Two-Week Low-Salt Diet Improves Acetylcholine-Induced Microvascular Dilation in Biologically Naïve Psoriasis Patients †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Study Protocol
2.3. Analysis of the 24 H Urine Sample
2.4. Measurement of Hematological and Biochemical Parameters from Whole Blood and Serum
2.5. Evaluation of Skin Microcirculatory Blood Flow and Microvascular Reactivity
2.6. Blood Pressure Measurements and Anthropometric Measurements
2.7. Statistical Analysis
3. Results
3.1. Descriptive Analysis
3.2. Anthropometric, Haemodynamic, and Biochemical Changes in Response to LS Diet
3.3. Microvascular Reactivity in Relation to an LS Diet
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mehta, N.N.; Azfar, R.S.; Shin, D.B.; Neimann, A.L.; Troxel, A.B.; Gelfand, J.M. Patients with Severe Psoriasis Are at Increased Risk of Cardiovascular Mortality: Cohort Study Using the General Practice Research Database. Eur. Heart J. 2010, 31, 1000–1006. [Google Scholar] [CrossRef] [PubMed]
- Abuabara, K.; Azfar, R.S.; Shin, D.B.; Neimann, A.L.; Troxel, A.B.; Gelfand, J.M. Cause-Specific Mortality in Patients with Severe Psoriasis: A Population-Based Cohort Study in the U.K. Br. J. Dermatol. 2010, 163, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Masson, W.; Rossi, E.; Galimberti, M.L.; Krauss, J.; Navarro Estrada, J.; Galimberti, R.; Cagide, A. Mortality in Patients with Psoriasis. A Retrospective Cohort Study. Med. Clin. 2017, 148, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Gelfand, J.M.; Troxel, A.B.; Lewis, J.D.; Kurd, S.K.; Shin, D.B.; Wang, X.; Margolis, D.J.; Strom, B.L. The Risk of Mortality in Patients with Psoriasis: Results from a Population-Based Study. Arch. Dermatol. 2007, 143, 1493–1499. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.C.S.; Lan, C.C.E. Psoriasis and Cardiovascular Comorbidities: Focusing on Severe Vascular Events, Cardiovascular Risk Factors and Implications for Treatment. Int. J. Mol. Sci. 2017, 18, 2211. [Google Scholar] [CrossRef]
- Gimbrone, M.A.; García-Cardeña, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016, 118, 620–636. [Google Scholar] [CrossRef]
- Mordi, I. Is Reversal of Endothelial Dysfunction Still an Attractive Target in Modern Cardiology? World J. Cardiol. 2014, 6, 824. [Google Scholar] [CrossRef] [PubMed]
- Versari, D.; Daghini, E.; Virdis, A.; Ghiadoni, L.; Taddei, S. Endothelial Dysfunction as a Target for Prevention of Cardiovascular Disease. Diabetes Care 2009, 32, S314–S321. [Google Scholar] [CrossRef] [PubMed]
- Gisondi, P.; Fantin, F.; Del Giglio, M.; Valbusa, F.; Marino, F.; Zamboni, M.; Girolomoni, G. Chronic Plaque Psoriasis Is Associated with Increased Arterial Stiffness. Dermatology 2009, 218, 110–113. [Google Scholar] [CrossRef] [PubMed]
- Balci, D.D.; Balci, A.; Karazincir, S.; Ucar, E.; Iyigun, U.; Yalcin, F.; Seyfeli, E.; Inandi, T.; Egilmez, E. Increased Carotid Artery Intima-Media Thickness and Impaired Endothelial Function in Psoriasis. J. Eur. Acad. Dermatol. Venereol. 2009, 23, 1–6. [Google Scholar] [CrossRef]
- Ulusoy, R.E.; Karabudak, O.; Yokusoglu, M.; Kilicaslan, F.; Kirilmaz, A.; Cebeci, B.S. Noninvasive Assessment of Impaired Endothelial Function in Psoriasis. Rheumatol. Int. 2010, 30, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Krajina, I.; Stupin, A.; Šola, M.; Mihalj, M. Oxidative Stress Induced by High Salt Diet—Possible Implications for Development and Clinical Manifestation of Cutaneous Inflammation and Endothelial Dysfunction in Psoriasis vulgaris. Antioxidants 2022, 11, 1269. [Google Scholar] [CrossRef] [PubMed]
- Totoson, P.; Maguin-Gaté, K.; Nappey, M.; Prati, C.; Wendling, D.; Demougeot, C. Microvascular Abnormalities in Adjuvant-Induced Arthritis: Relationship to Macrovascular Endothelial Function and Markers of Endothelial Activation. Arthritis Rheumatol. 2015, 67, 1203–1213. [Google Scholar] [CrossRef]
- Cracowski, J.; Roustit, M. Human Skin Microcirculation. In Comprehensive Physiology; Terjung, R., Ed.; Wiley: Hoboken, NJ, USA, 2020; pp. 1105–1154. ISBN 978-0-470-65071-4. [Google Scholar]
- Alba, B.K.; Greaney, J.L.; Ferguson, S.B.; Alexander, L.M. Endothelial Function Is Impaired in the Cutaneous Microcirculation of Adults with Psoriasis Through Reductions in Nitric Oxide-Dependent Vasodilation. Am. J. Physiol.-Heart Circ. Physiol. 2018, 314, H343–H349. [Google Scholar] [CrossRef] [PubMed]
- Barić, L.; Drenjančević, I.; Matić, A.; Stupin, M.; Kolar, L.; Mihaljević, Z.; Lenasi, H.; Šerić, V.; Stupin, A. Seven-Day Salt Loading Impairs Microvascular Endothelium-Dependent Vasodilation without Changes in Blood Pressure, Body Composition and Fluid Status in Healthy Young Humans. Kidney Blood Press. Res. 2019, 44, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Knezović, A.; Kolobarić, N.; Drenjančević, I.; Mihaljević, Z.; Šušnjara, P.; Jukić, I.; Stupin, M.; Kibel, A.; Marczi, S.; Mihalj, M.; et al. Role of Oxidative Stress in Vascular Low-Grade Inflammation Initiation Due to Acute Salt Loading in Young Healthy Individuals. Antioxidants 2022, 11, 444. [Google Scholar] [CrossRef] [PubMed]
- Barić, L.; Drenjančević, I.; Mihalj, M.; Matić, A.; Stupin, M.; Kolar, L.; Mihaljević, Z.; Mrakovčić-šutić, I.; Šerić, V.; Stupin, A. Enhanced Antioxidative Defense by Vitamins C and E Consumption Prevents 7-Day High-Salt Diet-Induced Microvascular Endothelial Function Impairment in Young Healthy Individuals. J. Clin. Med. 2020, 9, 843. [Google Scholar] [CrossRef] [PubMed]
- Patik, J.C.; Lennon, S.L.; Farquhar, W.B.; Edwards, D.G. Mechanisms of Dietary Sodium-Induced Impairments in Endothelial Function and Potential Countermeasures. Nutrients 2021, 13, 270. [Google Scholar] [CrossRef]
- Boegehold, M.A. The Effect of High Salt Intake on Endothelial Function: Reduced Vascular Nitric Oxide in the Absence of Hypertension. J. Vasc. Res. 2013, 50, 458–467. [Google Scholar] [CrossRef]
- Wild, J.; Soehnlein, O.; Dietel, B.; Urschel, K.; Garlichs, C.D.; Cicha, I. Rubbing Salt into Wounded Endothelium: Sodium Potentiates Proatherogenic Effects of TNF-α Under Non-Uniform Shear Stress. Thromb. Haemost. 2014, 112, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Maifeld, A.; Wild, J.; Karlsen, T.V.; Rakova, N.; Wistorf, E.; Linz, P.; Jung, R.; Birukov, A.; Gimenez-Rivera, V.A.; Wilck, N.; et al. Skin Sodium Accumulates in Psoriasis and Reflects Disease Severity. J. Investig. Dermatol. 2021, 142, 166–178. [Google Scholar] [CrossRef]
- El-Mongy, S.; Fathy, H.; Abdelaziz, A.; Omran, E.; George, S.; Neseem, N.; El-Nour, N. Subclinical Atherosclerosis in Patients with Chronic Psoriasis: A Potential Association. J. Eur. Acad. Dermatol. Venereol. JEADV 2010, 24, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Yiu, K.-H.; Yeung, C.-K.; Chan, H.-T.; Wong, R.M.Y.; Tam, S.; Lam, K.-F.; Yan, G.H.; Yue, W.S.; Chan, H.H.; Tse, H.-F. Increased Arterial Stiffness in Patients with Psoriasis Is Associated with Active Systemic Inflammation: Arterial Stiffness in Psoriasis Patients. Br. J. Dermatol. 2011, 164, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.G.; Kim, M.J.; Yang, H.S.; Lee, Y.W.; Choe, Y.B.; Ahn, K.J. Assessment of Arterial Stiffness in Korean Patients With Psoriasis by Cardio-Ankle Vascular Index. Angiology 2017, 68, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Mihalj, M.; Krajina, I.; Plužarić, V.; Tolušić Levak, M.; Kožul, M.; Drenjančević, I.; Kolobarić, N.; Milić, J.; Stupin, A. 2-Week Low-Salt Diet Improves Overall Vascular Reactivity and Endothelium-Dependent Vasodilation in Psoriasis Patients. In Proceedings of the 32nd EADV Congress 2023, Berlin, Germany, 11–14 October 2023; p. 4593. [Google Scholar]
- Tolj, I.; Stupin, A.; Drenjančević, I.; Šušnjara, P.; Perić, L.; Stupin, M. The Role of Nitric Oxide in the Micro- and Macrovascular Response to a 7-Day High-Salt Diet in Healthy Individuals. Int. J. Mol. Sci. 2023, 24, 7157. [Google Scholar] [CrossRef] [PubMed]
- WHO Consultation on Obesity. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Hodges, J.; Lehmann, E. Estimates of Location Based on Rank Tests. Ann. Math. Stat. 1963, 34, 598–611. [Google Scholar] [CrossRef]
- Abbas, S.; Brune, B.; Fried, R. Robnptests—An R Package for Robust Two-Samplelocation and Dispersion Tests. J. Open Source Softw. 2023, 8, 4947. [Google Scholar] [CrossRef]
- Liu, Q.; Li, C.; Wanga, V.; Shepherd, B.E. Covariate-Adjusted Spearman’s Rank Correlation with Probability-Scale Residuals. Biometrics 2018, 74, 595–605. [Google Scholar] [CrossRef]
- Liu, Q.; Shepherd, B.; Li, C. PResiduals: An R Package for Residual Analysis Using Probability-Scale Residuals. J. Stat. Softw. 2020, 94, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Aas, K.; Jullum, M.; Løland, A. Explaining Individual Predictions When Features Are Dependent: More Accurate Approximations to Shapley Values. Artif. Intell. 2021, 298, 103502. [Google Scholar] [CrossRef]
- Štrumbelj, E.; Koronenko, I. An Efficient Explanation of Individual Classifications Using Game Theory. J. Mach. Learn. Res. 2010, 11, 1–18. [Google Scholar]
- Lundberg, S.M.; Erion, G.G.; Lee, S.-I. Consistent Individualized Feature Attribution for Tree Ensembles. arXiv 2018. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- WHO. Guideline: Sodium Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Filippou, C.D.; Tsioufis, C.P.; Thomopoulos, C.G.; Mihas, C.C.; Dimitriadis, K.S.; Sotiropoulou, L.I.; Chrysochoou, C.A.; Nihoyannopoulos, P.I.; Tousoulis, D.M. Dietary Approaches to Stop Hypertension (DASH) Diet and Blood Pressure Reduction in Adults with and without Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2020, 11, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Szucs, G.; Timar, O.; Szekanecz, Z.; Der, H.; Kerekes, G.; Szamosi, S.; Shoenfeld, Y.; Szegedi, G.; Soltesz, P. Endothelial Dysfunction Precedes Atherosclerosis in Systemic Sclerosis--Relevance for Prevention of Vascular Complications. Rheumatology 2007, 46, 759–762. [Google Scholar] [CrossRef] [PubMed]
- Berenji Ardestani, S.; Eftedal, I.; Pedersen, M.; Jeppesen, P.B.; Nørregaard, R.; Matchkov, V.V. Endothelial Dysfunction in Small Arteries and Early Signs of Atherosclerosis in ApoE Knockout Rats. Sci. Rep. 2020, 10, 15296. [Google Scholar] [CrossRef] [PubMed]
- Martyn-Simmons, C.L.; Ranawaka, R.R.; Chowienczyk, P.; Crook, M.A.; Marber, M.S.; Smith, C.H.; Barker, J.N.W.N. A Prospective Case-Controlled Cohort Study of Endothelial Function in Patients with Moderate to Severe Psoriasis. Br. J. Dermatol. 2011, 164, 26–32. [Google Scholar] [CrossRef] [PubMed]
- von Stebut, E.; Reich, K.; Thaçi, D.; Koenig, W.; Pinter, A.; Körber, A.; Rassaf, T.; Waisman, A.; Mani, V.; Yates, D.; et al. Impact of Secukinumab on Endothelial Dysfunction and Other Cardiovascular Disease Parameters in Psoriasis Patients over 52 Weeks. J. Investig. Dermatol. 2019, 139, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Modena, M.G.; Bonetti, L.; Coppi, F.; Bursi, F.; Rossi, R. Prognostic Role of Reversible Endothelial Dysfunction in Hypertensive Postmenopausal Women. J. Am. Coll. Cardiol. 2002, 40, 505–510. [Google Scholar] [CrossRef]
- Dąbrowska, E.; Narkiewicz, K. Hypertension and Dyslipidemia: The Two Partners in Endothelium-Related Crime. Curr. Atheroscler. Rep. 2023, 25, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Kajikawa, M.; Higashi, Y. Obesity and Endothelial Function. Biomedicines 2022, 10, 1745. [Google Scholar] [CrossRef] [PubMed]
- Félétou, M.; Vanhoutte, P.M. Endothelium-Derived Hyperpolarizing Factor: Where Are We Now? Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1215–1225. [Google Scholar] [CrossRef] [PubMed]
- Félétou, M. EDHF-mediated Responses “The Classical Pathway”. In The Endothelium, Part II; Morgan & Claypool Life Sciences Publishers: San Rafael, CA, USA, 2011. [Google Scholar]
- Stupin, M.; Stupin, A.; Rasic, L.; Cosic, A.; Kolar, L.; Seric, V.; Lenasi, H.; Izakovic, K.; Drenjancevic, I. Acute Exhaustive Rowing Exercise Reduces Skin Microvascular Dilator Function in Young Adult Rowing Athletes. Eur. J. Appl. Physiol. 2018, 118, 461–474. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, K.M.; Keogh, J.B.; Clifton, P.M. Effects of a Low-Salt Diet on Flow-Mediated Dilatation in Humans. Am. J. Clin. Nutr. 2009, 89, 485–490. [Google Scholar] [CrossRef]
- Kim, S.Y.; Yang, H.S.; Lee, Y.W.; Choe, Y.B.; Ahn, K.J. Evaluation of the Beta Stiffness Index and Carotid Intima-Media Thickness in Asian Patients With Psoriasis. Angiology 2015, 66, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Antonucci, V.A.; Tengattini, V.; Balestri, R.; Patrizi, A.; Filippini, M.; Bardazzi, F. Intima-Media Thickness in an Italian Psoriatic Population: Correlation with Lipidic Serum Levels, PASI and BMI. J. Eur. Acad. Dermatol. Venereol. JEADV 2014, 28, 512–515. [Google Scholar] [CrossRef] [PubMed]
- De Simone, C.; Di Giorgio, A.; Sisto, T.; Carbone, A.; Ghitti, F.; Tondi, P.; Santoliquido, A. Endothelial Dysfunction in Psoriasis Patients: Cross-Sectional Case-Control Study. Eur. J. Dermatol. 2011, 21, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.C.; Ängquist, L.; Sørensen, T.I.A.; Heitmann, B.L. 24h Urinary Sodium Excretion and Subsequent Change in Weight, Waist Circumference and Body Composition. PLoS ONE 2013, 8, e69689. [Google Scholar] [CrossRef]
- Song, H.J.; Cho, Y.G.; Lee, H.-J. Dietary Sodium Intake and Prevalence of Overweight in Adults. Metabolism 2013, 62, 703–708. [Google Scholar] [CrossRef]
- Hulthén, L.; Aurell, M.; Klingberg, S.; Hallenberg, E.; Lorentzon, M.; Ohlsson, C. Salt Intake in Young Swedish Men. Public Health Nutr. 2010, 13, 601. [Google Scholar] [CrossRef]
- Ma, Y.; He, F.J.; MacGregor, G.A. High Salt Intake: Independent Risk Factor for Obesity? Hypertension 2015, 66, 843–849. [Google Scholar] [CrossRef]
- Kang, H.J.; Jun, D.W.; Lee, S.M.; Jang, E.C.; Cho, Y.K. Low Salt and Low Calorie Diet Does Not Reduce More Body Fat than Same Calorie Diet: A Randomized Controlled Study. Oncotarget 2018, 9, 8521–8530. [Google Scholar] [CrossRef]
- Kwaifa, I.K.; Bahari, H.; Yong, Y.K.; Noor, S.M. Endothelial Dysfunction in Obesity-Induced Inflammation: Molecular Mechanisms and Clinical Implications. Biomolecules 2020, 10, 291. [Google Scholar] [CrossRef] [PubMed]
- Baudrand, R.; Lian, C.G.; Lian, B.Q.; Ricchiuti, V.; Yao, T.M.; Li, J.; Williams, G.H.; Adler, G.K. Long-Term Dietary Sodium Restriction Increases Adiponectin Expression and Ameliorates the Proinflammatory Adipokine Profile in Obesity. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Huxley, V.H. Sex and the Cardiovascular System: The Intriguing Tale of How Women and Men Regulate Cardiovascular Function Differently. Adv. Physiol. Educ. 2007, 31, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Shukri, M.Z.; Tan, J.W.; Manosroi, W.; Pojoga, L.H.; Rivera, A.; Williams, J.S.; Seely, E.W.; Adler, G.K.; Jaffe, I.Z.; Karas, R.H.; et al. Biological Sex Modulates the Adrenal and Blood Pressure Responses to Angiotensin II. Hypertension 2018, 71, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Barris, C.T.; Faulkner, J.L.; Belin De Chantemèle, E.J. Salt Sensitivity of Blood Pressure in Women. Hypertension 2023, 80, 268–278. [Google Scholar] [CrossRef]
- Li, X.; Miao, X.; Wang, H.; Wang, Y.; Li, F.; Yang, Q.; Cui, R.; Li, B. Association of Serum Uric Acid Levels in Psoriasis: A Systematic Review and Meta-Analysis. Medicine 2016, 95, e3676. [Google Scholar] [CrossRef] [PubMed]
- Isha; Jain, V.K.; Lal, H. C-Reactive Protein and Uric Acid Levels in Patients with Psoriasis. Indian J. Clin. Biochem. 2011, 26, 309–311. [Google Scholar] [CrossRef] [PubMed]
- Maruhashi, T.; Hisatome, I.; Kihara, Y.; Higashi, Y. Hyperuricemia and Endothelial Function: From Molecular Background to Clinical Perspectives. Atherosclerosis 2018, 278, 226–231. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Pirro, M.; Watts, G.F.; Mikhailidis, D.P.; Banach, M.; Sahebkar, A. Effects of Allopurinol on Endothelial Function: A Systematic Review and Meta-Analysis of Randomized Placebo-Controlled Trials. Drugs 2018, 78, 99–109. [Google Scholar] [CrossRef]
- Humalda, J.K.; Navis, G. Dietary Sodium Restriction: A Neglected Therapeutic Opportunity in Chronic Kidney Disease. Curr. Opin. Nephrol. Hypertens. 2014, 23, 533–540. [Google Scholar] [CrossRef]
- Campbell, K.L.; Johnson, D.W.; Bauer, J.D.; Hawley, C.M.; Isbel, N.M.; Stowasser, M.; Whitehead, J.P.; Dimeski, G.; McMahon, E. A Randomized Trial of Sodium-Restriction on Kidney Function, Fluid Volume and Adipokines in CKD Patients. BMC Nephrol. 2014, 15, 57. [Google Scholar] [CrossRef] [PubMed]
- He, F.J.; Marciniak, M.; Visagie, E.; Markandu, N.D.; Anand, V.; Dalton, R.N.; MacGregor, G.A. Effect of Modest Salt Reduction on Blood Pressure, Urinary Albumin, and Pulse Wave Velocity in White, Black, and Asian Mild Hypertensives. Hypertension 2009, 54, 482–488. [Google Scholar] [CrossRef]
RS | LS | p * | |
---|---|---|---|
Clinical Psoriasis Characteristics | |||
Disease duration (years) | 12.0 (7–26) | - | |
PASI | 6.8 (5.1–11.2) † | 6.4 (5–9.5) | 0.0011 |
Complete Blood Count | |||
Erythrocytes (×1012/L) | 4.88 ± 0.39 | 4.89 ± 0.41 | 0.689 |
Thrombocytes (×109/L) | 256 (202–288) | 235 (203–304) | 0.958 |
Leukocytes (×109/L) | 7 ± 1.75 | 6.67 ± 1.75 | 0.321 |
Serum Biochemical Parameters | |||
Urea (mmol/L) | 5.4 (4.5–6.1) | 5.1 (4.6–5.8) | 0.834 |
Creatinine (μmol/L) | 71.4 ± 7.8 | 78.4 ± 12.7 | 0.0035 |
Sodium (mmol/L) | 140 (139–140) | 139 (138–140) | 0.281 |
Potassium (mmol/L) | 4.3 (4–4.7) | 4.3 (4.1–4.5) | 0.82 |
Calcium (mmol/L) | 2.39 (2.35–2.42) | 2.42 (2.4–2.46) | 0.054 |
hsCRP (mg/L) | 1.51 (0.8–2.7) | 1.58 (0.61–2.89) | 0.651 |
Fibrinogen activity (g/L) | 3.5 ± 0.72 | 3.5 ± 0.78 | - |
Cholesterol (mmol/L) | 4.93 ± 0.75 | NA | - |
Triglycerides (mmol/L) | 1.41 ± 0.7 | NA | - |
HDL (mmol/L) | 1.45 ± 0.28 | NA | - |
LDL (mmol/L) | 3.24 ± 0.6 | NA | - |
HDL/LDL (%) | 29 ± 5.88 | NA | - |
Biochemical parameters from 24 h urine samples | |||
24 h creatinine coefficient (μmol/kg/day) | 154 (136–171) | 134 (130–164) | 0.313 |
24 h urine albumin (mg/dU) | 5.6 (3.1–9.3) | 5.7 (5.5–6.9) | 0.835 |
24 h urine urea (mmol/dU) | 326 (271–355) | 284 (222.5–315.7) | 0.455 |
24 h urine sodium (mmol/dU) | 178.3 ± 58.6 | 83.1 ± 55.8 | 0.000064 |
24 h urine potassium (mmol/dU) | 60.2 ± 17.1 | 58.6 ± 22.1 | 0.972 |
Calculated sodium intake (mg/day) | 4101 ± 1348 | 1913 ± 1283 | 0.00064 |
RS | LS | p * | |
---|---|---|---|
Anthropometric measures | |||
Body mass (kg) | 82.9 ± 13.9 | 81.9 ± 13,3 | 0.00068 |
Height (cm) | 174 ± 9.8 | 174 ± 10 | 1 |
Body mass index (kg/m2) | 27.4 ± 4 | 27.2 ± 3.7 | 0.00081 |
Waist circumference (cm) | 96.2 ± 14.3 | 95.5 ±13.3 | 0.0032 |
Hip circumference (cm) | 105 ± 7.4 | 105 ± 6.5 | 0.145 |
Waist-to-hip ratio | 0.91 ± 0.1 | 0.9 ± 0.09 | 0.148 |
Hemodynamics | |||
Systolic BP (mmHg) | 126 ± 12.2 | 119 ± 12.9 | 0.021 |
Diastolic BP (mmHg) | 82 ± 7.4 | 79 ± 8 | 0.079 |
Mean arterial pressure (mmHg) | 97 ± 7.9 | 92 ± 8.3 | 0.0066 |
Heart rate (beats/min) | 74 ± 14 | 77 ± 12 | 0.152 |
Laser Doppler flow measurement | |||
PORH 1 min. (n = 21) | 100.6 ± 20.7 98.1 (84.9–114.6) † | 120 ± 33.4 115 (95.9–128.1) † | 0.056 |
AchID (Ach/B) | 12.2 ± 5.2 | 14.8 ± 6.6 | 0.029 |
SNPID (SNP/B) | 13.7 ± 4.9 | 12.8 ± 6.2 | 0.509 |
LTH (AUC) | 9.9 ± 5.2 | 11.6 ± 6.8 | 0.297 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krajina, I.; Štefanić, M.; Drenjančević, I.; Milić, J.; Kolobarić, N.; Plužarić, V.; Tokić, S.; Matijević, T.; Tolušić Levak, M.; Kožul, M.; et al. Two-Week Low-Salt Diet Improves Acetylcholine-Induced Microvascular Dilation in Biologically Naïve Psoriasis Patients. Nutrients 2025, 17, 693. https://doi.org/10.3390/nu17040693
Krajina I, Štefanić M, Drenjančević I, Milić J, Kolobarić N, Plužarić V, Tokić S, Matijević T, Tolušić Levak M, Kožul M, et al. Two-Week Low-Salt Diet Improves Acetylcholine-Induced Microvascular Dilation in Biologically Naïve Psoriasis Patients. Nutrients. 2025; 17(4):693. https://doi.org/10.3390/nu17040693
Chicago/Turabian StyleKrajina, Ivana, Mario Štefanić, Ines Drenjančević, Jakov Milić, Nikolina Kolobarić, Vera Plužarić, Stana Tokić, Tatjana Matijević, Maja Tolušić Levak, Maja Kožul, and et al. 2025. "Two-Week Low-Salt Diet Improves Acetylcholine-Induced Microvascular Dilation in Biologically Naïve Psoriasis Patients" Nutrients 17, no. 4: 693. https://doi.org/10.3390/nu17040693
APA StyleKrajina, I., Štefanić, M., Drenjančević, I., Milić, J., Kolobarić, N., Plužarić, V., Tokić, S., Matijević, T., Tolušić Levak, M., Kožul, M., Šola, M., Stupin, A., & Mihalj, M. (2025). Two-Week Low-Salt Diet Improves Acetylcholine-Induced Microvascular Dilation in Biologically Naïve Psoriasis Patients. Nutrients, 17(4), 693. https://doi.org/10.3390/nu17040693