLS | Regeneration coverage | Detection of tree stems, individual tree segmentation and classification into established and unestablished regeneration based on DBH and height | 0.5 m–1.3 m (height) | Visual estimation | 2.23 | |
1.3 m (height)–0.12 m (DBH) | 8.08 | ||||||
[4] | ALS | Regeneration coverage | Mean shift clustering and normalized cut algorithm | 1–5 m (height) | Visual estimation | ||
[33] | UAV imagery | Number of trees | Treetop detection and crown delineation on DSM with incorporation of spectral features to avoid misclassifications | >0.2 m (height) | Trees counted manually in the field | 24.1% | |
[7] | ALS | Number of trees | Segmentation of canopy layers with iterative vertical stratification | min. 4 m (height) | Matching of crown apex with field observed stem location | 86% | |
[32] | ALS | Number of trees | Watershed-based delineation of canopy height model | min. 2 m (height) | Matching of delineated crowns with field-observed stem location | 21% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witzmann, S.; Gollob, C.; Kraßnitzer, R.; Ritter, T.; Tockner, A.; Moik, L.; Sarkleti, V.; Ofner-Graff, T.; Schume, H.; Nothdurft, A. Quantification of Forest Regeneration on Forest Inventory Sample Plots Using Point Clouds from Personal Laser Scanning. Remote Sens. 2025, 17, 269. https://doi.org/10.3390/rs17020269
Witzmann S, Gollob C, Kraßnitzer R, Ritter T, Tockner A, Moik L, Sarkleti V, Ofner-Graff T, Schume H, Nothdurft A. Quantification of Forest Regeneration on Forest Inventory Sample Plots Using Point Clouds from Personal Laser Scanning. Remote Sensing. 2025; 17(2):269. https://doi.org/10.3390/rs17020269
Chicago/Turabian StyleWitzmann, Sarah, Christoph Gollob, Ralf Kraßnitzer, Tim Ritter, Andreas Tockner, Lukas Moik, Valentin Sarkleti, Tobias Ofner-Graff, Helmut Schume, and Arne Nothdurft. 2025. "Quantification of Forest Regeneration on Forest Inventory Sample Plots Using Point Clouds from Personal Laser Scanning" Remote Sensing 17, no. 2: 269. https://doi.org/10.3390/rs17020269
APA StyleWitzmann, S., Gollob, C., Kraßnitzer, R., Ritter, T., Tockner, A., Moik, L., Sarkleti, V., Ofner-Graff, T., Schume, H., & Nothdurft, A. (2025). Quantification of Forest Regeneration on Forest Inventory Sample Plots Using Point Clouds from Personal Laser Scanning. Remote Sensing, 17(2), 269. https://doi.org/10.3390/rs17020269