Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Next Article in Journal
Antifungal Activity of Ageritin, a Ribotoxin-like Protein from Cyclocybe aegerita Edible Mushroom, against Phytopathogenic Fungi
Next Article in Special Issue
Use of Yeast Cell Wall Extract for Growing Pigs Consuming Feed Contaminated with Mycotoxins below or above Regulatory Guidelines: A Meta-Analysis with Meta-Regression
Previous Article in Journal
Occurrence of Mycotoxins in Dried Fruits Worldwide, with a Focus on Aflatoxins and Ochratoxin A: A Review
Previous Article in Special Issue
Alternaria Mycotoxins Analysis and Exposure Investigation in Ruminant Feeds
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Aspergillus flavus and Fusarium verticillioides and Their Main Mycotoxins: Global Distribution and Scenarios of Interactions in Maize

1
Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
2
Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
3
Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
4
Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
5
Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng 2028, South Africa
6
Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, China
*
Author to whom correspondence should be addressed.
Toxins 2023, 15(9), 577; https://doi.org/10.3390/toxins15090577
Submission received: 1 August 2023 / Revised: 25 August 2023 / Accepted: 4 September 2023 / Published: 18 September 2023

Abstract

:
Maize is frequently contaminated with multiple mycotoxins, especially those produced by Aspergillus flavus and Fusarium verticillioides. As mycotoxin contamination is a critical factor that destabilizes global food safety, the current review provides an updated overview of the (co-)occurrence of A. flavus and F. verticillioides and (co-)contamination of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) in maize. Furthermore, it summarizes their interactions in maize. The gathered data predict the (co-)occurrence and virulence of A. flavus and F. verticillioides would increase worldwide, especially in European cold climate countries. Studies on the interaction of both fungi regarding their growth mainly showed antagonistic interactions in vitro or in planta conditions. However, the (co-)contamination of AFB1 and FB1 has risen worldwide in the last decade. Primarily, this co-contamination increased by 32% in Europe (2010–2020 vs. 1992–2009). This implies that fungi and mycotoxins would severely threaten European-grown maize.
Key Contribution: The co-occurrence of A. flavus and F. verticillioides and the co-contamination of AFB1 and FB1 are increasing in Africa, the Americas, and Europe, especially in the last decade (2010–now). In addition, the interaction of A. flavus and F. verticillioides regarding their growth mainly showed antagonistic interactions in vitro or in planta conditions. Therefore, this review will be used as a reference for the ongoing and future studies focusing on the co-contamination of toxigenic fungi and their mycotoxins due to global warming.

1. Introduction

Maize (Zea mays L.) is one of the strategic cereal crops which can be processed into a variety of food, feedstuff, and other industrial products [1]. The threat posed to maize production by fungal plant diseases is one of the critical factors that can destabilize global food security and safety. Preharvest losses due to fungal plant diseases are estimated to account for nearly 10–20% of cultivated maize, which can feed about 8.5% of the world’s population [2]. Among these diseases, Aspergillus Ear Rot and Fusarium Ear Rot, caused by Aspergillus and Fusarium species, respectively, are the most important [3]. Both diseases decrease the yield and quality of the maize crop and the safety of maize kernels due to the production of mycotoxins, secondary fungal metabolites toxic to animals and humans [4].
Aspergillus Ear Rot disease is mainly caused by a fungal pervasive maize invader called A. flavus [5]. The A. flavus species has been reported in several countries in Africa, America, Asia, and Europe [6,7,8]. Toxigenic A. flavus species produce several mycotoxins/secondary metabolites; however, due to their toxicity and widespread contamination, the most studied toxins are aflatoxins (AFs) [9]. So far, there are four members of AFs called B1, B, G1, and G2. Aflatoxin B1 (AFB1) is the most potent member of AFs, and several fatal outbreaks have been associated with the consumption of AFB1-contaminated maize in Brazil (60 deaths) and Kenya (317 cases of intoxications and 125 deaths) [10,11]. The toxicity of AFB1 has aroused widespread public concern due to its hepatotoxic, immunotoxic, mutagenic, carcinogenic, and teratogenic properties [12]. The International Agency for Research on Cancer (IARC) classified AFB1 as a group 1 carcinogen due to the sufficient evidence of causing liver cancer in humans [13].
The other common fungal disease in maize is Fusarium Ear Rot, which is mainly caused by Fusarium verticillioides [14,15]. Similarly to A. flavus, the F. verticillioides species has been reported as a worldwide fungal pathogen of maize kernels. The fungus is also considered a major producer of an important group of mycotoxins called fumonisins (FBs) [16]. There are three members of FBs called fumonisin B1, FB2, and FB3; however, the main member of FBs is FB1 (FB1) [17]. Several foodborne outbreaks due to consumption of FB1-contaminated maize were reported over the years in South Africa (45 cases), Mexico (>100 cases), India (1424 cases), and Brazil (66 cases) [18,19,20]. Several studies have shown that FB1 can pose many toxic effects (neurotoxic, hepatotoxic, and nephrotoxic) in humans. The IARC classified FB1 as a class 2B carcinogen (possible human carcinogen) [21,22].
Given the significant negative impacts of these fungi and their mycotoxins on agriculture and human health, this review focuses on the (co-)occurrence of A. flavus and F. verticillioides and the (co-)contamination of AFB1 and FB1 in maize. Furthermore, it highlights how A. flavus and F. verticillioides interact with each other in maize.

2. Global Distribution of A. flavus and F. verticillioides in Maize

A general overview of the number of studies per country reporting the (co-)occurrence of A. flavus and F. verticillioides in different continents between 1980 and 2020 is shown in Figure 1. Furthermore, their sampling years, sample numbers, and the percentage of occurrence are shown in Table 1. Most of these studies were on A. flavus occurrence, followed by F. verticillioides, while fewer studies on the co-infection were published. The research of A. flavus was highest in Africa, with 74 scientific papers, followed by Asia (39 studies), Europe (35 studies), and the Americas (14 studies). However, Europe has a high awareness of studying the contamination of F. verticillioides that was reported in 51 papers, followed by Africa (40 studies), Asia (37 studies), and the Americas (27 studies). These data show that people are paying more attention to the contamination of both fungi [4], which reflect that the mycotoxin pollution problem of these two is increasing during these years. Figure 1 shows that more research of A. flavus and F. verticillioides is related to hot and rainy climates in African countries, which favored the growth of the two fungi. Apart from Africa, it was noticeable that southern European countries (Italy, Portugal, Spain, and Romania), some Asian countries (China, India, Iran, and Pakistan), and other countries in Latin and northern Americas (Brazil, Argentina, and United States) had a considerable number of publications. Gradually, those areas face an increased risk of A. flavus and F. verticillioides co-contamination [23]. In total, there are 30 papers in the literature reporting the co-occurrence of A. flavus and F. verticillioides in maize from all continents: Africa (12 studies); Europe (8 studies); Asia (6 studies); and the Americas (4 studies). It is noticeable that all these previous surveys were conducted in countries with hot climates. However, there is an increasing number of studies in European cold climate countries due to global warming. Global warming is no longer a trend but a reality because many countries have excessive emissions of CO2 [24]. To mitigate the threat of climate change, 195 countries agreed to limit the emission of CO2 by adopting new rules [25]. The co-occurrence of A. flavus and F. verticillioides will likely increase worldwide, especially in Europe.
Table 1. Reported (co-)occurrences of A. flavus and F. verticillioides in maize worldwide.
Table 1. Reported (co-)occurrences of A. flavus and F. verticillioides in maize worldwide.
CountryA. flavusF. verticillioidesCo-Occurrence of Both FungiReference
SampleOccurrence of A. flavus (%)SampleOccurrence of F. verticillioides (%)SampleOccurrence of A. flavus (%)Occurrence of F. verticillioides (%)
YearNumberYearNumberYearNumber
Africa
Benin1994808020008006820008004868[26,27]
1995606020051001020051003010[26,28]
199440074 [29]
199530056 [29]
19968890 [30]
199462520 [31]
199562547 [27]
200080048 [27]
200510030 [32]
200960+ [33]
20185076 [34]
Burkina Faso20191040 [35]
Cameroon199772119977222199772122[36]
20059553 [37]
Egypt2003908019967239201240333[28,38,39]
20124033200390802012504127[39,40]
201250412012403 [34,39]
2013138520125027 [33,41]
Ethiopia2015303719953652 [42,43]
20151008201220042 [44,45]
201615064201420073 [46,47]
201510056 [44]
Ghana20032584 [48]
2013326+ [49]
201680099 [50]
20176034 [51]
201890+ [52]
2020180+ [7]
Kenya200616593199619760 [53,54]
20061565820088640 [55,56]
2007716+2010985+ [57,58]
201051378 [59]
201211379 [60]
201262939 [61]
201330086 [62]
201551425 [63]
201712078 [64]
201812067 [65]
Lesotho20104020201040172010402017[66]
Liberia20052316200523152005231615[67]
Malawi2008178+ [68]
2012156+ [69]
Niger20123910 [70]
Nigeria199243+20011038920011036589[71,72]
2001103652003276720051801518[72,73,74]
2003666720041035120052310087[48,67,75]
2005180152005180182019932019[73,76]
20051383200518270 [77,78]
2005260+20052387 [67,79]
20052310020065082 [67,80]
2007558520199319 [76,81]
201178+ [82]
20151826 [83]
2018366 [84]
2019142+ [85]
20199320 [75]
20204650 [86]
South Africa201040431997211162010404388[87,88]
2011540.32000211162011540.328[88,89]
20131001220032113220131001276[88,90]
20173210200344+ [91,92]
200614019 [93]
200711410 [93]
20094552 [94]
20105470 [95]
20104088 [87]
20115428 [89]
201310076 [90]
20182492 [96]
Tanzania2012200+ [97]
Togo201555+201555+201555++[98]
201870+ [99]
Tunisia201110100 [100]
20112167 [101]
Zambia200610018 [102]
201525060 [103]
201780067 [104]
Americas
Argentina19985078199450461998507842[105,106]
2000100701996210+ [107,108]
20089010019965145 [109,110]
20144073199746229 [111,112]
199815861 [113]
199854022 [114]
19985042 [105]
20153098 [115]
20163083 [115]
20173067 [115]
Brazil19956615199148851995661561[116,117]
1998110+1995666120052001286[116,118,119]
19996064199856+20084648040[120,121,122]
2003121+199887+ [122,123]
200420100200520086 [119,124]
200520012200846440 [119,121]
2008464802010200+ [121,125]
201220038 [126]
Canada 1980100+ [127]
Costa Rica199210070 [128]
Honduras199352619935271199352671[129]
Mexico19958775200128+ [130,131]
200683+200316065 [132,133]
United States199615+19864198 [134,135]
201230+199810050 [136,137]
201728312199940+ [138,139]
200012057 [140]
200150+ [141]
2005818+ [142]
Venezuela199337+199337+199337+69[143]
19987969 [144]
Asia
China199840+199840+199840++[145]
200312099200564+200887++[146,147,148]
200887+200887+2014445225[147,149]
201444522011307+ [149,150]
201410595201236262 [151,152]
2012146+ [153]
201225018 [154]
201222511 [155]
201322519 [155]
201317530 [156]
201422519 [155]
20144425 [149]
2019110+ [157]
India1987400192007432220121508560[158,159,160]
19952074+201115672013451684[161,162,163]
199719760201215060 [159,164]
2009388220134584 [162,165]
2011660402014533 [166,167]
201132+201510690 [168,169]
201110657 [170]
201215085 [159]
20134516 [162]
20138656 [171]
2016595+ [172]
Indonesia19951675199516501995167550[173]
Iran200092620009252200092651[174]
200051+20044160 [175,176]
201154+2009460+ [177,178]
201116044201618259 [179,180]
Korea 20091970 [181]
Malaysia20098087200839814 [182,183]
20098047 [182]
Nepal 19977885 [184]
Pakistan20079026200790102007902610[185]
200710070 [186]
200736+ [187]
200765+ [188]
200840+ [189]
20101894 [190]
2013100+ [191]
201645+ [192]
201757+ [192]
2018155+ [192]
201967+ [192]
Saudi Arabia2013405020134032 [193]
20146063 [194]
Vietnam20004531199650+2005259223[195,196]
2005259220052523 [195]
20091022920199347 [197,198]
Yemen20162030201620122016203012[199]
Europe
Belgium 20179000.4 [200]
201725799 [201]
201725754 [201]
Croatia1993908 [202]
201450+ [203]
France20152256819997273 [204,205]
Germany20064482 [206]
201718013 [207]
201811339 [207]
Hungary201010464 [208]
201420+ [203]
201419626 [209]
Italy2002280+1993600100 [210,211]
2003706220078353 [6,212]
2003280+200890100 [210,213]
2004354+20103095 [210,214]
2005354+20105042 [210,215]
2006354+20113937 [210,214]
200783+2011140+ [211,216]
20101344620174622 [217,218]
201030420184613 [214,218]
2011140+202017747 [216,219]
2011391 [214]
20174623 [218]
20184612 [218]
202017757 [219]
Poland 20113093 [220]
201410047 [221]
20158335 [221]
20165835 [221]
20174839 [221]
Portugal2011229200530+ [222,223]
20056722 [224]
200531+ [225]
2018980 [226]
Romania20045433200454182004543318[227]
200842432008427200842437[228]
20093232200932+20093232+[228]
20101267201012172010126717[228]
Serbia2012180+2010-+20122001234[229,230,231]
2012200122012200342012293715[230,232]
2012293720122915 [232]
201480+201290+ [203,233]
2015180+2018189 [234,235]
2017458+ [236]
Slovakia 199655050 [237]
199855043 [237]
Spain200454331996559120096043 [227,238,239]
200960431999486020144927 [205,238,240]
201449272003601220182782 [240,241,242]
2018278220045418 [205,241]
20096050 [238]
201449100 [240]
20182752 [241]
Switzerland 200642046 [243]
20101716 [244]
2010289+ [245]
United Kingdom 20129901 [246]
+: occurrence without percentage. The occurrence percentage of A. flavus or F. verticillioides alone or together in maize per continent between 1980 and 2020 is depicted in Figure 2 and their sampling years, sample numbers, and the percentage of occurrence are shown in Table 1. Over the period between 1980 and 2020, there was a considerable variation in the occurrence percentage for A. flavus and F. verticillioides in maize in all the continents, which does not provide a consistent trend. Such variation shows that predicting the contamination of these fungi is difficult. Indeed, co-founding factors such as sample size, sampling strategies, fungal isolation, and identification methods affect the reported results in these papers. Comparing the median values for A. flavus and F. verticillioides occurrence percentages among the four continents shows that the occurrences in Europe are the lowest. On the other hand, the Americas (North and Latin America) had the highest occurrence percentages for both fungi in the surveyed maize samples (Figure 2).
This matches with the increasing awareness of global warming, which is expected to impact the presence of mycotoxins in food and feed severely. Battilani et al. reported that AFB1 is predicted to become a food safety issue in maize cultivated in Europe, especially under the +2 °C scenario, the most probable climate change scenario for the following years [23,247]. A similar scenario applies to F. verticillioides and FB1 in maize [104]. However, after considering the publications focused on isolating both fungi in maize, it is seen that the median values for the occurrences of both fungi in Africa and Europe are close. Different overview of the occurrence percentages for both fungi in America in which the median value for the occurrence percentage of A. flavus is three times higher than F. verticillioides which is the opposite situation in Asia. This also shows the significant variation in the detection of both fungi in maize samples and the difficulty in drawing a consistent conclusion.
On the other hand, researchers investigated the possible interactions between A. flavus and F. verticillioides and their toxins in maize, which is presented in the following section of this review. Furthermore, a global summary is provided on the (co-)occurrence of the commonly produced mycotoxins (AFB1 and FB1) in maize.

3. Worldwide Co-Occurrence of AFB1 and FB1 in Maize and Maize-Based Products

The simultaneous occurrence of several mycotoxins in a single product is a common situation, with the natural co-contamination of AFB1 and FB1 in maize and maize products as an example. An overview of the surveys conducted on AFB1 and FB1 is summarized in Table 2, which contains the sampling years, sample numbers, detection methods, and concentrations of both toxins between 1991 and 2020. The most common analytical technique (up to 66.7%) used for detecting and quantifying AFB1 and FB1 in the last decade was liquid chromatography–tandem mass spectrometry (HPLC-MS/MS). This is owing to the essential strengths of HPLC-MS/MS, including potentially high analytical specificity, a wide range of applicability to small and large molecules, the capability of multi- and mega-parametric tests, and the opportunity to develop robust assays with a high degree of flexibility within a short time frame [248].
In Africa, high concentrations of FB1 were 10,447 μg/kg and 18,184 μg/kg, and AFB1 concentrations that co-occur with high FB1 were 6738 μg/kg and 1081 μg/kg, respectively (see Table 2) [249,250]. Based on this, it was found that there can be a positive relationship between AFB1 and FB1 under this co-existence condition with the collected data in Africa: the concentration of AFB1 is correspondingly high/low in the presence of high/low concentrations of FB1 according to the correlation coefficient (r > 0.8). However, Sangare-Tigori et al., Kpodo et al., and Kimanya et al. contradicted this positive relationship, which can be the selection of detection methods. In the Americas, 70% of FB1 were higher than 2000 μg/kg, and the highest was up to 53,000.0 μg/kg [251], almost ten times more than in Africa under the co-occurrence of AFB1 and FB1. In Asia, the highest concentrations of FB1 and AFB1 were 37,000 μg/kg and 4030 μg/kg in the analyzed samples [18,252]. Moreover, since 2010, AFB1 concentration was significantly decreased compared with before 2010. However, there was no apparent interaction between AFB1 and FB1 in the samples in the Americas (r < 0.1) and Asia (r < 0.1). In Europe, with the co-occurrence of AFB1 and FB1, FB1 contamination was severe, and 85.7% of cases exceeded 2000 μg/kg. There were even 57.1% of cases higher than 10,000 μg/kg; the highest was up to 51,690 μg/kg [253]. However, AFB1 concentrations are lower than in other continents, and the increase in FB1 hardly affects AFB1 concentrations under their co-existence. It was found that the co-occurrence of both toxins was detected in Serbia and Spain by 2012, which can be a portent of the co-contamination of AFB1 and FB1 threatening to Europe [254,255].
Table 2. Reported co-occurrence of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) in maize and maize production worldwide.
Table 2. Reported co-occurrence of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) in maize and maize production worldwide.
CountrySampleMethod of DetectionFB1 (μg/kg)AFB1 (μg/kg) Reference
YearNumberMinMeanMaxMinMeanMax
Africa
Côte d’Ivoire200610ELISA300.0900.01500.01.54.120.0[256]
Egypt201240HPLC-FLD12.0171.0947.00.23.719.2[39]
201579HPLC-MS/MS1.068.02453.00.34.8197.5[257]
Ghana200015HPLC-FLD11.0358.0655.00.054.5204.0[258]
Malawi201690HPLC-FLD100.0900.07000.00.78.3140.0[259]
Nigeria201969HPLC-MS/MS390.0589.0765.01.49.127.9[260]
2011103HPLC-FLD70.0495.01870.03.022.0130.0[72]
201270HPLC-MS/MS1.81552.010,447.00.4394.06738.0[261]
Tanzania2008120HPLC-FLD144.0206.0363.05.051.090.0[249]
201560HPLC/TOFMS16.01361.018,184.02.065.01081.0[262]
20177HPLC-FLD57.0329.01672.00.51.3.0364.0[250]
Zimbabwe2016388HPLC-FLD10.0476.0607.00.63.226.6[263]
201695HPLC-MS/MS<12.5242.01106.0<3.81111.0[264]
Americas
Argentina19954000HPLC-FLD173.0578.01935.04.05.06.0[265]
Brazil2010214HPLC-FLD200.02200.06100.00.29.4129.0[266]
2004200HPLC-FLD15.01773.09670.06.829.11393.0[119]
201626HPLC-MS/MS17.0350.053,000.08.7100.0390.0[267]
2020186HPLC-MS/MSn.r.3270.0n.r.n.r.1.5n.r.[268]
200824HPLC-FLD157.02940.09707.00.52.638.0[251]
2001150IC-ELISA96.05080.022,600.038.0191.0460.0[269]
Guatemala2012640HPLC-MS0.01800.017,100.00.063.02655.0[270]
United States20037ELISA4.074.0263.00.10.81.5[271]
Venezuela199337HPLC-FLD25.01486.015,050.00.04.550.0[143]
Asia
China2011108HPLC-UV0.01247.037,000.00.46.5136.8[272]
201151HPLC-MS/MS1.0325.01997.00.11.12.1[273]
2016203HPLC-MS/MS10.030.5255.01.51.82.3[252]
199840HPLC-FLD58.0377.01796.09.0460.02496.0[145]
India199735HPLC-reverse10.0620.04740.00.12.64030.0[18]
201345TLC-UV49.6155.3650.020.6161.3402.4[162]
Indonesia199516GC-MS51.0788.02440.04.0102.0428.0[173]
199412HPLC-FLD226.0843.01780.01.0352.03300.0[274]
Iran200935HPLC-UVn.r.5820.0n.r.n.r.9.5n.r.[275]
Korea2017507HPLC-MS/MS4.0137.02990.00.05.25.2[276]
200247HPLC-FLD43.074.0119.014.020.025.0[277]
Philippines199450HPLC-FLD57.0491.01820.01.049.0430.0[274]
Thailand199218HPLC-FLD63.01790.018,800.01.072606.0[278]
199427HPLC-FLD63.01580.018,800.01.063606.0[274]
Türkiye200319ELISA1.088.0367.00.010.932.3[271]
Vietnam199332HPLCn.r.1101.0n.r.n.r.28n.r.[279]
200525HPLC-FLD400.01121.03300.02.121.8126.5[195]
Europe
Croatia200724ELISA200.07630.020,700.02.73.44.5[280]
Italy199598HPLC-UV55.03347.051,690.00.11.9109.0[281]
1996104HPLC-UV53.01324.07285.00.10.313.0[281]
199794HPLC-UV72.03103.047,078.00.11.532.0[281]
1998114HPLC-UV55.02655.013,763.00.11.528.0[281]
199993HPLC-UV54.05173.021,132.00.14.1128.0[281]
Serbia2013127ELISA0.02363.010,860.00.018.5491.7[282]
20129ELISA80.0358.01220.00.06.226.3[283]
2012200ELISA880.01611.02950.00.31.42.4[282]
201251HPLC-MS/MS211.04121.013,396.00.644.0205.0[282]
201351HPLC-MS/MS88.04690.016,187.00.58.048.0[282]
201451HPLC-MS/MS193.05846.027,103.00.00.10.3[282]
201551HPLC-MS/MS192.01905.04253.00.48.041.0[282]
Spain2016148HPLC-MS/MS99.0287.0857.0<0.11.28.5[253]
201510HPLC-MS/MS43.0920.03754.0<0.30.90.9[255]
201622HPLC-MS/MS28.08332.034,600.01.41.61.9[255]
201726HPLC-MS/MS26.07715.050,900.022.073124.1[255]
201821HPLC-MS/MS40.02657.017,100.00.940.680.7[255]
201919HPLC-MS/MS29.0920.03841.00.00.90.9[255]
United Kingdom199250HPLC-FLD6.01337.045501.04.941[284]
Australia
Australia20101648HPLC-UV506.019,278.019,278.013.946.04278.0[285]
Min: Minimum; Max: Maximum; HPLC: High-performance liquid chromatography; UV: Ultra-violet; FLD: Fluorescence detector; MS/MS: Mass spectrometry; IC: Indirect competitive; ELISA: Enzyme-linked immunosorbent assay; TOFMS: Time-of-flight mass spectrometry; TLC: Thin layer chromatography; n.r.: no report.
The mean of AFB1 and FB1 levels in studies from different continents is shown in Figure 3. As more than 70% of the produced maize was primarily used for animal feed in the world [286], the EU maximum limits for feed maize FB1(2000 µg/kg) and AFB1 (20 µg/kg) were selected as thresholds to interpret the collected data. From 1991 to 2020, 38% of AFB1 and 61% of FB1 studies exceeded the EU maximum limits separately. However, these excess issues have not happened in all continents under the co-occurrence of AFB1 and FB1. In Africa, the co-occurrence of both mycotoxins has risen to 53.8% since 2012. From 2012, 30.0% of survey studies are out of the AFB1 threshold, but all cases are below the FB1 threshold. In the Americas, 44.4% of AFB1 was higher than 20 µg/kg, and 33.3% of FB1 was higher than 2000 µg/kg. In Asia, 62.5% of studies exceeded the AFB1 limit, and only one study reported FB1 contamination exceeding the FB1 limit. There were no cases exceeding the EU maximum limits for both toxins in the last decade year. In Europe, the co-contamination of AFB1 and FB1 has increased to 31.4% since 2012. Over the period 2012 until 2020, 25.0% of AFB1 was beyond its limit, which never happened before 2012, and 58.3% of FB1 was beyond its limit, which decreased to 13.1% compared with before 2012. UK Climate has reported that the most recent decade (2011–2020) has been, on average, 0.5 °C warmer than the 1981–2010 average, and the 21st century so far has gradually been warmer, which is roughly consistent with the observed rate of global mean temperature warming [287]. Therefore, it can predict that the co-contamination of AFB1 and FB1 will become more serious worldwide due to global warming, and the risk of human co-exposure to both toxins will increase.

4. Interactions between A. flavus and F. verticillioides and Their Toxins in Maize

The outcome of the interactions between A. flavus and F. verticillioides differs depending on the applied laboratory conditions for each experiment. This includes the substrate, culture media (in vitro) or maize (in vivo), and the related incubation conditions. Fakhrunnisa and Ghaffar have proved that A. flavus inhibited the growth of F. verticillioides (inhibition rate 16.67%) by producing a zone of inhibition in the dual agar culture plate assay [288]. In case the incubation conditions are changed (e.g., temperature, CO2, and humility), the interaction between A. flavus and F. verticillioides can also change, as reported by Camardo Leggieri et al. [289]. In their study, the growth of A. flavus was affected by the co-inoculum of F. verticillioides, and colony diameter was significantly lower than that measured in pure colonies if the incubation was between 20 °C and 25 °C. On the contrary, at 35 °C, A. flavus growth was enhanced by the presence of F. verticillioides [289]. Consistently, Giorni et al. reported that the co-existence of A. flavus and F. verticillioides was influenced by the temperature and water activity [290]. They reported that with the presence of both fungi, F. verticillioides nutritionally dominated all the strains of A. flavus at 20 °C and 0.95 aw, while A. flavus always nutritionally dominated F. verticillioides at 30 °C with either high aw (0.98 aw) or reduced aw (0.87 aw) [290]. In a recent study, the effect on fungal growth and the production of their main mycotoxins (AFs and FBs) on co-inoculation were also investigated by another group [291]. It was demonstrated that the growth rate of A. flavus and F. verticillioides, when grown in dual or mixed culture, was slower compared with the growth rate in a single culture, and average growth rate reductions of 10% and 11% were observed for A. flavus and F. verticillioides, respectively. When A. flavus and F. verticillioides were mixed, the production of AFB1 and FB1 significantly decreased. Likewise, Lanubile et al. showed that in the co-occurrence of A. flavus and F. verticillioides, both mycotoxins resulted in the reduction compared with the amount produced with single inoculation, and these findings were independent of temperature [292].
The interaction between A. flavus and F. verticillioides under in vivo environment is also highly dynamic. It depends on the experimental conditions, the variable measured, and how they colonize the host. Chen et al. observed the symptoms of the lesion and mycotoxin production to evaluate the interaction of A. flavus and F. verticillioides in maize [290]. The dual inoculation resulted in reduced lesions of A. flavus. In contrast, the lesion size and toxin production of F. verticillioides were unaffected in the presence of A. flavus in maize at 25 °C. In contrast, their mixed inoculation resulted in more extensive lesions than a single A. flavus inoculation and higher FB production than a single F. verticillioides inoculation [290]. The study indicates that A. flavus can be more affected by F. verticillioides in maize. A previous study underlined the different abilities of A. flavus and F. verticillioides to grow simultaneously on maize since they usually occupy different niches regarding carbon sources [290]. It is stated that F. verticillioides seems to be dominant because it can use more carbon sources at the lowest temperatures (15 °C) and the highest aw levels (> 0.95 aw), while A. flavus becomes dominant at higher temperatures (>25–30 °C) and dry conditions (0.87 aw) [290,293]. However, Lanubile et al. reported that in the co-occurrence of A. flavus and F. verticillioides, mycotoxin production has no significant differences among three different temperature regimes (20, 25, and 30 °C) for maize kernel contamination. However, FBs and AFs decreased compared with single inoculation at all the tested temperatures [292]. It is worth mentioning that Lanubile et al. tested maize kernels as the in vivo host, different from the above baby maize tested by Chen et al. [291], which can be the cause of different interactions of A. flavus and F. verticillioides. Overall, the interaction of A. flavus and F. verticillioides is manifested in the resistance to the growth of each other both in vitro and in vivo. At the same time, mycotoxin production is highly dependent on the temperature and the tested inoculation host.

5. Conclusions and Outlook

Throughout the last 30 years, the virulence of A. flavus and F. verticillioides and the co-occurrence of AFB1 and FB1 is also gradually contaminating Africa, the Americas, and Europe. There was no consistent trend for the co-occurrence of A. flavus and F. verticillioides in maize on all the continents. However, this co-occurrence is increasing in the world. In the last decade (2010–now), the co-contamination of AFB1 and FB1 has risen by 32% in Europe. It will threaten food safety and amplify food insecurity crises and increase the risk of co-exposure to both toxins for the public. Therefore, the (co-)occurrence of A. flavus and F. verticillioides pose significant concerns for co-contamination in the food, especially for the (co-)occurrence of the commonly produced mycotoxins (AFB1 and FB1) in maize. This (co-)occurrence would interact with the growth of both species and mycotoxin production, but more field data supporting their interaction are needed.

Author Contributions

Conceptualization, X.C. (Xiangrong Chen), and M.F.A.; formal analysis, X.C. (Xiangrong Chen) and S.L.; software, S.L.; data curation, X.C. (Xiangrong Chen); writing—original draft preparation, X.C. (Xiangrong Chen); writing—review and editing, M.F.A., K.A., S.D.S., X.C. (Xiangfeng Chen) and A.R. All authors have read and agreed to the published version of the manuscript.

Funding

Xiangrong.C. received a full Ph.D. scholarship (File No. 201806170042) supported by the China Scholarship Council (CSC) to study at Ghent University. M.F.A. has a postdoctoral mandate funded by Ghent University Special Research Fund (BOF)—grant number BOF01P03220. The Pilot Project has provided Xiangfeng.C. on the Integration of Science Education and Production (No. 2022PYI013), the Jinan University and Institute Innovation Team Project (No. 2021GXRC090), and the Program for Taishan Scholars of Shandong Province (No. tsqn202103099). The authors express gratitude to the European Commission for supporting this research performed as part of the ImpTox project (grant agreement No. 965173) and Research Foundation Flanders for the Research grant provided to A.R. (No. 1506419N).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. New York Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef]
  2. Bebber, D.P.; Gurr, S.J. Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genet. Biol. 2015, 74, 62–64. [Google Scholar] [CrossRef]
  3. Masiello, M.; Somma, S.; Ghionna, V.; Francesco Logrieco, A.; Moretti, A. In vitro and in field response of different fungicides against Aspergillus flavus and Fusarium species causing ear rot disease of maize. Toxins 2019, 11, 11. [Google Scholar] [CrossRef] [PubMed]
  4. Gurikar, C.; Shivaprasad, D.P.; Sabillón, L.; Nanje Gowda, N.A.; Siliveru, K. Impact of mycotoxins and their metabolites associated with food grains. Grain Oil Sci. Technol. 2022, 6, 1–9. [Google Scholar] [CrossRef]
  5. Munkvold, G.P.; Weieneth, L.; Proctor, R.H.; Busman, M.; Blandino, M.; Susca, A.; Logrieco, A.; Moretti, A. Pathogenicity of fumonisin-producing and nonproducing strains of Aspergillus species in section nigri to maize ears and seedlings. Plant Dis. 2018, 102, 282–291. [Google Scholar] [CrossRef] [PubMed]
  6. Giorni, P.; Magan, N.; Pietri, A.; Bertuzzi, T.; Battilani, P. Studies on Aspergillus Section Flavi isolated from maize in northern Italy. Int. J. Food Microbiol. 2007, 113, 330–338. [Google Scholar] [CrossRef] [PubMed]
  7. Kortei, N.K.; Annan, T.; Kyei-Baffour, V.; Essuman, E.K.; Okyere, H.; Tettey, C.O. Exposure and risk characterizations of ochratoxins A and aflatoxins through maize (Zea mays) consumed in different agro-ecological zones of Ghana. Sci. Rep. 2021, 11, 23339. [Google Scholar] [CrossRef]
  8. Massomo, S.M.S. Aspergillus flavus and aflatoxin contamination in the maize value chain and what needs to be done in Tanzania. Sci. Afr. 2020, 10, e00606. [Google Scholar] [CrossRef]
  9. Peles, F.; Sipos, P.; Győri, Z.; Pfliegler, W.P.; Giacometti, F.; Serraino, A.; Pagliuca, G.; Gazzotti, T.; Pócsi, I. Adverse effects, transformation and channeling of aflatoxins into food raw materials in livestock. Front. Microbiol. 2019, 10, 2861. [Google Scholar] [CrossRef]
  10. Lewis, L.; Onsongo, M.; Njapau, H.; Schurz-Rogers, H.; Luber, G.; Kieszak, S.; Nyamongo, J.; Backer, L.; Dahiye, A.M.; Misore, A.; et al. Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and central Kenya. Environ. Health Perspect. 2005, 113, 1763–1767. [Google Scholar] [CrossRef] [PubMed]
  11. Wouters, A.T.B.; Casagrande, R.A.; Wouters, F.; Watanabe, T.T.N.; Boabaid, F.M.; Cruz, C.E.F.; Driemeier, D. An outbreak of aflatoxin poisoning in dogs associated with aflatoxin B1-contaminated maize products. J. Vet. Diagn. Investig. 2013, 25, 282–287. [Google Scholar] [CrossRef] [PubMed]
  12. Meissonnier, G.M.; Pinton, P.; Laffitte, J.; Cossalter, A.M.; Gong, Y.Y.; Wild, C.P.; Bertin, G.; Galtier, P.; Oswald, I.P. Immunotoxicity of aflatoxin B1: Impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression. Toxicol. Appl. Pharmacol. 2008, 231, 142–149. [Google Scholar] [CrossRef] [PubMed]
  13. IARC. Aflatoxin: Scientific Background, Control, and Implications—Google Books; IARC (International Agency for Research on Cancer): Lyon, France, 2012. [Google Scholar]
  14. Krnjaja, V.; Mandić, V.; Bijelić, Z.; Stanković, S.; Obradović, A.; Petrović, T.; Vasić, T.; Radović, Č. Influence of nitrogen rates and Fusarium verticillioides infection on Fusarium spp. and fumonisin contamination of maize kernels. Crop Prot. 2021, 144, 105601. [Google Scholar] [CrossRef]
  15. Li, Y.G.; Jiang, D.; Xu, L.K.; Zhang, S.Q.; Ji, P.S.; Pan, H.Y.; Jiang, B.W.; Shen, Z.B. Evaluation of diversity and resistance of maize varieties to Fusarium spp. causing ear rot in maize under conditions of natural infection. Czech J. Genet. Plant Breed. 2019, 55, 131–137. [Google Scholar] [CrossRef]
  16. Rosa Junior, O.F.; Dalcin, M.S.; Nascimento, V.L.; Haesbaert, F.M.; Ferreira, T.P.D.S.; Fidelis, R.R.; Sarmento, R.D.A.; Aguiar, R.W.D.S.; De Oliveira, E.E.; Dos Santos, G.R. Fumonisin production by Fusarium verticillioides in maize genotypes cultivated in different environments. Toxins 2019, 11, 215. [Google Scholar] [CrossRef]
  17. Gallo, A.; Masoero, F.; Bertuzzi, T.; Piva, G.; Pietri, A. Effect of the inclusion of adsorbents on aflatoxin B1 quantification in animal feedstuffs. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2010, 27, 54–63. [Google Scholar] [CrossRef]
  18. Rosiles, M.R.; Bautista, J.; Fuentes, V.O.; Ross, F. An Outbreak of Equine Leukoencephalomalacia at Oaxaca, Mexico, associated with fumonisin B1. J. Vet. Med. A Physiol. Pathol. Clin. Med. 1998, 45, 299–302. [Google Scholar] [CrossRef]
  19. Shetty, P.H.; Bhat, R.V. Natural Occurrence of fumonisin B1 and its co-occurrence with aflatoxin B1 in Indian sorghum, maize, and Poultry Feeds. J. Agric. Food Chem. 1997, 45, 2170–2173. [Google Scholar] [CrossRef]
  20. Smith, T.; Girish, C.K. The effects of feed borne mycotoxins on equine performance and metabolism. In Mycotoxins in Farm Animals; Oswald, I.P., Taranu, I., Eds.; Transworld Research Network: Keralawe, India, 2008; pp. 47–70. [Google Scholar]
  21. Stockmann-Juvala, H.; Savolainen, K. A review of the toxic effects and mechanisms of action of fumonisin B1. Hum. Exp. Toxicol. 2008, 27, 799–809. [Google Scholar] [CrossRef]
  22. Voss, K.A.; Smith, G.W.; Haschek, W.M. Fumonisins: Toxicokinetics, mechanism of action and toxicity. Anim. Feed Sci. Technol. 2007, 137, 299–325. [Google Scholar] [CrossRef]
  23. Battilani, P.; Toscano, P.; Van Der Fels-Klerx, H.J.; Moretti, A.; Camardo Leggieri, M.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef]
  24. Quitmann, C.; Sauerborn, R.; Danquah, I.; Herrmann, A. ‘Climate change mitigation is a hot topic, but not when it comes to hospitals’: A qualitative study on hospital stakeholders’ perception and sense of responsibility for greenhouse gas emissions. J. Med. Ethics 2023, 49, 204–210. [Google Scholar] [CrossRef] [PubMed]
  25. McCarthy, K. Surviving regulation: How European energy industries are adapting to new rules. J. Bus. Strategy 2018, 39, 28–33. [Google Scholar] [CrossRef]
  26. Sétamou, M.; Cardwell, K.F.; Schulthess, F.; Hell, K. Aspergillus flavus infection and aflatoxin contamination of preharvest maize in Benin. Plant Dis. 1991, 81, 1323–1327. [Google Scholar] [CrossRef] [PubMed]
  27. Fandohan, P.; Gnonlonfin, B.; Hell, K.; Marasas, W.F.O.; Wingfield, M.J. Natural occurrence of Fusarium and subsequent fumonisin contamination in preharvest and stored maize in Benin, West Africa. Int. J. Food Microbiol. 2005, 99, 173–183. [Google Scholar] [CrossRef] [PubMed]
  28. Fadl, E.M. Occurrence and toxigenicity of shape fusarium moniliforme from freshly harvested maize ears with special references to fumonisin production in Egypt. Mycopathologia 1997, 140, 99–103. [Google Scholar] [CrossRef] [PubMed]
  29. Sétamou, M.; Cardwell, K.F.; Schulthess, F.; Hell, K. Effect of insect damage to maize ears, with special reference to Mussidia nigrivenella (lepidoptera: Pyralidae), on Aspergillus flavus (deuteromycetes: Monoliales) infection and aflatoxin production in maize before harvest in the republic of Benin. J. Econ. Entomol. 1998, 91, 433–438. [Google Scholar] [CrossRef]
  30. Cardwell, K.F.; Cotty, P.J. Distribution of Aspergillus Section Flavi among field soils from the four agroecological zones of the republic of Bénin, west Africa. Plant Dis. 2002, 86, 434–439. [Google Scholar] [CrossRef]
  31. Hell, K.; Cardwell, K.F.; Poehling, H.M. Relationship between management practices, fungal infection and aflatoxin for stored maize in Benin. J. Phytopathol. 2003, 151, 690–698. [Google Scholar] [CrossRef]
  32. Gnonlonfin, G.J.B.; Hellb, K.; Fandohana, P.; Siamec, A.B. Mycoflora and natural occurrence of aflatoxins and fumonisin B1 in cassava and yam chips from Benin, West Africa. Int. J. Food Microbiol. 2008, 122, 140–147. [Google Scholar] [CrossRef]
  33. Gnonlonfin, G.J.B.; Adjovi, C.S.Y.; Katerere, D.R.; Shephard, G.S.; Sanni, A.; Brimer, L. Mycoflora and absence of aflatoxin contamination of commercialized cassava chips in Benin, West Africa. Food Control 2012, 23, 333–337. [Google Scholar] [CrossRef]
  34. Christie, Y.; Koulony, R.; Atindeho, M.M.; Anago, E.; Adjovi, Y. Impact of agro-ecological areas on the distribution of Aspergillus Section flavi in maize in Benin. JOUR 2020, 2315–5116. [Google Scholar]
  35. Compaore, H.; Samandoulougou, S.; Tapsoba, W.T.; Bambara, A.; Ratongue, H.; Sawadogo, I.; Kabore, D.; Ouattara-Sourabie, P.B.; Sawadogo-Lingani, H. Aflatoxigenic potential of Aspergillus Section Flavi isolated from maize seeds, in burkina faso. Afr. J. Microbiol. Res. 2021, 15, 420–428. [Google Scholar]
  36. Ngoko, Z.; Marasas, W.F.O.; Rheeder, J.P.; Shephard, G.S.; Wingfield, M.J.; Cardwell, K.F. Fungal infection and mycotoxin contamination of maize in the Humid forest and the western highlands of Cameroon. Phytoparasitica 2001, 29, 352–360. [Google Scholar] [CrossRef]
  37. Njobeh, P.B.; Dutton, M.F.; Koch, S.H.; Chuturgoon, A.; Stoev, S.; Seifert, K. Contamination with storage fungi of human food from Cameroon. Int. J. Food Microbiol. 2009, 135, 193–198. [Google Scholar] [CrossRef] [PubMed]
  38. Aziz, N.H.; Moussa, L.A.A.; Far, F.M.E. Reduction of fungi and mycotoxins formation in seeds by gamma-radiation. J. Food Saf. 2004, 24, 109–127. [Google Scholar] [CrossRef]
  39. Madbouly, A.K.; Ibrahim, M.I.M.; Sehab, A.F.; Abdel-Wahhab, M.A. Co-occurrence of mycoflora, aflatoxins and fumonisins in maize and rice seeds from markets of different districts in Cairo, Egypt. Food Addit. Contam. Part B Surveill. 2012, 5, 112–120. [Google Scholar] [CrossRef]
  40. Nouh, A.; Amra, H.; Youssef, M.M.; El-Banna, A.A. Mycotoxin and toxigenic fungi occurrence in Egyptian maize. Int. J. Adv. Res. 2014, 2, 521–532. [Google Scholar]
  41. Shanshoury, A.E.R.E.; Sabbagh, S.E.; Emara, H.A.; Saba, H.A.E. Occurrence of moulds, toxicogenic capability of Aspergillus flavus and levels of aflatoxins in maize, wheat, rice and peanut from markets in Central Delta provinces, Egypt. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 852–865. [Google Scholar]
  42. Assaye, M.A.; Gemeda, N.; Weledesemayat, G.T. Aspergillus species and aflatoxin contamination of pre and post- harvest maize grain in West Gojam, Ethiopia. J. Food Sci. Nutr. 2016, 2, 013. [Google Scholar]
  43. Wubet, T.; Abate, D. Common toxigenic Fusarium species in maize grain in Ethiopia. Ethiop. J. Sci. 2000, 23, 73–86. [Google Scholar] [CrossRef]
  44. Getachew, A.; Chala, A.; Hofgaard, I.S.; Brurberg, M.B.; Sulyok, M.; Tronsmo, A.M. Multimycotoxin and fungal analysis of maize grains from south and southwestern Ethiopia. Food Addit. Contam. Part B Surveill. 2017, 11, 64–74. [Google Scholar] [CrossRef] [PubMed]
  45. Tsehaye, H.; Brurberg, M.B.; Sundheim, L.; Assefa, D.; Tronsmo, A.; Tronsmo, A.M. Natural occurrence of Fusarium species and fumonisin on maize grains in Ethiopia. Eur. J. Plant Pathol. 2016, 147, 141–155. [Google Scholar] [CrossRef]
  46. Chauhan, N.M.; Washe, A.P.; Minota, T. Fungal infection and aflatoxin contamination in maize collected from Gedeo zone, Ethiopia. SpringerPlus 2016, 5, 753. [Google Scholar] [CrossRef] [PubMed]
  47. Tsehaye, H.; Elameen, A.; Tronsmo, A.M.; Sundheim, L.; Tronsmo, A.; Assefa, D.; Brurberg, M.B. Genetic variation among Fusarium verticillioides isolates associated with Ethiopian maize kernels as revealed by AFLP analysis. Eur. J. Plant Pathol. 2016, 146, 807–816. [Google Scholar] [CrossRef]
  48. Perrone, G.; Haidukowski, M.; Stea, G.; Epifani, F.; Bandyopadhyay, R.; Leslie, J.F.; Logrieco, A. Population structure and aflatoxin production by Aspergillus sect. flavi from maize in Nigeria and Ghana. Food Microbiol. 2014, 41, 52–59. [Google Scholar] [CrossRef]
  49. Agbetiameh, D.; Ortega-Beltran, A.; Awuah, R.T.; Atehnkeng, J.; Cotty, P.J.; Bandyopadhyay, R. Prevalence of aflatoxin contamination in maize and groundnut in Ghana: Population structure, distribution, and toxigenicity of the causal agents. Plant Dis. 2018, 102, 764–772. [Google Scholar] [CrossRef]
  50. Agbetiameh, D.; Ortega-Beltran, A.; Awuah, R.T.; Atehnkeng, J.; Elzein, A.; Cotty, P.J.; Bandyopadhyay, R. Field efficacy of two atoxigenic biocontrol products for mitigation of aflatoxin contamination in maize and groundnut in Ghana. Biol. Control 2020, 150, 104351. [Google Scholar] [CrossRef]
  51. Sowley, E.N.K.; Kankam, F.; Tawiah, E. Comparative study on the incidence of Aspergillus flavus in farmer’s field and stored maize (Zea mays) seed in northern region of Ghana. Asian Plant Res. J. 2018, 1, 1–7. [Google Scholar] [CrossRef]
  52. Kortei, N.K.; Annan, T.; Akonor, P.T.; Richard, S.A.; Annan, H.A.; Kyei-Baffour, V.; Akuamoa, F.; Akpaloo, P.G.; Esua-Amoafo, P. The occurrence of aflatoxins and human health risk estimations in randomly obtained maize from some markets in Ghana. Sci. Rep. 2021, 11, 4925. [Google Scholar] [CrossRef]
  53. Probst, C.; Schulthess, F.; Cotty, P.J. Impact of Aspergillus Section Flavi community structure on the development of lethal levels of aflatoxins in Kenyan maize (Zea mays). J. Appl. Microbiol. 2009, 108, 600–610. [Google Scholar] [CrossRef]
  54. Kedera, C.J.; Plattner, R.D.; Desjardins, A.E. Incidence of Fusarium spp. and levels of fumonisin B1 in maize in western Kenya. Appl. Environ. Microbiol. 1999, 65, 41–44. [Google Scholar] [CrossRef]
  55. Probst, C.; Bandyopadhyay, R.; Price, L.E.; Cotty, P.J. Identification of antoxigenic Aspergillus flavus isolates to reduce aflatoxin contamination of maize in Kenya. Plant Dis. 2011, 95, 212–218. [Google Scholar] [CrossRef] [PubMed]
  56. Bii, F.; Wanyoike, W.; Nyende, A.B.; Gituru, R.W.; Bii, C. Fumonisin contamination of maize (Zea mays) in aflatoxin ‘hot’ zones in eastern province of Kenya. Afr. J. Health Sci. 2012, 20, 28–36. [Google Scholar]
  57. Lewis, L.W.; Mwihia, J.; Daniel, J.H.; Kieszak, S.; Mcgeehin, M.A.; Breiman, R.F.; Bell, C.; Flanders, W.D.; Ogana, G.; Likimani, S. Comprehensive assessment of maize aflatoxin levels in eastern Kenya, 2005–2007. Environ. Health Perspect. 2011, 119, 1794–1799. [Google Scholar]
  58. Mutiga, S.K.; Hoffmann, V.; Harvey, J.W.; Milgroom, M.G.; Nelson, R.J. Assessment of aflatoxin and fumonisin contamination of maize in western Kenya. Phytopathology 2015, 105, 1250–1261. [Google Scholar] [CrossRef] [PubMed]
  59. Okoth, S.; Nyongesa, B.; Ayugi, V.; Kang’ethe, E.; Korhonen, H.; Joutsjoki, V. Toxigenic potential of Aspergillus species occurring on maize kernels from two agro-ecological zones in Kenya. Toxins 2011, 4, 991–1007. [Google Scholar] [CrossRef]
  60. Odhiambo, B.O.; Murage, H.; Wagara, I.N. Isolation and characterisation of aflatoxigenic Aspergillus species from maize and soil samples from selected counties of Kenya. Afr. J. Microbiol. Res. 2013, 7, 4379–4388. [Google Scholar]
  61. Islam, M.; Callicott, K.A.; Mutegi, C.; Bandyopadhyay, R.; Cotty, P.J. Distribution of active ingredients of a commercial aflatoxin biocontrol product in naturally occurring fungal communities across Kenya. Microb. Biotechnol. 2020, 14, 1331–1342. [Google Scholar] [CrossRef] [PubMed]
  62. Okoth, S.; Rose, L.; Ouko, A.; Netshifhefhe, N.; Sila, H.; Viljoen, A. Assessing genotype-by-environment interactions in Aspergillus ear rot and pre-harvest aflatoxin accumulation in maize inbred lines. Agronomy 2017, 7, 86. [Google Scholar] [CrossRef]
  63. Thathana, M.; Murage, H.; Abia, A.; Pillay, M. Morphological characterization and determination of aflatoxin-production potentials of Aspergillus flavus isolated from maize and soil in Kenya. Agriculture 2017, 7, 80. [Google Scholar] [CrossRef]
  64. Dooso Oloo, R.; Okoth, S.; Wachira, P.; Mutiga, S.; Ochieng, P.; Kago, L.; Nganga, F.; Entfellner, J.B.D.; Ghimire, S. Genetic profiling of Aspergillus isolates with varying aflatoxin production potential from different maize-growing regions of Kenya. Toxins 2019, 11, 467. [Google Scholar] [CrossRef] [PubMed]
  65. Monda, E.; Masanga, J.; Alakonya, A. Variation in occurrence and aflatoxigenicity of Aspergillus flavus from two climatically varied regions in Kenya. Toxins 2020, 12, 34. [Google Scholar] [CrossRef] [PubMed]
  66. Mohale, S.; Medina, A.; Rodríguez, A.; Sulyok, M.; Magan, N. Mycotoxigenic fungi and mycotoxins associated with stored maize from different regions of Lesotho. Mycotoxin Res. 2013, 29, 209–219. [Google Scholar] [CrossRef] [PubMed]
  67. Vismer, H.F.; Shephard, G.S.; Rheeder, J.P.; van der Westhuizen, L.; Bandyopadhyay, R. Relative severity of fumonisin contamination of cereal crops in West Africa. Food Addit. Contam. Part A 2015, 32, 1952–1958. [Google Scholar] [CrossRef]
  68. Matumba, L.; Monjerezi, M.; Chirwa, E.; Lakudzala, D.; Mumba, P. Natural occurrence of afb in maize and effect of traditional maize flour production on afb reduction, in Malawi. Afr. J. Food Sci. 2010, 3, 413–425. [Google Scholar]
  69. Matumba, L.; Sulyok, M.; Njoroge, S.M.C.; Njumbe Ediage, E.; Van Poucke, C.; De Saeger, S.; Krska, R. Uncommon occurrence ratios of aflatoxin B1, B2, G1, and G2 in maize and groundnuts from Malawi. Mycotoxin Res. 2014, 31, 57–62. [Google Scholar] [CrossRef]
  70. Toffa, D.D.; Mahnine, N.; Ouaffak, L.; El Abidi, A.; El Alaoui Faris, F.Z.; Zinedine, A. First survey on the presence of ochratoxin A and fungi in raw cereals and peanut available in the Republic of Niger. Food Control 2013, 32, 558–562. [Google Scholar] [CrossRef]
  71. Aja-Nwachukwu, J.; Emejuaiwe, S.O. Aflatoxin-producing fungi associated with Nigerian maize. Environ. Toxicol. Water Qual. 1994, 9, 17–23. [Google Scholar] [CrossRef]
  72. Bankole, S.A.; Mabekoje, O.O. Occurrence of aflatoxins and fumonisins in preharvest maize from south-western Nigeria. Food Addit. Contam. 2004, 21, 251–255. [Google Scholar] [CrossRef]
  73. Adejumo, T.O.; Hettwer, U.; Karlovsky, P. Occurrence of Fusarium species and trichothecenes in Nigerian maize. Int. J. Food Microbiol. 2007, 116, 350–357. [Google Scholar] [CrossRef]
  74. Afolabi, C.G.; Bandyopadhyay, R.; Leslie, J.F.; Ekpo, E.J. Effect of sorting on incidence and occurrence of fumonisins and Fusarium verticillioides on maize from Nigeria. J. Food Prot. 2006, 69, 2019. [Google Scholar] [CrossRef]
  75. Afolabi, C.G.; Ojiambo, P.S.; Ekpo, E.J.A.; Menkir, A.; Bandyopadhyay, R. Evaluation of maize inbred lines for resistance to Fusarium ear rot and fumonisin accumulation in grain in tropical Africa. Plant Dis. 2007, 91, 279–286. [Google Scholar] [CrossRef] [PubMed]
  76. Akoma, O.N.; Ezeh, C.C.; Chukwudozie, K.I.; Iwuchukwu, C.C.; Apeh, D.O. Fungal and mycotoxin contamination of stored maize in Kogi, northcentral Nigeria: An implication for public health. Eur. J. Nutr. 2019, 9, 220–232. [Google Scholar] [CrossRef]
  77. Bandyopadhyay, R.; Kumar, M.; Leslie, J.F. Relative severity of aflatoxin contamination of cereal crops in West Africa. Food Addit. Contam. 2007, 24, 1109–1114. [Google Scholar] [CrossRef] [PubMed]
  78. Adejumo, T.O.; Hettwer, U.; Karlovsky, P. Survey of maize from south-western Nigeria for zearalenone,α- and β-zearalenols, fumonisin B1 and enniatins produced by Fusarium species. Food Addit. Contam. 2007, 24, 993–1000. [Google Scholar] [CrossRef]
  79. Atehnkeng, J.; Ojiambo, P.S.; Donner, M.; Ikotun, T.; Sikora, R.A.; Cotty, P.J.; Bandyopadhyay, R. Distribution and toxigenicity of Aspergillus species isolated from maize kernels from three agro-ecological zones in Nigeria. Int. J. Food Microbiol. 2008, 122, 74–84. [Google Scholar] [CrossRef] [PubMed]
  80. Ezekiel, C.N.; Odebode, A.C.; Fapohunda, S.O. Zearalenone production by naturally occurring Fusarium species on maize, wheat and soybeans from Nigeria. J. Biol. Environ. Sci. 2008, 2, 77–82. [Google Scholar]
  81. Donner, M.; Atehnkeng, J.; Sikora, R.A.; Bandyopadhyay, R.; Cotty, P.J. Distribution of Aspergillus Section Flavi in soils of maize fields in three agroecological zones of Nigeria. Soil Biol. Biochem. 2009, 41, 37–44. [Google Scholar] [CrossRef]
  82. Ogara, I.M.; Zarafi, A.B.; Alabi, O.; Banwo, O.; Ezekiel, C.N.; Warth, B.; Sulyok, R.; Krska, R. Mycotoxin patterns in ear rot infected maize: A comprehensive case study in Nigeria. Food Control 2017, 73, 1159–1168. [Google Scholar] [CrossRef]
  83. Adekoya, I.; Obadina, A.; Phoku, J.; Nwinyi, O.; Njobeh, P. Contamination of fermented foods in Nigeria with fungi. LWT 2017, 86, 76–84. [Google Scholar] [CrossRef]
  84. Oyeka, C.; Amasiani, R.N.; Ekwealor, C.C. Mycotoxins contamination of maize in Anambra State, Nigeria. Food Addit. Contam. Part B Surveill. 2019, 12, 280–288. [Google Scholar] [CrossRef]
  85. Ezekiel, C.N.; Kraak, B.; Sandoval-Denis, M.; Sulyok, M.; Houbraken, J. Diversity and toxigenicity of fungi and description of Fusarium madaense sp. nov. from cereals, legumes and soils in north-central Nigeria. MycoKeys 2020, 67, 95–124. [Google Scholar] [CrossRef]
  86. Ekpakpale, D.O.; Kraak, B.; Meijer, M.; Ayeni, K.I.; Houbraken, J.; Ezekiel, C.N. Fungal diversity and aflatoxins in maize and rice grains and cassava-based flour (Pupuru) from Ondo State, Nigeria. J. Fungi 2021, 7, 635. [Google Scholar] [CrossRef]
  87. Egbuta, M.; Chilaka, C.; Dutton, M.; Mulunda, M.; Phoku, J. Fungal and mycotoxin contamination of South African commercial maize. J. Food Agric. Environ. 2012, 10, 296–303. [Google Scholar]
  88. Rheeder, J.P.; Westhuizen, L.V.D.; Imrie, G.; Shephard, G.S. Fusarium species and fumonisins in subsistence maize in the former transkei region, South Africa: A multi-year study in rural villages. Food Addit. Contam. Part B Surveill. 2016, 9, 176–184. [Google Scholar] [CrossRef]
  89. Shephard, G.S.; Burger, H.M.; Gambacorta, L.; Krska, R.; Powers, S.P.; Rheeder, J.P.; Solfrizzo, M.; Sulyok, M.; Visconti, A.; Warth, B.; et al. Mycological analysis and multimycotoxins in maize from rural subsistence farmers in the former Transkei, South Africa. J. Agric. Food Chem. 2013, 61, 8232–8240. [Google Scholar] [CrossRef] [PubMed]
  90. Ekwomadu, T.I.; Gopane, R.E.; Mwanza, M. Occurrence of filamentous fungi in maize destined for human consumption in South Africa. Food Sci. Nutr. 2018, 6, 884–890. [Google Scholar] [CrossRef]
  91. Olagunju, O.; Mchunu, N.; Venter, S.; Guibert, B.; Durand, N.; Métayer, I.; Montet, D.; Ijabadeniyi, O. Fungal contamination of food commodities in Durban, South Africa. J. Food Saf. 2018, 38, e12515. [Google Scholar] [CrossRef]
  92. Shephard, G.S.; van der Westhuizen, L.; Sewram, V.; van Zyl, J.; Rheeder, J.P. Occurrence of the C-series fumonisins in maize from the former Transkei region of South Africa. Food Addit. Contam. Part A 2011, 28, 1712–1716. [Google Scholar] [CrossRef]
  93. Ncube, E.; Flett, B.C.; Waalwijk, C.; Viljoen, A. Fusarium spp. and levels of fumonisins in maize produced by subsistence farmers in South Africa. South Afr. J. Sci. 2011, 107, 1–7. [Google Scholar] [CrossRef]
  94. Boutigny, A.L.; Beukes, I.; Small, I.; Zühlke, S.; Spiteller, M.; Rensburg, B.J.V.; Flett, B.; Viljoen, A. Quantitative detection of Fusarium pathogens and their mycotoxins in South African maize. Plant Pathol. 2012, 61, 522–531. [Google Scholar] [CrossRef]
  95. Phoku, J.Z.; Dutton, M.F.; Njobeh, P.B.; Mwanza, M.; Egbuta, M.A.; Chilaka, C.A. Fusarium infection of maize and maize-based products and exposure of a rural population to fumonisin B1 in Limpopo Province, South Africa. Food Addit. Contam. Part A 2012, 29, 1743–1751. [Google Scholar] [CrossRef]
  96. Tebele, S.M.; Gbashi, S.; Adebo, O.; Changwa, R.; Naidu, K.; Njobeh, P.B. Quantification of multi-mycotoxin in cereals (maize, maize porridge, sorghum and wheat) from Limpopo province of South Africa. Food Addit. Contam. Part A 2020, 37, 1922–1938. [Google Scholar] [CrossRef]
  97. Boni, S.; Beed, F.; Kimanya, M.; Koyano, E.; Mponda, O.; Mamiro, D.; Kaoneka, B.; Bandyopadhyay, R.; Korie, S.; Mahuku, G. Aflatoxin contamination in Tanzania: Quantifying the problem in maize and groundnuts from rural households. World Mycotoxin J. 2021, 14, 553–564. [Google Scholar] [CrossRef]
  98. Hanvi, D.M.; Lawson-Evi, P.; De Boevre, M.; Goto, C.E.; De Saeger, S.; Eklu-Gadegbeku, K. Natural occurrence of mycotoxins in maize and sorghum in Togo. Mycotoxin Res. 2019, 35, 321–327. [Google Scholar] [CrossRef]
  99. Hanvi, D.M.; Lawson-Evi, P.; Bouka, E.C.; Eklu-Gadegbeku, K. Aflatoxins in maize dough and dietary exposure in rural populations of Togo. Food Control 2020, 121, 107673. [Google Scholar] [CrossRef]
  100. Jedidi, I.; Cruz, A.; González-Jaén, M.T.; Said, S. Aflatoxins and ochratoxin A and their Aspergillus causal species in Tunisian cereals. Food Addit. Contam. Part B Surveill. 2016, 10, 51–58. [Google Scholar] [CrossRef]
  101. Jedidi, I.; Soldevilla, C.; Lahouar, A.; Patricia, M.; González-Jaén, M.T.; Said, S. Mycoflora isolation and molecular characterization of Aspergillus and Fusarium species in Tunisian cereals. Saudi J. Biol. Sci. 2017, 25, 868–874. [Google Scholar] [CrossRef]
  102. Mukanga, M.; Derera, J.; Tongoona, P.; Laing, M.D. A survey of pre-harvest ear rot diseases of maize and associated mycotoxins in south and central Zambia. Int. J. Food Microbiol. 2010, 141, 213–221. [Google Scholar] [CrossRef]
  103. Kachapulula, P.W.; Akello, J.; Bandyopadhyay, R.; Cotty, P.J. Aspergillus Section Flavi community structure in Zambia influences aflatoxin contamination of maize and groundnut. Int. J. Food Microbiol. 2017, 261, 49–56. [Google Scholar] [CrossRef] [PubMed]
  104. Akello, J.; Ortega-Beltran, A.; Katati, B.; Atehnkeng, J.; Augusto, J.; Mwila, C.M.; Mahuku, G.; Chikoye, D.; Bandyopadhyay, R. Prevalence of aflatoxin- and fumonisin-producing fungi associated with cereal crops grown in Zimbabwe and their associated risks in a climate change scenario. Foods 2021, 10, 287. [Google Scholar] [CrossRef] [PubMed]
  105. Etcheverry, M.; Nesci, A.; Barros, G.; Chulze, A.T. Occurrence of Aspergillus section Flavi and aflatoxin B1 in corn genotypes and corn meal in Argentina. Mycopathologia 1999, 147, 37–41. [Google Scholar] [CrossRef] [PubMed]
  106. Ramirez, M.L.; Pascale, M.; Chulze, S.; Reynoso, M.M.; March, G.; Visconti, A. Natural occurrence of fumonisins and their correlation to Fusarium contamination in commercial corn hybrids growth in Argentina. Mycopathologia 1996, 135, 29–34. [Google Scholar] [CrossRef]
  107. Nesci, A.; Etcheverry, M. Aspergillus Section Flavi populations from field maize in Argentina. Lett. Appl. Microbiol. 2002, 34, 343–348. [Google Scholar] [CrossRef]
  108. Chulze, S.N.; Ramirez, M.L.; Torres, A.; Leslie, J.F. Genetic variation in Fusarium sectionliseola from no-till maize in Argentina. Appl. Environ. Microbiol. 2000, 66, 5312–5315. [Google Scholar] [CrossRef]
  109. Pereyra, C.M.; Cavaglieri, L.R.; Chiacchiera, S.M.; Dalcero, A.M. Mycobiota and mycotoxins contamination in raw materials and finished feed intended for fattening pigs production in eastern Argentina. Vet. Res. Commun. 2011, 35, 367–379. [Google Scholar] [CrossRef]
  110. Chulze, S.N.; Ramirez, M.L.; Pascale, M.; Visconti, A. Fumonisin production by, and mating populations of, Fusarium Section Liseola isolates from maize in Argentina. Mycol. Res. 1998, 102, 141–144. [Google Scholar] [CrossRef]
  111. Camiletti, B.X.; Torrico, A.K.; Fernanda Maurino, M.; Cristos, D.; Magnoli, C.; Lucini, E.I.; de la Paz Giménez Pecci, M. Fungal screening and aflatoxin production by Aspergillus Section Flavi isolated from pre-harvest maize ears grown in two Argentine regions. Crop Prot. 2017, 92, 41–48. [Google Scholar] [CrossRef]
  112. Reynoso, M.M.; Chulze, S.N.; Zeller, K.A.; Torres, A.M.; Leslie, J.F. Genetic structure of Fusarium verticillioides populations isolated from maize in Argentina. Eur. J. Plant Pathol. 2008, 123, 207–215. [Google Scholar] [CrossRef]
  113. Magnoli, C.E.; Saenz, M.A.; Chiacchiera, S.M.; Dalcero, A.M. Natural occurrence of Fusarium species and fumonisin-production by toxigenic strains isolated from poultry feeds in Argentina. Mycopathologia 1999, 145, 35–41. [Google Scholar] [CrossRef]
  114. Torres, A.M.; Reynoso, M.M.; Rojo, F.G.; Ramirez, M.L.; Chulze, S.N. Fusarium species (Section Liseola) and its mycotoxins in maize harvested in northern argentina. Food Addit. Contam. 2001, 18, 836–843. [Google Scholar] [CrossRef]
  115. Castañares, E.; Martínez, M.; Cristos, D.; Rojas, D.; Lara, B.; Stenglein, S.; Dinolfo, M.I. Fusarium species and mycotoxin contamination in maize in Buenos Aires province, Argentina. Eur. J. Plant Pathol. 2019, 155, 1265–1275. [Google Scholar] [CrossRef]
  116. Almeida, A.P.; Corrêa, B.; Mallozzi, M.A.B.; Sawazaki, E.; Soares, L.M.V. Mycoflora and aflatoxin/fumonisin production by fungal isolates from freshly harvested corn hybrids. Braz. J. Microbiol. 2000, 31, 321–326. [Google Scholar] [CrossRef]
  117. Hirooka, E.Y.; Yamaguchi, M.M.; Aoyama, S.; Sugiura, Y. The natural occurrence of fumonisins in Brazilian corn kernels. Food Addit. Contam. 1996, 13, 173–183. [Google Scholar] [CrossRef] [PubMed]
  118. Machinski, M.; Valente Soares, L.M.; Sawazaki, E.; Bolonhezi, D.; Castro, J.L.; Bortolleto, N. Aflatoxins, ochratoxin A and zearalenone in Brazilian corn cultivars. J. Sci. Food Agric. 2001, 81, 1001–1007. [Google Scholar] [CrossRef]
  119. Rocha, L.; Nakai, V.; Braghini, R.; Reis, T.; Kobashigawa, E.; Corrêa, B. Mycoflora and co-occurrence of fumonisins and aflatoxins in freshly harvested corn in different regions of Brazil. Int. J. Mol. Sci. 2009, 10, 5090–5103. [Google Scholar] [CrossRef] [PubMed]
  120. Farias, A.X.D.; Robbs, C.F.; Bittencourt, A.M.; Andersen, P.M.; Corrêa, T.B.S. Endogenous Aspergillus spp. contamination of postharvest corn in Paraná state, Brazil. Pesqui. Agropecu. Bras. 2000, 35, 617–621. [Google Scholar] [CrossRef]
  121. De Oliveira, R.L.; Reis, G.M.; Braghini, R.; Kobashigawa, E.; de Araújo, J.; Corrêa, B. Characterization of aflatoxigenic and non-aflatoxigenic strains of Aspergillus Section Flavi isolated from corn grains of different geographic origins in Brazil. Eur. J. Plant Pathol. 2011, 132, 353–366. [Google Scholar] [CrossRef]
  122. Camargos, S.M.; Soares, L.M.V.; Sawazaki, E.; Bolonhezi, D.; Bortolleto, N. Accumulation of fumonisins B1 and B2 in freshly harvested brazilian commercial maize at three locations during two nonconsecutive seasons. Mycopathologia 2002, 155, 219–228. [Google Scholar] [CrossRef]
  123. Sekiyama, B.L.; Ribeiro, A.B.; Machinski, P.A.; Machinski Junior, M. Aflatoxins, ochratoxin A and zearalenone in maize-based food products. Braz. J. Microbiol. 2005, 36, 289–294. [Google Scholar] [CrossRef]
  124. Aquino, S.; Ferreira, F.; Ribeiro, D.H.B.; Corrêa, B.; Greiner, R.; Villavicencio, A.L.C.H. Evaluation of viability of Aspergillus flavus and aflatoxins degradation in irradiated samples of maize. Braz. J. Microbiol. 2005, 36, 352–356. [Google Scholar] [CrossRef]
  125. De Oliveira, R.L.; Reis, G.M.; da Silva, V.N.; Braghini, R.; Teixeira, M.M.G.; Corrêa, B. Molecular characterization and fumonisin production by Fusarium verticillioides isolated from corn grains of different geographic origins in Brazil. Int. J. Food Microbiol. 2011, 145, 9–21. [Google Scholar] [CrossRef]
  126. Keller, L.A.M.; González Pereyra, M.L.; Keller, K.M.; Alonso, V.A.; De Oliveira, A.A.; Almeida, T.X.; Barbosa, T.S.; Nunes, L.M.T.; Cavaglieri, L.R.; Rosa, C.A.R. Fungal and mycotoxins contamination in corn silage: Monitoring risk before and after fermentation. J. Stored Prod. Res. 2013, 52, 42–47. [Google Scholar] [CrossRef]
  127. Neish, G.A.; Farnworth, E.R.; Greenhalgh, R.; Young, J.C. Observations on the occurrence of Fusarium species and their toxins in corn in eastern Ontario. Can. J. Plant Pathol. 1983, 5, 11–16. [Google Scholar] [CrossRef]
  128. Mora, M.; Lacey, J. Handling and aflatoxin contamination of white maize in Costa rica. Mycopathologia 1997, 138, 77–89. [Google Scholar] [CrossRef]
  129. Julian, A.M.; Wareing, P.W.; Phillips, S.I.; Medlock, V.F.P.; MacDonald, M.V.; del Río, L.E. Fungal contamination and selected mycotoxins in pre- and post-harvest maize in Honduras. Mycopathologia 1995, 129, 5–16. [Google Scholar] [CrossRef]
  130. Carvajal, M.; Arroyo, G. Management of aflatoxin contaminated maize in Tamaulipas, Mexico. J. Agric. Food Chem. 1997, 45, 1301–1305. [Google Scholar] [CrossRef]
  131. Morales-Rodríguez, I.; de Yañz-Morales, M.J.; Silva-Rojas, H.V.; García-de-los-Santos, G.; Guzmán-de-Peña, D.A. Biodiversity of Fusarium species in Mexico associated with ear rot in maize, and their identification using a phylogenetic approach. Mycopathologia 2007, 163, 31–39. [Google Scholar] [CrossRef] [PubMed]
  132. Ortega-Beltran, A.; Cotty, P.J. Frequent shifts in Aspergillus flavus populations associated with maize production in Sonora, Mexico. Phytopathology 2018, 108, 412–420. [Google Scholar] [CrossRef]
  133. Reyes-Velázquez, W.P.; Figueroa-Gómez, R.M.; Barberis, M.; Reynoso, M.M.; Rojo, F.G.A.; Chulze, S.N.; Torres, A.M. Fusarium species (Section Liseola) occurrence and natural incidence of beauvericin, fusaproliferin and fumonisins in maize hybrids harvested in Mexico. Mycotoxin Res. 2011, 27, 187–194. [Google Scholar] [CrossRef] [PubMed]
  134. Horn, J.W.; Dorner, B.W. Regional differences in production of aflatoxin B1 and cyclopiazonic acid by soil isolates of Aspergillus flavus along a transect within the united states. Appl. Environ. Microbiol. 1999, 65, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
  135. Leslie, J.F. Fusarium spp. from corn, sorghum, and soybean fields in the central and eastern united states. Phytopathology 1990, 80, 66. [Google Scholar] [CrossRef]
  136. Williams, W.P.; Windham, G.L.; Buckley, P.M.; Perkins, J.M. Southwestern corn borer damage and aflatoxin accumulation in conventional and transgenic corn hybrids. Field Crop Res. 2005, 91, 329–336. [Google Scholar] [CrossRef]
  137. Tarekegn, G.; Celestin, M.; Bullerman, L.B. Occurrence of fumonisins and moniliformin in corn and corn-based food products of U.S. origin. J. Food Prot. 2000, 63, 1732–1737. [Google Scholar]
  138. Kinyungu, S.; Isakeit, T.; Ojiambo, P.S.; Woloshuk, C.P. Spread of Aspergillus flavus and aflatoxin accumulation in postharvested maize treated with biocontrol products. J. Stored Prod. Res. 2009, 84, 101519. [Google Scholar] [CrossRef]
  139. Abbas, H.K.; Cartwright, R.D.; Xie, W.; Thomas Shier, W. Aflatoxin and fumonisin contamination of corn (maize, Zea mays) hybrids in Arkansas. Crop Prot. 2006, 25, 1–9. [Google Scholar] [CrossRef]
  140. Bush, B.J.; Carson, M.L.; Cubeta, M.A.; Hagler, W.M.; Payne, G.A. Infection and fumonisin production by Fusarium verticillioides in developing maize Kernels. Phytopathology 2004, 94, 88–93. [Google Scholar] [CrossRef]
  141. Wilson, J.P.; Jurjevic, Z.; Hanna, W.W.; Wilson, D.M.; Potter, T.L.; Coy, A.E. Host-specific variation in infection by toxigenic fungi and contamination by mycotoxins in pearl millet and corn. Mycopathologia 2006, 161, 101–107. [Google Scholar] [CrossRef]
  142. Damianidis, D.; Ortiz, B.V.; Windham, G.L.; Bowen, K.L.; Hoogenboom, G.; Scully, B.T.; Hagan, A.; Knappenberger, T.; Woli, P.; Williams, W.P. Evaluating a generic drought index as a predictive tool for aflatoxin contamination of corn: From plot to regional level. Crop Prot. 2018, 113, 64–74. [Google Scholar] [CrossRef]
  143. Medina-Martínez, M.S.; Martínez, A.J. Mold occurrence and aflatoxin B1 and fumonisin B1 determination in corn samples in Venezuela. J. Agric. Food Chem. 2000, 48, 2833–2836. [Google Scholar] [CrossRef]
  144. Mazzani, C.; Borges, O.; Luzón, O.; Barrientos, V.; Quijada, P. Occurrence of Fusarium moniliforme and fumonisins in kernels of maize hybrids in Venezuela. Braz. J. Microbiol. 2001, 32, 345–349. [Google Scholar] [CrossRef]
  145. Li, F.Q.; Yoshizawa, T.; Kawamura, O.; Luo, X.Y.; Li, Y.W. Aflatoxins and fumonisins in corn from the high-incidence area for human hepatocellular carcinoma in Guangxi, China. J. Agric. Food Chem. 2001, 49, 4122–4126. [Google Scholar] [CrossRef] [PubMed]
  146. Gao, J.; Liu, Z.; Yu, J. Identification of Aspergillus Section Flavi in maize in northeastern China. Mycopathologia 2007, 164, 91–95. [Google Scholar] [CrossRef]
  147. Guo, B.; Ji, X.; Ni, X.; Fountain, J.C.; Li, H.; Abbas, H.K.; Lee, R.D.; Scully, B.T. Evaluation of maize inbred lines for resistance to pre-harvest aflatoxin and fumonisin contamination in the field. Crop J. 2017, 5, 259–264. [Google Scholar] [CrossRef]
  148. Zhang, L.; Wang, J.; Zhang, C.; Wang, Q. Analysis of potential fumonisin-producing Fusarium species in corn products from three main maize-producing areas in eastern China. J. Sci. Food Agric. 2013, 93, 693–701. [Google Scholar] [CrossRef]
  149. Xing, F.; Liu, X.; Wang, L.; Selvaraj, J.N.; Jin, N.; Wang, Y.; Zhao, Y.; Liu, Y. Distribution and variation of fungi and major mycotoxins in pre- and post-nature drying maize in North China Plain. Food Control 2017, 80, 244–251. [Google Scholar] [CrossRef]
  150. Wei, T.; Zhu, W.; Pang, M.; Liu, Y.; Dong, J. Natural occurrence of fumonisins B1 and B2 in corn in four provinces of China. Food Addit. Contam. Part B Surveill. 2013, 6, 270–274. [Google Scholar] [CrossRef]
  151. Mamo, F.T.; Shang, B.; Selvaraj, J.N.; Wang, Y.; Liu, Y. Isolation and characterization of Aspergillus flavus strains in China. J. Microbiol. 2018, 56, 119–127. [Google Scholar] [CrossRef]
  152. Qiu, J.; Xu, J.; Dong, F.; Yin, X.; Shi, J. Isolation and characterization of Fusarium verticillioides from maize in eastern China. Eur. J. Plant Pathol. 2015, 142, 791–800. [Google Scholar] [CrossRef]
  153. Li, R.; Tao, B.; Pang, M.; Liu, Y.; Dong, J. Natural occurrence of fumonisins B1 and B2 in maize from three main maize-producing provinces in China. Food Control 2015, 50, 838–842. [Google Scholar] [CrossRef]
  154. Fu, M.; Li, R.; Guo, C.; Pang, M.; Liu, Y.; Dong, J. Natural incidence of Fusarium species and fumonisins B1 and B2 associated with maize kernels from nine provinces in China in 2012. Food Addit. Contam. Part A 2014, 32, 503–511. [Google Scholar] [CrossRef]
  155. Guo, C.; Liu, Y.; Jiang, Y.; Li, R.; Pang, M.; Liu, Y.; Dong, J. Fusarium species identification and fumonisin production in maize kernels from Shandong province, China, from 2012 to 2014. Food Addit. Contam. Part B Surveill. 2016, 9, 203–209. [Google Scholar] [CrossRef]
  156. Zhang, H.; Brankovics, B.; Luo, W.; Xu, J.; Guo, C.; Guo, J.; Jin, S.; Chen, W.; Feng, J.; Van Diepeningen, A.; et al. Crops are a main driver for species diversity and the toxigenic potential of Fusarium isolates in maize ears in China. World Mycotoxin J. 2016, 9, 701–715. [Google Scholar] [CrossRef]
  157. Yu, S.; Jia, B.; Li, K.; Zhou, H.; Lai, W.; Tang, Y.; Yan, Z.; Sun, W.; Liu, N.; Yu, D.; et al. Pre-warning of abiotic factors in maize required for potential contamination of Fusarium mycotoxins via response surface analysis. Food Control 2021, 121, 107570. [Google Scholar] [CrossRef]
  158. Choudhary, A.K.; Sinha, K.K. Competition between a toxigenic Aspergillus flavus strain and other fungi on stored maize kernels. J. Stored Prod. Res. 1993, 29, 75–80. [Google Scholar] [CrossRef]
  159. Mudili, V.; Siddaih, C.N.; Nagesh, M.; Garapati, P.; Kumar, K.N.; Murali, H.S.; Mattila, T.Y.; Batra, H.V. Mould incidence and mycotoxin contamination in freshly harvested maize kernels originated from India. J. Sci. Food Agric. 2014, 94, 2674–2683. [Google Scholar] [CrossRef] [PubMed]
  160. Chandra, N.S.; Udaya Shankar, A.C.; Niranjana, S.R.; Wulff, E.G.; Mortensen, C.N.; Prakash, H.S. Detection and quantification of fumonisins from Fusarium verticillioides in maize grown in southern India. World J. Microbiol. Biotechnol. 2009, 26, 71–78. [Google Scholar] [CrossRef]
  161. Bhat, R.V.; Vasanthi, S.; Rao, B.S.; Rao, R.N.; Rao, V.S.; Nagaraja, K.V.; Bai, R.G.; Prasad, C.A.K.; Vanchinathan, S.; Roy, R.; et al. Aflatoxin B1 contamination in maize samples collected from different geographical regions of India—A multicentre study. Food Addit Contam. 1997, 14, 151–156. [Google Scholar] [CrossRef]
  162. Mohana, D.C.; Thippeswamy, S.; Abhishek, R.U.; Manjunath, K. Natural occurrence of Aspergillus flavus and Fusarium verticillioides, and afb 1 and fb 1 contamination in maize grown in southern Karnataka (India). Can. J. Plant Prot. 2014, 2, 17–20. [Google Scholar]
  163. Srinivas, M.Y.; Diwakar, B.T.; Raj, A.P.C.; Das, R.S.; Janardhan, G.R. Toxigenic Fusarium species and fumonisin B1 and B2 associated with freshly harvested sorghum and maize grains produced in Karnataka, India. Ann. Food Sci. Technol. 2013, 14, 100–107. [Google Scholar]
  164. Janardhana, G.; Raveesha, K.; Shetty, H.S. Mycotoxin contamination of maize grains grown in Karnataka (India). Food Chem. Toxicol. 1999, 37, 863–868. [Google Scholar] [CrossRef] [PubMed]
  165. Navya, H.M.; Hariprasad, P.; Naveen, J.; Chandranayaka, S.; Niranjana, S.R. Natural occurrence of aflatoxin, aflatoxigenic and non-aflatoxigenic Aspergillus flavus in groundnut seeds across India. Afr. J. Biotechnol. 2013, 12, 2587–2597. [Google Scholar]
  166. Muthusamy, K.; Arumugam, K.; Rethinasamy, V.; Srinivasan, M.; Thangamuthu, J. Occurrence of aflatoxin contamination in maize kernels and molecular characterization of the producing organism, Aspergillus. Afr. J. Biotechnol. 2013, 12, 5839–5844. [Google Scholar] [CrossRef]
  167. Nagaraja, H.; Chennappa, G.; Poorna Chandra, R.K.; Mahadev Prasad, G.; Sreenivasa, M.Y. Diversity of toxic and phytopathogenic Fusarium species occurring on cereals grown in Karnataka state, India. 3 Biotech 2016, 6, 57. [Google Scholar] [CrossRef] [PubMed]
  168. Chandra, H.; Bahuguna, J.; Singh, A. Detection of aflatoxin in Zea mays L. from indian markets by competitive elisa. Octa J. Biosci. 2013, 1, 62–68. [Google Scholar]
  169. Aiyaz, M.; Divakara, S.T.; Mudili, V.; Moore, G.G.; Gupta, V.K.; Yli-Mattila, T.; Nayaka, S.C.; Niranjana, S.R. Molecular diversity of seed-borne Fusarium species associated with maize in India. Curr. Genom. 2016, 17, 132–144. [Google Scholar] [CrossRef]
  170. Aiyaz, M.; Divakara, S.T.; Konappa, N.M.; Kalagattur, N.K.; Niranjana, S.R. Genetic and chemotypic diversity of two lineages of Aspergillus flavus isolated from maize seeds of different agroclimatic niches of India. Indian Phytopathol. 2020, 73, 219–236. [Google Scholar] [CrossRef]
  171. Kumar, S.; Shekhar, M.; Kiran, R.; Sing, N. Role of mould occurrence in aflatoxin build-up and variability of Aspergillus flavus isolates from maize grains across India. Qual. Assur. Saf. Crops Foods 2017, 9, 171–178. [Google Scholar]
  172. Wenndt, A.; Sudini, H.K.; Pingali, P.; Nelson, R. Exploring aflatoxin contamination and household-level exposure risk in diverse Indian food systems. PLoS ONE 2020, 15, e0240565. [Google Scholar] [CrossRef]
  173. Ali, N.; Sardjono, S.; Yamashita, A.; Yoshizawa, T. Natural co-occurrence of Aflatoxins and Fusaviummy mycotoxins (fumonisins, deoxynivalenol, nivalenol and zearalenone) in corn from Indonesia. Food Addit. Contam. 1998, 15, 377–384. [Google Scholar] [CrossRef]
  174. Ghiasian, S.A.; Kord-Bacheh, P.; Rezayat, S.M.; Maghsood, A.H.; Taherkhani, H. Mycoflora of Iranian maize harvested in the main production areas in 2000. Mycopathologia 2004, 158, 113–121. [Google Scholar] [CrossRef] [PubMed]
  175. Ghiasian, S.A.; Shephard, G.S.; Yazdanpanah, H. Natural occurrence of aflatoxins from maize in Iran. Mycopathologia 2011, 172, 153–160. [Google Scholar] [CrossRef] [PubMed]
  176. Farhang, A.; Mansooreh, M.; Masoud, E.; Mazhar, S.F.; Rouhollah, K.O. Natural occurrence of Fusarium species in maize kernels at gholestan province in Northern Iran. Asian J. Plant Sci. 2007, 6, 1276–1281. [Google Scholar]
  177. Mahmoudi, R.; Norian, R.; Katiraee, F.; Pajohi Alamoti, M.R. Total aflatoxin contamination of maize produced in different regions of Qazvin-Iran. Int. Food Res. J. 2013, 20, 2901–2904. [Google Scholar]
  178. Fallahi, M.; Saremi, H.; Javan-Nikkhah, M.; Somma, S.; Haidukowski, M.; Logrieco, A.F.; Moretti, A. Isolation, molecular identification and mycotoxin profile of Fusarium species isolated from maize kernels in Iran. Toxins 2019, 11, 297. [Google Scholar] [CrossRef]
  179. Houshyar-Fard, M.; Rouhani, H.; Falahati-Rastegar, M.; Mahdikhani-Moghaddam, E.; Malekzadeh-Shafaroudi, S.; Probst, C. Studies on Aspergillus flavus link, isolated from maize in Iran. J. Plant Prot. Res. 2014, 54, 218–224. [Google Scholar] [CrossRef]
  180. Khosrow, C.; Zafari, D.; Nurhazrati, M.; Salleh, B.; Karami, E. Natural occurrence of Fusarium species associated with root and stalk rot of maize in Kermanshah province, Iran. J. Biol. Sci. 2010, 10, 795–799. [Google Scholar]
  181. Lee, S.H.; Son, S.W.; Nam, Y.J.; Shin, J.Y.; Lee, T. Natural occurrence of Fusarium mycotoxins in field-collected maize and rice in korea in 2009. J. Am. Geriatr. Soc. 2010, 16, 179–191. [Google Scholar]
  182. Reddy, K.R.N.; Salleh, B. Co-occurrence of moulds and mycotoxins in corn grains used for animal feeds in Malaysia. J. Anim. Vet. Adv. 2011, 10, 668–673. [Google Scholar] [CrossRef]
  183. Nur Ain Izzati, M.Z.; Azmi, A.R.; Siti Nordahliawate, M.S.; Norazlina, J. Contribution to the knowledge of diversity of Fusarium associated with maize in Malaysia. Plant Prot. Sci. 2011, 47, 20–24. [Google Scholar] [CrossRef]
  184. Desjardins, A.E.; Manandhar, G.; Plattner, R.D.; Maragos, C.M.; Shrestha, K.; McCormick, S.P. Occurrence of Fusarium species and mycotoxins in nepalese maize and wheat and the effect of traditional processing methods on mycotoxin levels. J. Agric. Food Chem. 2000, 48, 1377–1383. [Google Scholar] [CrossRef] [PubMed]
  185. Saleemi, M.K.; Khan, M.Z.; Khan, A.; Javed, I.; Mehmood, M.A. Occurrence of toxigenic fungi in maize and maize-gluten meal from pakistan. Phytopathol. Mediterr. 2012, 51, 219–224. [Google Scholar]
  186. Niaz, I.; Dawar, S. Detection of seed borne mycoflora in maize (Zea mays L.). Pak. J. Bot. 2009, 41, 443–451. [Google Scholar]
  187. Shah, H.U.; Simpson, T.J.; Alam, S.; Khattak, K.F.; Perveen, S. Mould incidence and mycotoxin contamination in maize kernels from Swat Valley, North West Frontier Province of Pakistan. Food Chem. Toxicol. 2010, 48, 1111–1116. [Google Scholar] [CrossRef]
  188. Khatoon, S.; Hanif, N.Q.; Tahira, I.; Sultana, N.; Ayub, N. Natural occurrence of aflatoxins, zearalenone and trichothecenes in maize grown in Pakistan. Pak. J. Bot. 2012, 44, 231–236. [Google Scholar]
  189. Ahsan, S.; Bhatti, I.A.; Asi, M.R.; Bhatti, H.N.; Sheikh, M.A. Occurrence of aflatoxins in maize grains from central areas of Punjab, Pakistan. Int. J. Agric. Biol. 2010, 12, 571–575. [Google Scholar]
  190. Saleem, M.J.; Bajwa, R.; Hannan, A.; Qaiser, T.A. Maize seed storage mycoflora in pakistan and its chemical control. Pak. J. Bot. 2012, 44, 807–812. [Google Scholar]
  191. Firdous, S.; Ashfaq, A.; Khan, S.J.; Khan, N. Aflatoxins in corn and rice sold in Lahore, Pakistan. Food Addit. Contam. Part B Surveill. 2013, 7, 95–98. [Google Scholar] [CrossRef] [PubMed]
  192. Asghar, M.A.; Ahmed, A.; Asghar, M.A. Influence of temperature and environmental conditions on aflatoxin contamination in maize collected from different regions of Pakistan during 2016–2019. J. Stored Prod. Res. 2020, 88, 101637. [Google Scholar] [CrossRef]
  193. Mahmoud, M.A.; Al-Othman, M.R.; Abd-El-Aziz, A.R. Mycotoxigenic fungi contaminating corn and sorghum grains in Saudi Arabia. Pak. J. Bot. 2013, 45, 1831–1839. [Google Scholar]
  194. Mahmoud, M.A.; Abd-El-Aziz, A.R. Molecular identification and genetic variation of toxigenic and atoxigenic Fusarium verticillioides and its toxin-contaminated maize grains. Res. J. Biotechnol. 2016, 11, 53–59. [Google Scholar]
  195. Trung, T.; Tabuc, C.; Bailly, S.; Querin, A.; Guerre, P.; Bailly, J. Fungal mycoflora and contamination of maize from Vietnam with aflatoxin B1 and fumonisin B1. World Mycotoxin J. 2008, 1, 87–94. [Google Scholar] [CrossRef]
  196. Summerell, B.A.; Burgess, L.W.; Bullock, S.; Backhouse, D.; Tri, N.D. Occurrence of perithecia of gibberella fujikuroi mating population a (Fusarium moniliforme) on maize stubble in northern Vietnam. Mycologia 1998, 90, 890–895. [Google Scholar] [CrossRef]
  197. Huong, B.T.M.; Tuyen, L.D.; Do, T.T.; Madsen, H.; Brimer, L.; Dalsgaard, A. Aflatoxins and fumonisins in rice and maize staple cereals in northern Vietnam and dietary exposure in different ethnic groups. Food Control 2016, 70, 191–200. [Google Scholar] [CrossRef]
  198. Tran, T.M.; Ameye, M.; Phan, L.T.K.; Devlieghere, F.; De Saeger, S.; Eeckhout, M.; Audenaert, K. Post-harvest contamination of maize by Fusarium verticillioides and fumonisins linked to traditional harvest and post-harvest practices: A case study of small-holder farms in Vietnam. Int. J. Food Microbiol. 2021, 339, 109022. [Google Scholar] [CrossRef]
  199. Abdel-Sater, M.A.; Abdel-Hafez, S.I.I.; Hussein, N.; Al-Amery, E. Fungi associated with maize and sorghum grains and their potential for amylase and aflatoxins production. Egypt J. Bot. 2017, 57, 119–137. [Google Scholar] [CrossRef]
  200. Scauflaire, J.; Mahieu, O.; Louvieaux, J.; Foucart, G.; Renard, F.; Munaut, F. Biodiversity of Fusarium species in ears and stalks of maize plants in Belgium. Eur. J. Plant Pathol. 2011, 131, 59–66. [Google Scholar] [CrossRef]
  201. Vandicke, J.; De Visschere, K.; Croubels, S.; De Saeger, S.; Audenaert, K.; Haesaert, G. Mycotoxins in flanders’ fields: Occurrence and correlations with Fusarium species in whole-plant harvested maize. Microorganisms 2019, 7, 571. [Google Scholar] [CrossRef]
  202. Cvetnić, Z. Cyclopiazonic acid and aflatoxin production by cultures of Aspergillus flavus isolated from dried beans and maize. Food Nahr. 1994, 38, 21–25. [Google Scholar] [CrossRef]
  203. Baranyi, N.; Despot, D.J.; Palágyi, A.; Kiss, N.; Kocsubé, S.; Szekeres, A.; Kecskeméti, A.; Bencsik, O.; Vágvölgyi, C.; Klarić, M.; et al. Identification of Aspergillus species in Central Europe able to produce G-type aflatoxins. Acta Biol. Hung. 2015, 66, 339–347. [Google Scholar] [CrossRef]
  204. Bailly, S.; El Mahgubi, A.; Carvajal-Campos, A.; Lorber, S.; Puel, O.; Oswald, I.P.; Bailly, J.-D.; Orlando, B. Occurrence and identification of Aspergillus Section flavi in the context of the emergence of aflatoxins in French maize. Toxins 2018, 10, 525. [Google Scholar] [CrossRef]
  205. Bakan, B.; Melcion, D.; Richard-Molard, D.; Cahagnier, B. Fungal growth and Fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain. J. Agric. Food Chem. 2002, 50, 728–731. [Google Scholar] [CrossRef]
  206. Goertz, A.; Zuehlke, S.; Spiteller, M.; Steiner, U.; Dehne, H.W.; Waalwijk, C.; de Vries, I.; Oerke, E.C. Fusarium species and mycotoxin profiles on commercial maize hybrids in Germany. Eur. J. Plant Pathol. 2010, 128, 101–111. [Google Scholar] [CrossRef]
  207. Pfordt, A.; Schiwek, S.; Rathgeb, A.; Rodemann, C.; Tiedemann, A.V. Occurrence, pathogenicity, and mycotoxin production of fusarium temperatum in relation to other Fusarium species on maize in Germany. Pathogens 2020, 9, 864. [Google Scholar] [CrossRef] [PubMed]
  208. Dobolyi, C.; Sebők, F.; Varga, J.; Kocsubé, S.; Szigeti, G.; Baranyi, N.; Szécsi, B.; Tóth, B.; Varga, M.; Kriszt, B.; et al. Occurrence of aflatoxin producing Aspergillus flavus isolates in maize kernel in Hungary. Acta Aliment. 2013, 42, 451–459. [Google Scholar] [CrossRef]
  209. Sebők, F.; Dobolyi, C.; Zágoni, D.; Risa, A.; Krifaton, C.; Hartman, M.; Cserháti, M.; Szoboszlay, S.; Kriszt, B. Aflatoxigenic Aspergillus flavus and Aspergillus parasiticus strains in Hungarian maize fields. Acta Microbiol. Immunol. Hung. 2016, 63, 491–502. [Google Scholar] [CrossRef] [PubMed]
  210. Battilani, P.; Barbano, C.; Piva, G. Aflatoxin B1 contamination in maize related to the aridity index in North Italy. World Mycotoxin J. 2008, 1, 449–456. [Google Scholar] [CrossRef]
  211. Covarelli, L.; Beccari, G.; Salvi, S. Infection by mycotoxigenic fungal species and mycotoxin contamination of maize grain in Umbria, central Italy. Food Chem. Toxicol. 2011, 49, 2365–2369. [Google Scholar] [CrossRef] [PubMed]
  212. Mauro, A.; Battilani, P.; Callicott, K.A.; Giorni, P.; Pietri, A.; Cotty, P.J. Structure of an Aspergillus flavus population from maize kernels in northern Italy. Int. J. Food Microbiol. 2013, 162, 1–7. [Google Scholar] [CrossRef]
  213. Lazzaro, I.; Moretti, A.; Giorni, P.; Brera, C.; Battilani, P. Organic vs conventional farming: Differences in infection by mycotoxin-producing fungi on maize and wheat in northern and central Italy. Crop Prot. 2015, 72, 22–30. [Google Scholar] [CrossRef]
  214. Leggieri, M.C.; Bertuzzi, T.; Pietri, A.; Battilani, P. Mycotoxin occurrence in maize produced in northern Italy over the years 2009–2011: Focus on the role of crop related factors. Phytopathol. Mediterr. 2015, 54, 212–221. [Google Scholar]
  215. Stagnati, L.; Martino, M.; Battilani, P.; Busconi, M.; Lanubile, A.; Marocco, A. Development of early maturity maize hybrids for resistance to Fusarium and Aspergillus ear rots and their associated mycotoxins. World Mycotoxin J. 2020, 13, 459–471. [Google Scholar] [CrossRef]
  216. Sanna, M.; Vettoretto, R.; Luongo, I.; Gullino, M.L.; Mezzalama, M. Phytosanitary evaluation of commercial maize hybrids in Italy. J. Plant Pathol. 2021, 103, 1147–1152. [Google Scholar] [CrossRef]
  217. Bottalico, A.; Logrieco, A.; Ritieni, A.; Moretti, A.; Randazzo, G.; Corda, P. Beauvericin and fumonisin B1 in preharvest Fusarium moniliformemaize ear rot in Sardinia. Food Addit. Contam. 1995, 12, 599–607. [Google Scholar] [CrossRef]
  218. Venturini, G.; Assante, G.; Vercesi, A. Fusarium verticillioides contamination patterns in northern Italian maize during the growing season. Phytopathol. Mediterr. 2011, 50, 110–120. [Google Scholar]
  219. Dall’Asta, C.; Falavigna, C.; Galaverna, G.; Battilani, P. Role of maize hybrids and their chemical composition in Fusarium infection and fumonisin production. J. Agric. Food Chem. 2012, 60, 3800–3808. [Google Scholar] [CrossRef]
  220. Czembor, E.; Stępień, Ł.; Waśkiewicz, A. Effect of environmental factors on Fusarium species and associated mycotoxins in maize grain grown in Poland. PLoS ONE 2015, 10, e0133644. [Google Scholar] [CrossRef] [PubMed]
  221. Gromadzka, K.; Błaszczyk, L.; Chełkowski, J.; Waśkiewicz, A. Occurrence of mycotoxigenic Fusarium species and competitive fungi on preharvest maize ear rot in Poland. Toxins 2019, 11, 224. [Google Scholar] [CrossRef]
  222. Soares, C.; Rodrigues, P.; Peterson, S.W.; Lima, N.; Venâncio, A. Three new species of Aspergillus Section Flavi isolated from almonds and maize in Portugal. Mycologia 2011, 104, 682–697. [Google Scholar] [CrossRef]
  223. Lino, C.M.; Silva, L.J.G.; Pena, A.; Fernández, M.; Mañes, J. Occurrence of fumonisins B1 and B2 in broa, typical Portuguese maize bread. Int. J. Food Microbiol. 2007, 118, 79–82. [Google Scholar] [CrossRef]
  224. Silva, L.J.G.; Lino, C.M.; Pena, A.; Moltó, J.C. Occurrence of fumonisins B1 and B2 in Portuguese maize and maize-based foods intended for human consumption. Food Addit. Contam. 2007, 24, 381–390. [Google Scholar] [CrossRef] [PubMed]
  225. Lino, C.M.; Silva, L.J.G.; Pena, A.L.S.; Silveira, M.I. Determination of fumonisins B1 and B2 in Portuguese maize and maize-based samples by HPLC with fluorescence detection. Anal. Bioanal. Chem. 2006, 384, 1214–1220. [Google Scholar] [CrossRef]
  226. Carbas, B.; Simes, D.; Soares, A.; Freitas, A.; Brites, C. Occurrence of Fusarium spp. in maize grain harvested in Portugal and accumulation of related mycotoxins during storage. Foods 2021, 10, 375. [Google Scholar] [CrossRef]
  227. Tabuc, C.; Marin, D.; Guerre, P.; Sesan, T.; Bailly, J.D. Molds and mycotoxin content of cereals in southeastern Romania. J. Food Prot. 2009, 72, 662–665. [Google Scholar] [CrossRef]
  228. Tabuc, C.; Taranu, I.; Calin, L. Survey of moulds and mycotoxin contamination of cereals in south-eastern Romania in 2008–2010. Arch. Zootech. 2011, 144, 25–38. [Google Scholar]
  229. Kos, J.; Mastilović, J.; Hajnal, E.J.; Šarić, B. Natural occurrence of aflatoxins in maize harvested in Serbia during 2009–2012. Food Control 2013, 34, 31–34. [Google Scholar] [CrossRef]
  230. Krnjaja, V.; Lević, J.; Stanković, S.; Petrović, T.; Tomić, Z.; Mandić, V.; Bijelić, Z. Moulds and mycotoxins in stored maize grains. Biotechnol. Anim. Husb. 2013, 29, 527–536. [Google Scholar] [CrossRef]
  231. Shala-Mayrhofer, V.; Varga, E.; Marjakaj, R.; Berthiller, F.; Lemmens, M. Investigations on Fusarium spp. and their mycotoxins causing Fusarium ear rot of maize in Kosovo. Food Addit. Contam. Part B Surveill. 2013, 6, 237–243. [Google Scholar] [CrossRef]
  232. Krnjaja, V.; Lević, J.T.; Stanković, S.Ž.; Petrović, T.S.; Lukić, M.D. Molds and mycotoxins in freshly harvested maize. Proc. Matica Srp. Nat. Sci. 2013, 124, 111–119. [Google Scholar] [CrossRef]
  233. Kos, J.; Hajnal, E.J.; Škrinjar, M.; Mišan, A.; Mandić, A.; Jovanov, P.; Milovanović, I. Presence of Fusarium toxins in maize from autonomous province of Vojvodina, Serbia. Food Control 2014, 46, 98–101. [Google Scholar] [CrossRef]
  234. Janić Hajnal, E.; Kos, J.; Krulj, J.; Krstović, S.; Jajić, I.; Pezo, L.; Šarić, B.; Nedeljković, N. Aflatoxins contamination of maize in Serbia: The impact of weather conditions in 2015. Food Addit. Contam. Part A 2017, 34, 1999–2010. [Google Scholar] [CrossRef]
  235. Krnjaja, V.S.; Mandi, V.; Bijeli, Z.; Lukic, M.; Nikolic, M. Natural toxigenic fungal and mycotoxin occurrence in maize hybrids. Biotechnol. Anim. Husb. 2020, 36, 75–85. [Google Scholar] [CrossRef]
  236. Kos, J.; Janić Hajnal, E.; Radić, B.; Pezo, L.; Malachová, A.; Krska, R.; Sulyok, M. Two years study of Aspergillus metabolites prevalence in maize from the Republic of Serbia. J. Food Process. Preserv. 2021, 11, e15897. [Google Scholar] [CrossRef]
  237. Srobarova, A.; Moretti, A.; Ferracane, R.; Ritieni, A.; Logrieco, A. Toxigenic Fusarium species of liseola section in pre-harvest maize ear rot, and associated mycotoxins in Slovakia. Eur. J. Plant Pathol. 2002, 108, 299–306. [Google Scholar] [CrossRef]
  238. Alborch, L.; Bragulat, M.R.; Castellá, G.; Abarca, M.L.; Cabañes, F.J. Mycobiota and mycotoxin contamination of maize flours and popcorn kernels for human consumption commercialized in Spain. Food Microbiol. 2012, 32, 97–103. [Google Scholar] [CrossRef]
  239. Castellá, G.; Bragulat, M.R.; Cabaes, F.J. Surveillance of fumonisins in maize-based feeds and cereals from Spain. J. Agric. Food Chem. 1999, 47, 4707–4710. [Google Scholar] [CrossRef]
  240. Mateo, E.M.; Gimeno-Adelantado, J.V.; García-Esparza, M.A.; Romera, D.; Mateo-Castro, R. Occurrence of mycotoxin-producing fungi in conventional and organic corn in Spain. In Microbes in the Spotlight: Recent Progress in the Understanding of Beneficial and Harmful Microorganisms; Brown Walker Press: Irvine, CA, USA, 2016; pp. 214–218. [Google Scholar]
  241. García-Díaz, M.; Gil-Serna, J.; Vázquez, C.; Botia, M.N.; Patiño, B. A comprehensive study on the occurrence of mycotoxins and their producing fungi during the maize production cycle in Spain. Microorganisms 2020, 8, 141. [Google Scholar] [CrossRef] [PubMed]
  242. Arino, A.; Juan, T.; Estopanan, G.; Gonzalez-Cabo, J.F. Natural occurrence of Fusarium species, fumonisin production by toxigenic strains, and concentrations of fumonisins B1, and B2 in conventional and organic maize grown in spain. J. Food Prot. 2007, 70, 151. [Google Scholar] [CrossRef] [PubMed]
  243. Dorn, B.; Forrer, H.R.; Schürch, S.; Vogelgsang, S. Fusarium species complex on maize in switzerland: Occurrence, prevalence, impact and mycotoxins in commercial hybrids under natural infection. Eur. J. Plant Pathol. 2009, 125, 51–61. [Google Scholar] [CrossRef]
  244. Eckard, S.; Wettstein, F.E.; Forrer, H.R.; Vogelgsang, S. Incidence of Fusarium species and mycotoxins in silage maize. Toxins 2011, 3, 949–967. [Google Scholar] [CrossRef]
  245. Musa, T.; Jenny, E.; Forrer, H.R.; Vogelgsang, S. Fusaria and mycotoxins in grain maize in Switzerland. Rech. Agron. Suisse 2011, 2, 520–525. [Google Scholar]
  246. Basler, R. Diversity of Fusarium species isolated from UK forage maize and the population structure of F. graminearum from maize and wheat. Peer J. 2016, 4, e2143. [Google Scholar] [CrossRef] [PubMed]
  247. Leggieri, M.C.; Toscano, P.; Battilani, P. Predicted aflatoxin B1 increase in Europe due to climate change: Actions and reactions at global level. Toxins 2021, 13, 292. [Google Scholar] [CrossRef]
  248. Yang, Y.; Li, G.; Wu, D.; Liu, J.; Li, X.; Luo, P.; Hu, N.; Wang, H.; Wu, Y. Recent advances on toxicity and determination methods of mycotoxins in foodstuffs. Trends Food Sci. Technol. 2020, 96, 233–252. [Google Scholar]
  249. Kimanya, M.E.; De Meulenaer, B.; Tiisekwa, B.; Ndomondo-Sigonda, M.; Devlieghere, F.; Van Camp, J.; Kolsteren, P. Co-occurrence of fumonisins with aflatoxins in home-stored maize for human consumption in rural villages of Tanzania. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2008, 25, 1353–1364. [Google Scholar] [CrossRef]
  250. Kimanya, M.E.; Shirima, C.P.; Magoha, H.; Shewiyo, D.H.; De Meulenaer, B.; Kolsteren, P.; Gong, Y.Y. Co-exposures of aflatoxins with deoxynivalenol and fumonisins from maize based complementary foods in Rombo, northern Tanzania. Food Control 2014, 41, 76–81. [Google Scholar] [CrossRef]
  251. De Oliveira, C.A.F.; Cruz, J.V.S.; Rosim, R.E.; Bordin, K.; Kindermann, A.C.P.; Corassin, C.H. Simultaneous occurrence of aflatoxins and fumonisins in corn intended for the pet feed industry and for human consumption. J. Food Chem. Nanotechnol. 2016, 2, 1–5. [Google Scholar] [CrossRef]
  252. Yang, X.; Gao, J.; Liu, Q.; Yang, D. Co-occurrence of mycotoxins in maize and maize-derived food in China and estimation of dietary intake. Food Addit. Contam. Part B Surveill. 2019, 12, 124–134. [Google Scholar] [CrossRef]
  253. Dagnac, T.; Latorre, A.; Fernández Lorenzo, B.; Llompart, M. Validation and application of a liquid chromatography-tandem mass spectrometry based method for the assessment of the cooccurrence of mycotoxins in maize silages from dairy farms in NW Spain. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2016, 33, 1850–1863. [Google Scholar] [CrossRef]
  254. Kos, J.; Janić Hajnal, E.; Malachová, A.; Steiner, D.; Stranska, M.; Krska, R.; Poschmaier, B.; Sulyok, M. Mycotoxins in maize harvested in Republic of Serbia in the period 2012–2015. Part 1: Regulated mycotoxins and its derivatives. Food Chem. 2020, 312, 126034. [Google Scholar]
  255. Tarazona, A.; Gómez, J.V.; Mateo, F.; Jiménez, M.; Romera, D.; Mateo, E.M. Study on mycotoxin contamination of maize kernels in Spain. Food Control 2020, 118, 107370. [Google Scholar]
  256. Sangare-Tigori, B.; Moukha, S.; Kouadio, H.J.; Betbeder, A.M.; Dano, D.S.; Creppy, E.E. Co-occurrence of aflatoxin B1, fumonisin B1, ochratoxin A and zearalenone in cereals and peanuts from Côte d’Ivoire. Food Addit. Contam. 2006, 23, 1000–1007. [Google Scholar]
  257. Abdallah, M.F.; Girgin, G.; Baydar, T.; Krska, R.; Sulyok, M. Occurrence of multiple mycotoxins and other fungal metabolites in animal feed and maize samples from Egypt using LC-MS/MS. J. Sci. Food Agric. 2017, 97, 4419–4428. [Google Scholar]
  258. Kpodo, K.; Thrane, U.; Hald, B. Fusaria and fumonisins in maize from Ghana and their co-occurrence with aflatoxins. Int. J. Food Microbiol. 2000, 61, 147–157. [Google Scholar]
  259. Mwalwayo, D.S.; Thole, B. Prevalence of aflatoxin and fumonisins (B1 + B2) in maize consumed in rural Malawi. Toxicol. Rep. 2016, 3, 173–179. [Google Scholar] [CrossRef]
  260. Liverpool-Tasie, L.S.O.; Turna, N.S.; Ademola, O.; Obadina, A.; Wu, F. The occurrence and co-occurrence of aflatoxin and fumonisin along the maize value chain in southwest Nigeria. Food Chem. Toxicol. 2019, 129, 458–465. [Google Scholar]
  261. Adetunji, M.; Atanda, O.; Ezekiel, C.N.; Sulyok, M.; Warth, B.; Beltrán, E.; Krska, R.; Obadina, O.; Bakare, A.; Chilaka, C.A. Fungal and bacterial metabolites of stored maize (Zea mays, L.) from five agro-ecological zones of Nigeria. Mycotoxin Res. 2014, 30, 89–102. [Google Scholar]
  262. Kamala, A.; Ortiz, J.; Kimanya, M.; Haesaert, G.; Donoso, S.; Tiisekwa, B.; De Meulenaer, B. Multiple mycotoxin co-occurrence in maize grown in three agro-ecological zones of Tanzania. Food Control 2015, 54, 208–215. [Google Scholar]
  263. Murashiki, T.C.; Chidewe, C.; Benhura, M.A.; Maringe, D.T.; Dembedza, M.P.; Manema, L.R.; Mvumi, B.M.; Nyanga, L.K. Levels and daily intake estimates of aflatoxin B1 and fumonisin B1 in maize consumed by rural households in Shamva and Makoni districts of Zimbabwe. Food Control 2017, 72, 105–109. [Google Scholar]
  264. Hove, M.; De Boevre, M.; Lachat, C.; Jacxsens, L.; Nyanga, L.K.; De Saeger, S. Occurrence and risk assessment of mycotoxins in subsistence farmed maize from Zimbabwe. Food Control 2016, 69, 36–44. [Google Scholar] [CrossRef]
  265. Torres, A.; Ramirez, M.L.; Reynoso, M.M.; Rodriguez, M.Y.; Chulze, S. Natural co-occurrence of Fusarium species (Section Liseola) and Apergillus flavus group species, fumonisin and aflatoxin in Argentinian corn. Cereal Res. Commun. 1997, 25, 389–392. [Google Scholar] [CrossRef]
  266. Vargas, E.A.; Preis, R.A.; Castro, L.; Silva, C.M.G. Co-occurrence of aflatoxins B1, B2, G1, G2, zearalenone and fumonisin B1 in Brazilian corn. Food Addit. Contam. 2001, 18, 981–986. [Google Scholar] [CrossRef] [PubMed]
  267. Franco, L.T.; Petta, T.; Rottinghaus, G.E.; Bordin, K.; Gomes, G.A.; De Oliveira, C.A.F. Co-occurrence of mycotoxins in maize food and maize-based feed from small-scale farms in Brazil: A pilot study. Mycotoxin Res. 2019, 35, 65–73. [Google Scholar] [CrossRef]
  268. Mallmann, C.A.; Simões, C.T.; Vidal, J.K.; da Silva, C.R.; de Lima Schlösser, L.M.; Araújo de Almeida, C.A. Occurrence and concentration of mycotoxins in maize dried distillers’ grains produced in Brazil. World Mycotoxin J. 2021, 14, 259–268. [Google Scholar] [CrossRef]
  269. Ono, E.Y.S.; Ono, M.A.; Funo, F.Y.; Medina, A.E.; De Oliveira, T.C.R.M.; Kawamura, O.; Ueno, Y.; Hirooka, E.Y. Evaluation of fumonisin-aflatoxin co-occurrence in Brazilian corn hybrids by ELISA. Food Addit. Contam. 2001, 18, 719–729. [Google Scholar] [CrossRef] [PubMed]
  270. Torres, O.; Matute, J.; Gelineau-Van Waes, J.; Maddox, J.R.; Gregory, S.G.; Ashley-Koch, A.E.; Showker, J.L.; Voss, K.A.; Riley, R.T. Human health implications from co-exposure to aflatoxins and fumonisins in maize-based foods in Latin America: Guatemala as a case study. World Mycotoxin J. 2015, 8, 143–159. [Google Scholar] [CrossRef]
  271. Oruc, H.H.; Cengiz, M.; Kalkanli, O. Comparison of aflatoxin and fumonisin levels in maize grown in Turkey and imported from the USA. Anim. Feed Sci. Technol. 2006, 128, 337–341. [Google Scholar] [CrossRef]
  272. Sun, G.; Wang, S.; Hu, X.; Su, J.; Zhang, Y.; Xie, Y.; Zhang, H.; Tang, L.; Wang, J.S. Co-contamination of aflatoxin B1 and fumonisin B1 in food and human dietary exposure in three areas of China. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2011, 28, 461–470. [Google Scholar] [CrossRef]
  273. Liu, Y.P.; Yang, L.X.; Yang, N.J.; Dong, B.; Cao, L.L.; Wang, K.; Yang, L.X. Occurrence of fumonisins and aflatoxins in cereals from markets of Hebei province of China. Food Addit. Contam. Part B Surveill. 2012, 5, 208–211. [Google Scholar] [CrossRef]
  274. Yamashita, A.; Yoshizawa, T.; Aiura, Y.; Sanchez, P.C.; Dizon, E.I.; Arim, R.H.; Sardjono. Fusarium mycotoxins (fumonisins, nivalenol, and zearalenone) and aflatoxins in corn from southeast Asia. Biosci. Biotechnol. Biochem. 1995, 59, 1804–1807. [Google Scholar] [CrossRef] [PubMed]
  275. Hadiani, M.R.; Yazdanpanah, H.; Amirahmadi, M.; Soleimani, H.; Shoeibi, S.; Khosrokhavar, R. Evaluation of aflatoxin contamination in maize from Mazandaran province in Iran. J. Med. Plants 2009, 8, 109–114. [Google Scholar]
  276. Kim, D.H.; Hong, S.Y.; Kang, J.W.; Cho, S.M.; Lee, K.R.; An, T.K.; Lee, C.; Chung, S.H. Simultaneous determination of multi-mycotoxins in cereal grains collected from South Korea by LC/MS/MS. Toxins 2017, 9, 106. [Google Scholar] [CrossRef] [PubMed]
  277. Park, J.W.; Kim, E.K.; Shon, D.H.; Kim, Y.B. Natural co-occurrence of aflatoxin B1, fumonisin B1 and ochratoxin A in barley and corn foods from Korea. Food Addit. Contam. 2002, 19, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
  278. Yoshizawa, T.; Yamashita, A.; Chokethaworn, N. Occurrence of fumonisins and aflatoxins in corn from Thailand. Food Addit. Contam. 1996, 13, 163–168. [Google Scholar] [CrossRef] [PubMed]
  279. Wang, D.S.; Liang, Y.X.; Chau, N.T.; Dien, L.D.; Tanaka, T.; Ueno, Y. Natural co-occurrence of Fusarium toxins and aflatoxin B1 in com for feed in north Vietnam. Nat. Toxins 1995, 3, 445–449. [Google Scholar] [CrossRef]
  280. Klarić, M.Š.; Cvetnić, Z.; Pepeljnjak, S.; Kosalec, I. Co-occurrence of aflatoxins, ochratoxin a, fumonisins, and zearalenone in cereals and feed, determined by competitive direct enzymelinked immunosorbent assay and thin-layer chromatography. Arch. Occup. Hyg. Toxicol. 2009, 60, 427–434. [Google Scholar]
  281. Pietri, A.; Bertuzzi, T.; Pallaroni, L.; Piva, G. Occurrence of mycotoxins and ergosterol in maize harvested over 5 years in Northern Italy. Food Addit. Contam. 2004, 21, 479–487. [Google Scholar] [CrossRef]
  282. Obradovic, A.; Krnjaja, V.; Nikolic, M.; Delibasic, G.; Filipovic, M.; Stankovic, G.; Stankovic, S. Impacts of climatic conditions on aflatoxin B1 and fumonisins contamination of maize kernels and their co-occurrence. Biotechnol. Anim. Husb. 2018, 34, 469–480. [Google Scholar] [CrossRef]
  283. Jakšić, S.M.; Prica, N.B.; Mihaljev, Ž.A.; Živkov Baloš, M.M.; Prunić, B.Z.; Stojanov, I.M.; Abramović, B.F. Co-occurrence of aflatoxins and fumonisins in corn food from Serbia in the 2012 production year. J. Agroaliment. Process. Technol. 2015, 21, 338–344. [Google Scholar]
  284. Scudamore, K.A.; Hetmanski, M.T.; Chan, H.K.; Collins, S. Occurrence of mycotoxins in raw ingredients used for animal feeding stuffs in the United Kingdom in 1992. Food Addit. Contam. 1997, 14, 157–173. [Google Scholar] [CrossRef]
  285. Borutova, R.; Aragon, Y.A.; Nährer, K.; Berthiller, F. Co-occurrence and statistical correlations between mycotoxins in feedstuffs collected in the Asia-Oceania in 2010. Anim. Feed Sci. Technol. 2012, 178, 190–197. [Google Scholar] [CrossRef]
  286. Dowswell, C.R.; Paliwal, R.L.; Cantrell, R.P. Maize in the Third World; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
  287. Kendon, M.; McCarthy, M.; Jevrejeva, S.; Matthews, A.; Sparks, T.; Garforth, J. State of the UK Climate 2020. Int. J. Climatol. 2021, 41, 1–76. [Google Scholar] [CrossRef]
  288. Fakhrunnisa, H.M.; Ghaffar, A. In vitro interaction of Fusarium spp.; with other fungi. Pak. J. Bot. 2006, 38, 1317–1322. [Google Scholar]
  289. Camardo Leggieri, M.; Giorni, P.; Pietri, A.; Battilani, P. Aspergillus flavus and Fusarium verticillioides interaction: Modeling the impact on mycotoxin production. Front. Microbiol. 2019, 10, 2653. [Google Scholar] [CrossRef]
  290. Giorni, P.; Magan, N.; Battilani, P. Environmental factors modify carbon nutritional patterns and niche overlap between Aspergillus flavus and Fusarium verticillioides strains from maize. Int. J. Food Microbiol. 2009, 130, 213–218. [Google Scholar] [CrossRef]
  291. Chen, X.; Landschoot, S.; Detavernier, C.; De Saeger, S.; Rajkovic, A.; Audenaert, K. Cross-talk between Fusarium verticillioides and Aspergillus flavus in vitro and in planta. Mycotoxin Res. 2021, 37, 229–240. [Google Scholar] [CrossRef]
  292. Lanubile, A.; Giorni, P.; Bertuzzi, T.; Marocco, A.; Battilani, P. Fusarium verticillioides and Aspergillus flavus co-occurrence influences plant and fungal transcriptional profiles in maize kernels and in vitro. Toxins 2021, 13, 680. [Google Scholar] [CrossRef]
  293. Marin, S.; Sanchis, V.; Vinas, I.; Canela, R.; Magan, N. Effect of water activity and temperature on growth and fumonisin B1 and B2 production by Fusarium proliferatum and F. moniliforme on maize grain. Lett. Appl. Microbiol. 1995, 21, 298–301. [Google Scholar] [CrossRef]
Figure 1. A world map showing the number of studies that surveyed the (co-)occurrence of A. flavus and F. verticillioides. The number of studies is represented as a bar chart for A. flavus (red color), F. verticillioides (green color), and both fungi (blue color).
Figure 1. A world map showing the number of studies that surveyed the (co-)occurrence of A. flavus and F. verticillioides. The number of studies is represented as a bar chart for A. flavus (red color), F. verticillioides (green color), and both fungi (blue color).
Toxins 15 00577 g001
Figure 2. Boxplots show the percentage of contaminated maize samples with A. flavus, F. verticillioides, and both fungi in survey studies from Africa, the Americas, Asia, and Europe. The data points are colored according to the year of sampling.
Figure 2. Boxplots show the percentage of contaminated maize samples with A. flavus, F. verticillioides, and both fungi in survey studies from Africa, the Americas, Asia, and Europe. The data points are colored according to the year of sampling.
Toxins 15 00577 g002
Figure 3. The reported mean values of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) in studies from different continents. The red lines show the EU maximum limit for AFB1 (20 µg/kg) for cereals and FB1 (2000 µg/kg) for unprocessed maize.
Figure 3. The reported mean values of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) in studies from different continents. The red lines show the EU maximum limit for AFB1 (20 µg/kg) for cereals and FB1 (2000 µg/kg) for unprocessed maize.
Toxins 15 00577 g003
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Chen, X.; Abdallah, M.F.; Landschoot, S.; Audenaert, K.; De Saeger, S.; Chen, X.; Rajkovic, A. Aspergillus flavus and Fusarium verticillioides and Their Main Mycotoxins: Global Distribution and Scenarios of Interactions in Maize. Toxins 2023, 15, 577. https://doi.org/10.3390/toxins15090577

AMA Style

Chen X, Abdallah MF, Landschoot S, Audenaert K, De Saeger S, Chen X, Rajkovic A. Aspergillus flavus and Fusarium verticillioides and Their Main Mycotoxins: Global Distribution and Scenarios of Interactions in Maize. Toxins. 2023; 15(9):577. https://doi.org/10.3390/toxins15090577

Chicago/Turabian Style

Chen, Xiangrong, Mohamed F. Abdallah, Sofie Landschoot, Kris Audenaert, Sarah De Saeger, Xiangfeng Chen, and Andreja Rajkovic. 2023. "Aspergillus flavus and Fusarium verticillioides and Their Main Mycotoxins: Global Distribution and Scenarios of Interactions in Maize" Toxins 15, no. 9: 577. https://doi.org/10.3390/toxins15090577

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop