Research on Hyperspectral Inversion of Soil Organic Carbon in Agricultural Fields of the Southern Shaanxi Mountain Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.2.1. Sampling and Laboratory Analysis
2.2.2. Laboratory Spectral Measurement
2.2.3. Preprocessing ZY1-02D Hyperspectral Imagery
2.3. Methods
2.3.1. Spectral Transformation
2.3.2. Feature Band Selection
- CARS
- 2.
- VIP
- 3.
- SPA
2.3.3. Inversion Models
- 4.
- Partial least squares regression model
- 5.
- Stepwise multiple linear regression model
- 6.
- Random forest model
2.3.4. Model Accuracy Evaluation
3. Results
3.1. Descriptive Statistics of SOC
3.2. Spectral Feature Analysis
3.3. Correlation Analysis of Spectral Transformation
3.4. Feature Band Selection
3.5. Comparison of Modeling Results
3.6. SOC Content Mapping
4. Discussion
4.1. Application of SST Algorithm in Calibrating Pixel Spectra
4.2. Feature Band Selection
4.3. SOC Prediction and Spatial Distribution
4.4. Study Limitations and Alternatives
5. Conclusions
- The SST algorithm was used to establish the transmission relationship between the measured spectra of the samples and the pixel spectra, allowing for spectral calibration of the ZY1-02D hyperspectral satellite imagery. After applying the SST algorithm, the optimal inversion model achieved an accuracy of 0.81, indicating that the SST algorithm is a feasible and reliable method for calibrating ZY1-02D hyperspectral images.
- Continuous wavelet transformation (CWT) was more effective than other spectral processing methods in removing noise from satellite hyperspectral data. However, as the decomposition scale increases, the spectral feature differences between different SOC contents gradually decrease, resulting in reduced SOC prediction accuracy at higher decomposition scales.
- The three feature band selection methods can effectively preserve the integrity and physical significance of hyperspectral data, but their ability to improve SOC prediction accuracy varies. Among them, CARS proved to be the most effective in enhancing the accuracy of SOC prediction models.
- The significant geographic vertical distribution differences and the fragmented topography in the study area jointly contribute to the spatial distribution patterns of soil organic carbon (SOC) in the region. The random forest (RF) model captures more spatial variability information and expresses spatial heterogeneity more accurately, making it an efficient method for predicting the SOC content in complex topographical areas.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Duan, X.; Li, Y.; Li, Y.; Zhang, L. Interactive Effects of Land Use and Soil Erosion on Soil Organic Carbon in the Dry-Hot Valley Region of Southern China. Catena 2021, 201, 105187. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, S.; Chen, Y.; Linderman, M.; Mouazen, A.M.; Liu, Y.; Guo, L.; Yu, L.; Liu, Y.; Cheng, H.; et al. Comparing Laboratory and Airborne Hyperspectral Data for the Estimation and Mapping of Topsoil Organic Carbon: Feature Selection Coupled with Random Forest. Soil Tillage Res. 2020, 199, 104589. [Google Scholar] [CrossRef]
- Shi, T.; Guo, L.; Chen, Y.; Wang, W.; Shi, Z.; Li, Q.; Wu, G. Proximal and Remote Sensing Techniques for Mapping of Soil Contamination with Heavy Metals. Appl. Spectrosc. Rev. 2018, 53, 783–805. [Google Scholar] [CrossRef]
- Imani, M.; Ghassemian, H. An Overview on Spectral and Spatial Information Fusion for Hyperspectral Image Classification: Current Trends and Challenges. Inf. Fusion 2020, 59, 59–83. [Google Scholar] [CrossRef]
- Li, X.; Qiu, H.; Fan, P. A Review of Spectral Feature Extraction and Multi-Feature Fusion Methods in Predicting Soil Organic Carbon. Appl. Spectrosc. Rev. 2024, 60, 1–24. [Google Scholar] [CrossRef]
- Zheng, M.; Wang, X.; Li, S.; Zhang, L.; Song, K. Remote sensing inversion of soil organic matter and total nitrogen in black soil region. Sci. Geogr. Sin. 2022, 42, 1336–1347. [Google Scholar]
- Ren, B.; Chen, H.; Zhang, L.; Nie, X.; Xing, S.; Fan, X. Comparison of machine learning for predicting and mapping soil organic carbon in cultivated land in a subtropical complex geomorphic region. Chin. J. Eco-Agric. 2021, 29, 1042–1050. [Google Scholar]
- Zhao, W.; Ma, H.; Zhou, C.; Zhou, C.; Li, Z. Soil Salinity Inversion Model Based on BPNN Optimization Algorithm for UAV Multispectral Remote Sensing. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2023, 16, 6038–6047. [Google Scholar] [CrossRef]
- Jin, H.; Peng, J.; Bi, R.; Tian, H.; Zhu, H.; Ding, H. Comparing Laboratory and Satellite Hyperspectral Predictions of Soil Organic Carbon in Farmland. Agronomy 2024, 14, 175. [Google Scholar] [CrossRef]
- Meng, X.; Bao, Y.; Liu, J.; Liu, H.; Zhang, X.; Zhang, Y.; Wang, P.; Tang, H.; Kong, F. Regional Soil Organic Carbon Prediction Model Based on a Discrete Wavelet Analysis of Hyperspectral Satellite Data. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102111. [Google Scholar] [CrossRef]
- Song, Q.; Gao, X.; Song, Y.; Li, Q.; Chen, Z.; Li, R.; Zhang, H.; Cai, S. Estimation of soil organic carbon content in farmland based on UAV hyperspectral images: A case study of farmland in the Huangshui River basin. Remote Sens. Nat. Resour. 2024, 36, 160–172. [Google Scholar]
- Song, Q.; Gao, X.; Song, Y.; Li, Q.; Chen, Z.; Li, R.; Zhang, H.; Cai, S. Estimation and Mapping of Soil Texture Content Based on Unmanned Aerial Vehicle Hyperspectral Imaging. Sci. Rep. 2023, 13, 14097. [Google Scholar] [CrossRef]
- Han, Y.; Ke, Y.; Wang, Z.; Liang, D.; Zhou, D. Classification of the Yellow River Delta wetland landscape based on ZY-1 02D hyperspectral imagery. Natl. Remote Sens. Bull. 2023, 27, 1387–1399. [Google Scholar] [CrossRef]
- Huang, Y.; Tian, Y.; Zhang, Q.; Tao, J.; Zhang, Y.; Yang, Y.; Lin, J. Estimation of Aboveground Biomass of Mangroves in Maowei Sea of Beibu Gulf Based on ZY-1-02D Satellite Hyperspectral Data. Spectrosc. Spectr. Anal. 2023, 43, 3906–3915. [Google Scholar]
- Liu, L.; Ji, M.; Buchroithner, M. Transfer Learning for Soil Spectroscopy Based on Convolutional Neural Networks and Its Application in Soil Clay Content Mapping Using Hyperspectral Imagery. Sensors 2018, 18, 3169. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, B.; Zou, B.; Wei, W.; Lei, Y.; Li, T. Retrieving Soil Heavy Metals Concentrations Based on GaoFen-5 Hyperspectral Satellite Image at an Opencast Coal Mine, Inner Mongolia, China. Environ. Pollut. 2022, 300, 118981. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Meng, F.; Liu, L.; Cui, W. Application of Sample Selection and PDS-PLS Algorithms in Near Infrared Spectra Analysis Model Transfer. Acta Armamentarii 2016, 37, 91–96. [Google Scholar]
- Liu, L.; Ji, M.; Buchroithner, M. Combining Partial Least Squares and the Gradient-Boosting Method for Soil Property Retrieval Using Visible Near-Infrared Shortwave Infrared Spectra. Remote Sens. 2017, 9, 1299. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, L.; Chen, X. Near Infrared Spectroscopy Transfer Based on Deep Autoencoder. Spectrosc. Spectr. Anal. 2020, 40, 2313–2318. [Google Scholar]
- Li, C.; Xie, W.; Wang, Q.; Yu, F.; Hao, Z.; Yuan, Z. Spatial-temporal variations of coupling relationship between ecosystem services and human well-being in Shangluo City. Chin. J. Ecol. 2024, 43, 2694–2701. [Google Scholar]
- Ye, B.; Tian, S.; Cheng, Q.; Ge, Y. Application of Lithological Mapping Based on Advanced Hyperspectral Imager (AHSI) Imagery Onboard Gaofen-5 (GF-5) Satellite. Remote Sens. 2020, 12, 3990. [Google Scholar] [CrossRef]
- Yang, N.; Li, L.; Han, L.; Gao, K.; Qu, S.; Li, J. Retrieving Heavy Metal Concentrations in Urban Soil Using Satellite Hyperspectral Imagery. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104079. [Google Scholar] [CrossRef]
- Li, X.; Fan, P.; Hou, G.; Qiu, H.; Lv, H. A Review of Calibration Transfer Based on Spectral Technology. Spectrosc. Spectr. Anal. 2021, 41, 1114–1118. [Google Scholar]
- Xu, Z.; Fan, S.; Liu, J.; Liu, B.; Tao, L.; Wu, J.; Hu, S.; Zhao, L.; Wang, Q.; Wu, Y. A Calibration Transfer Optimized Single Kernel Near-Infrared Spectroscopic Method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 220, 117098. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Li, Y.; Wang, X.; Gong, X.; Chen, Y.; Cao, W. Remote Sensing of Soil Organic Carbon at Regional Scale Based on Deep Learning: A Case Study of Agro-Pastoral Ecotone in Northern China. Remote Sens. 2023, 15, 3846. [Google Scholar] [CrossRef]
- Ye, M.; Zhu, L.; Liu, X.; Huang, Y.; Chen, B.; Li, H. Hyperspectral Inversion of Soil Organic Matter Content Based on Continuous Wavelet Transform, SHAP, and XGBoost. Environ. Sci. 2024, 45, 2280–2291. [Google Scholar]
- Gou, Y.; Zhao, Y.; Li, Y.; Zhuo, Z.; Cao, M.; Huang, Y. Soil Organic Matter Content in Dryland Farmland in Northeast China with Hyperspectral Reflectance Based on CWT-sCARS. Trans. Chin. Soc. Agric. Mach. 2022, 53, 331–337. [Google Scholar]
- Guo, J.; Zhu, Q.; Zhao, X.; Guo, X.; Han, Y.; Xu, Z. Hyper-spectral inversion of soil organic carbon content under different land use types. Chin. J. Appl. Ecol. 2020, 31, 863–871. [Google Scholar]
- Xu, Z.; Chen, L.; Xiang, S.; Deng, X.; Li, Y.; Yu, H.; He, A.; Li, Z.; Guo, X. Band Selection and Its Construction for the Normalized Shadow Vegetation Index (NSVI) of ZY1-02D AHSI Image. Spectrosc. Spectr. Anal. 2024, 44, 2626–2637. [Google Scholar]
- Li, Z.; Gao, S.; Wang, C.; Liu, G.; Hu, D. Study on Space-based Hyperspectral Detection Parameters for Quantitative Retrieval of Organic Carbon in Multiple Types of Soil. Soils 2024, 56, 639–645. [Google Scholar]
- Li, T.; Xia, A.; Mclaren, T.I.; Pandey, R.; Xu, Z.; Liu, H.; Manning, S.; Madgett, O.; Duncan, S.; Rasmussen, P.; et al. Preliminary Results in Innovative Solutions for Soil Carbon Estimation: Integrating Remote Sensing, Machine Learning, and Proximal Sensing Spectroscopy. Remote Sens. 2023, 15, 5571. [Google Scholar] [CrossRef]
- Ding, S.; Zhang, X.; Shang, K.; Li, R.; Sun, W. Estimating soil heavy metal from hyperspectral remote sensing images base on fractional order derivative. Natl. Remote Sens. Bull. 2023, 27, 2191–2205. [Google Scholar] [CrossRef]
- Yuan, K.; Zhang, C.; Zhao, J.; Wang, Z.; Yang, J.; Xu, Z. Comparative Analysis on Models for Predicting the Spatial Distribution of Soil Organic Carbon Density with Limited Samples. Res. Soil Water Conserv. 2024, 31, 173–181+191. [Google Scholar]
- Jing, C.; Zhou, W.; Qian, Y. A new approach to mapping tree diversity based on remote sensing imagery. Acta Ecol. Sin. 2019, 39, 8383–8391. [Google Scholar]
- Chang, R.; Chen, Z.; Wang, D.; Guo, K. Hyperspectral Remote Sensing Inversion and Monitoring of Organic Matter in Black Soil Based on Dynamic Fitness Inertia Weight Particle Swarm Optimization Neural Network. Remote Sens. 2022, 14, 4316. [Google Scholar] [CrossRef]
- Zou, Z.; Wang, Q.; Wu, Q.; Li, M.; Zhen, J.; Yuan, D.; Zhou, M.; Xu, C.; Wang, Y.; Zhao, Y.; et al. Inversion of Heavy Metal Content in Soil Using Hyperspectral Characteristic Bands-Based Machine Learning Method. J. Environ. Manag. 2024, 355, 120503. [Google Scholar] [CrossRef]
- Li, D.; Wang, X.; Li, K.; Guo, Y. Estimation of Soil Organic Carbon Content in the Bohu Basin Based on Synthetic Images and Multi-variables. Environ. Sci. 2024, 45, 1–15. [Google Scholar]
- Wang, W.; Peng, J.; Zhu, W.; Yang, B.; Liu, Z.; Gong, H.; Wang, J.; Yang, T.; Lou, J.; Sun, Z. Study on Retrieval Method of Soil Organic Matter in Salinity Soil Using Unmanned Aerial Vehicle Remote Sensing. J. Geo-Inf. Sci. 2024, 26, 736–752. [Google Scholar]
- Zhang, S.; Lu, M.; Wen, C.; Song, Y.; Kang, L.; Shen, J.; Yang, M. Study of soil salinity remote sensing inversion method integrating crop type. Bull. Surv. Mapp. 2024, 32, 1–7. [Google Scholar]
- Laamrani, A.; Berg, A.A.; Voroney, P.; Feilhauer, H.; Blackburn, L.; March, M.; Dao, P.D.; He, Y.; Martin, R.C. Ensemble Identification of Spectral Bands Related to Soil Organic Carbon Levels over an Agricultural Field in Southern Ontario, Canada. Remote Sens. 2019, 11, 1298. [Google Scholar] [CrossRef]
- Gu, X.; Wang, Y.; Sun, Q.; Yang, G.; Zhang, C. Hyperspectral Inversion of Soil Organic Matter Content in Cultivated Land Based on Wavelet Transform. Comput. Electron. Agric. 2019, 167, 105053. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Z.; Xie, P. Quantitative Hyperspectral Inversion of Soil Heavy Metals based on Feature Screening Combined with PSO-BPNN and GA-BPNN Algorithms. Remote Sens. Technol. Appl. 2024, 39, 259–268. [Google Scholar]
- Tang, X.; Li, H.; Cui, L.; Zhao, X.; Zhai, X.; Lei, Y.; Li, J.; Wang, J.; Li, W. Inversion of Wetland Plant Species Diversity Using UAV Hyperspectral Data. J. Geo-Inf. Sci. 2024, 26, 1954–1974. [Google Scholar]
- Wang, Y.; Zou, B.; Li, S.; Tian, R.; Zhang, B.; Feng, H.; Tang, Y. A Hierarchical Residual Correction-Based Hyperspectral Inversion Method for Soil Heavy Metals Considering Spatial Heterogeneity. J. Hazard. Mater. 2024, 479, 135699. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhang, R.; Dai, W.; Zhou, X.; Zhang, D.; Yang, Y.; Cui, J. Mapping Soil Organic Matter Content Based on Feature Band Selection with ZY1-02D Hyperspectral Satellite Data in the Agricultural Region. Agronomy 2022, 12, 2111. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, X.; Wu, W.; Liu, H. The Spatial Variability of Temporal Changes in Soil Organic Carbon and Its Drivers in a Mountainous Agricultural Region of China. Catena 2024, 246, 108402. [Google Scholar] [CrossRef]
- Guo, H.; Du, E.; Terrer, C.; Jackson, R.B. Global Distribution of Surface Soil Organic Carbon in Urban Greenspaces. Nat. Commun. 2024, 15, 806. [Google Scholar] [CrossRef] [PubMed]
- Calvo de Anta, R.; Luís, E.; Febrero-Bande, M.; Galiñanes, J.; Macías, F.; Ortíz, R.; Casás, F. Soil Organic Carbon in Peninsular Spain: Influence of Environmental Factors and Spatial Distribution. Geoderma 2020, 370, 114365. [Google Scholar] [CrossRef]
Imager | Spectral Bands | Spectral Range (nm) | Spatial Resolution | Spectral Resolution | Time Resolution | SNR | SNR Condition |
---|---|---|---|---|---|---|---|
Hyperion | 220 | 400–2500 | 30 m | 10 nm | 16 d | 161 @ 550 nm 147 @ 700 nm 110 @ 1125 nm 40 @ 2125 nm | Nadir looking 60°, sun-zenith angle, 0.3 Earth albedo |
CHRIS | 37 | 400–1050 | 17/34 m | 6–33 nm | 3 d | 1.3 nm@410 nm 12 nm@1050 nm | Solar synchronous orbit, altitude 615 km, obliquity 97.89° |
HJ-1 | 128 | 459–956 | 100 m | 5 nm | 4 d | 2–3 nm@460 nm 3–5 nm@552 nm 5–7 nm@716 nm 7–8 nm@848 nm | ±30° side swaying for global repetitive observations |
MODIS | 36 | 400–1400 | 250 m (1–2 bands) 500 m (3–7) 1000 m (8–36) | 5–10 nm | 1–2 d | 128@620–720 nm 201@841–876 nm | Derailed transit at 10:30 a.m., transiting at 1:30 p.m. transit; sun synchronization; near-polar circular orbit |
GaoFen-5 | 330 | 400–2500 | 30 m | 5 nm (400–1000 nm) 10 nm (1000–2500 nm) | 7 d | The maximum SNR 450–2500 nm is 500 | Sun-synchronous orbit with an inclination of 98.2°, orbital height is approximately 705 km |
ZY1E-02D | 166 | 400–2500 | 30 m | 10 nm (400–1000 nm) 20 nm (1000–2500 nm) | 3 d | 654@500 nm 379@900 nm 511@1200 nm 447@1800 nm 285@2400 nm | Sun-synchronous orbit with an inclination of 98.5°, orbital height is approximately 778 km |
Spectral Math Transformation | Formulas | Description |
---|---|---|
1/R | is the wavelength; is the wavelength spacing; is the spectral reflectance at wavelength is the spectral reflectance at interval with ; is the first-order differential spectrum at wavelength is the one-section differential spectrum at interval with is the original spectral profile; is the continuum profile. | |
lg(1/R) | ||
FDR | ||
SDR | ||
CR |
Selection Algorithm | Spectral Transformation | Number of Feature Bands | Average Correlation Coefficient |
---|---|---|---|
VIP | 1/R | 49 | 0.32 |
lg(1/R) | 54 | 0.36 | |
FDR | 48 | 0.41 | |
SDR | 46 | 0.38 | |
CR | 43 | 0.40 | |
L3 | 45 | 0.46 | |
L4 | 43 | 0.49 | |
L5 | 46 | 0.43 | |
L6 | 48 | 0.45 | |
SPA | 1/R | 30 | 0.38 |
lg(1/R) | 34 | 0.42 | |
FDR | 26 | 0.44 | |
SDR | 28 | 0.43 | |
CR | 36 | 0.41 | |
L3 | 28 | 0.52 | |
L4 | 32 | 0.46 | |
L5 | 25 | 0.54 | |
L6 | 33 | 0.47 | |
CARS | 1/R | 10 | 0.42 |
lg(1/R) | 13 | 0.40 | |
FDR | 16 | 0.54 | |
SDR | 15 | 0.48 | |
CR | 20 | 0.44 | |
L3 | 13 | 0.52 | |
L4 | 19 | 0.56 | |
L5 | 17 | 0.45 | |
L6 | 13 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Wang, B.; Yang, J.; Yin, F.; He, L. Research on Hyperspectral Inversion of Soil Organic Carbon in Agricultural Fields of the Southern Shaanxi Mountain Area. Remote Sens. 2025, 17, 600. https://doi.org/10.3390/rs17040600
Han Y, Wang B, Yang J, Yin F, He L. Research on Hyperspectral Inversion of Soil Organic Carbon in Agricultural Fields of the Southern Shaanxi Mountain Area. Remote Sensing. 2025; 17(4):600. https://doi.org/10.3390/rs17040600
Chicago/Turabian StyleHan, Yunhao, Bin Wang, Jingyi Yang, Fang Yin, and Linsen He. 2025. "Research on Hyperspectral Inversion of Soil Organic Carbon in Agricultural Fields of the Southern Shaanxi Mountain Area" Remote Sensing 17, no. 4: 600. https://doi.org/10.3390/rs17040600
APA StyleHan, Y., Wang, B., Yang, J., Yin, F., & He, L. (2025). Research on Hyperspectral Inversion of Soil Organic Carbon in Agricultural Fields of the Southern Shaanxi Mountain Area. Remote Sensing, 17(4), 600. https://doi.org/10.3390/rs17040600