The Role of Green Infrastructure in Providing Urban Ecosystem Services: Insights from a Bibliometric Perspective
Abstract
:1. Introduction
Research Questions and Goal of the Study
- Q1:
- What is the occurrence of research in the areas of green infrastructure and ecosystem services, and how does their integration enhance the understanding of urban sustainability?
- Q2:
- Are there any emerging trends or gaps in the scientific literature about GI, ESs, and cities?
2. Materials and Methods
2.1. Bibliographic Research and Data Collection
2.2. Bibliometric Network Analysis
3. Results
3.1. Temporal Trend Analysis and Literature Review
Keywords Search | “GI” AND “Cities” | “ES” AND “Cities” | “GI” AND “ES” AND “Cities” |
---|---|---|---|
Total № of documents | 3485 | 5511 | 850 |
- More studies on diverse types of GI are needed (studies tend to focus disproportionately on forests and parks, often ignoring other types of GI such green roofs, sports areas, greenways or wetlands).
- A more holistic assessment of different ESs is needed (cultural ESs are often neglected [65]).
- More engagement with stakeholders and policymakers is necessary.
3.2. Co-Authorship Analysis of Countries
3.3. Co-Occurrence of Keywords
3.3.1. The Scientific Literature on GI and Cities
3.3.2. The Scientific Literature on ESs and Cities
3.3.3. The Scientific Literature on GI, ESs, and Cities
3.4. Citation Network Map of Journals
4. Discussion
- Holistic assessment of all types of green infrastructure (future studies should focus on evaluating the multifunctionality of different GI types beyond forests and parks, including green roofs, wetlands, and sports areas),
- Integration of ecosystem services and disservices, (for example, more studies on cultural ESs [81],
- Importance of biophysical, social, and economic values of ESs,
- More attention to the problem of urban heat island, and
- More engagement with stakeholders and policymakers for better urban planning.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marando, F.; Salvatori, E.; Sebastiani, A.; Fusaro, L.; Manes, F. Regulating Ecosystem Services and Green Infrastructure: Assessment of Urban Heat Island Effect Mitigation in the Municipality of Rome, Italy. Ecol. Modell. 2019, 392, 92–102. [Google Scholar] [CrossRef]
- Washbourne, C.L. Environmental Policy Narratives and Urban Green Infrastructure: Reflections from Five Major Cities in South Africa and the UK. Environ. Sci. Policy 2022, 129, 96–106. [Google Scholar] [CrossRef]
- Zhang, X. Sustainable Urbanization: A Bi-Dimensional Matrix Model. J. Clean. Prod. 2016, 134, 425–433. [Google Scholar] [CrossRef]
- Hsu, A.; Sheriff, G.; Chakraborty, T.; Manya, D. Disproportionate Exposure to Urban Heat Island Intensity across Major US Cities. Nat. Commun. 2021, 12, 2721. [Google Scholar] [CrossRef]
- Kabisch, N.; Korn, H.; Stadler, J.; Bonn, A. Theory and Practice of Urban Sustainability Transitions Natureebased Solutions to Climate Change Adaptation in Urban Areas; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Reckien, D.; Creutzig, F.; Fernandez, B.; Lwasa, S.; Tovar-Restrepo, M.; Mcevoy, D.; Satterthwaite, D. Climate Change, Equity and the Sustainable Development Goals: An Urban Perspective. Environ. Urban. 2017, 29, 159–182. [Google Scholar] [CrossRef]
- Zavrl, M.S.; Zeren, M.T. Sustainability of Urban Infrastructures. Sustainability 2010, 2, 2950–2964. [Google Scholar] [CrossRef]
- McDonald, R.I.; Weber, K.; Padowski, J.; Flörke, M.; Schneider, C.; Green, P.A.; Gleeson, T.; Eckman, S.; Lehner, B.; Balk, D.; et al. Water on an Urban Planet: Urbanization and the Reach of Urban Water Infrastructure. Global Environ. Change 2014, 27, 96–105. [Google Scholar] [CrossRef]
- Kennedy, C.; Pincetl, S.; Bunje, P. The Study of Urban Metabolism and Its Applications to Urban Planning and Design. Environ. Pollut. 2011, 159, 1965–1973. [Google Scholar] [CrossRef]
- Guerrero, L.A.; Maas, G.; Hogland, W. Solid Waste Management Challenges for Cities in Developing Countries. Waste Manag. 2013, 33, 220–232. [Google Scholar] [CrossRef]
- Vlahov, D.; Galea, S. Urbanization, Urbanicity, and Health. J. Urban Health 2002, 79, S1–S12. [Google Scholar] [CrossRef]
- Ma, J.; Li, X.; Baoquan, J.; Liu, X.; Li, T.; Zhang, W.; Liu, W. Spatial Variation Analysis of Urban Forest Vegetation Carbon Storage and Sequestration in Built-up Areas of Beijing Based on i-Tree Eco and Kriging. Urban For. Urban Green. 2021, 66, 127413. [Google Scholar] [CrossRef]
- Zeng, J.; Cui, X.; Chen, W.; Yao, X. Impact of Urban Expansion on the Supply-Demand Balance of Ecosystem Services: An Analysis of Prefecture-Level Cities in China. Environ. Impact Assess. Rev. 2023, 99, 107003. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Chu, J. Research on Land-Use Evolution and Ecosystem Services Value Response in Mountainous Counties Based on the SD-PLUS Model. Ecol. Evol. 2022, 12, e9431. [Google Scholar] [CrossRef] [PubMed]
- Millennium Ecosystem Assessment (Program). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005; ISBN 1597260401. [Google Scholar]
- Bai, X.; McPhearson, T.; Cleugh, H.; Nagendra, H.; Tong, X.; Zhu, T.; Zhu, Y.G. Linking Urbanization and the Environment: Conceptual and Empirical Advances. Annu. Rev. Environ. Resour. 2017, 42, 215–240. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017; ISBN 1815-6797. [Google Scholar]
- Mansour, S.; Alahmadi, M.; Atkinson, P.M.; Dewan, A. Forecasting of Built-Up Land Expansion in a Desert Urban Environment. Remote Sens. 2022, 14, 2037. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global Forecasts of Urban Expansion to 2030 and Direct Impacts on Biodiversity and Carbon Pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 15 January 2024).
- United Nations. 2018 Review of SDGs Implementation: SDG 11—Make Cities and Human Settlements Inclusive, Safe, Resilient and Sustainable. In High-Level Political Forum on Sustainable Development; 2018; pp. 1–11. Available online: https://sustainabledevelopment.un.org/content/documents/197282018_background_notes_SDG_11_v3.pdf (accessed on 17 January 2024).
- United Nations. 2023 Rescuing SDG 11 for a Resilient Urban Planet. 2023. Available online: https://unhabitat.org/rescuing-sdg-11-for-a-resilient-urban-planet (accessed on 17 January 2024).
- Global Goals. Sustainable Cities and Communities. Available online: https://www.globalgoals.org/goals/11-sustainable-cities-and-communities/ (accessed on 16 July 2024).
- Frumkin, H. Urban Sprawl and Public Health. Public Health Rep. 2002, 117, 201–217. [Google Scholar] [CrossRef]
- Amorim, J.H.; Engardt, M.; Johansson, C.; Ribeiro, I.; Sannebro, M.; Leandro Maia, R.; Oliveira, G. Regulating and Cultural Ecosystem Services of Urban Green Infrastructure in the Nordic Countries: A Systematic Review. J. Environ. Res. Public Health 2021, 18, 1219. [Google Scholar] [CrossRef]
- European Environment Agency. Green infrastructure (GI) — Enhancing Europe’s Natural Capital. 2014. Available online: https://www.eea.europa.eu/policy-documents/green-infrastructure-gi-2014-enhancing (accessed on 13 March 2024).
- Davis, M.; Naumann, S. Nature-Based Solutions to Climate Change Adaptation in Urban Areas Linkages between Science, Policy and Practice; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 9783319537504. [Google Scholar]
- Maes, J.; Jacobs, S. Nature-Based Solutions for Europe’s Sustainable Development. Conserv. Lett. 2017, 10, 121–124. [Google Scholar] [CrossRef]
- de Luca, C.; Naumann, S.; Davis, M.; Tondelli, S. Nature-based Solutions and Sustainable Urban Planning in the European Environmental Policy Framework: Analysis of the State of the Art and Recommendations for Future Development. Sustainability 2021, 13, 5021. [Google Scholar] [CrossRef]
- Kabisch, N.; Frantzeskaki, N.; Hansen, R. Principles for Urban Nature-Based Solutions. Ambio 2022, 51, 1388–1401. [Google Scholar] [CrossRef] [PubMed]
- Pinto, L.V.; Inácio, M.; Pereira, P. Green and Blue Infrastructure (GBI) and Urban Nature-Based Solutions (NbS) Contribution to Human and Ecological Well-Being and Health. Oxf. Open Infrastruct. Health 2023, 1, ouad004. [Google Scholar] [CrossRef]
- Wong, C.P.; Jiang, B.; Kinzig, A.P.; Ouyang, Z. Quantifying Multiple Ecosystem Services for Adaptive Management of Green Infrastructure. Ecosphere 2018, 9, e02495. [Google Scholar] [CrossRef]
- European Environment Agency. Green Infrastructure and Territorial Cohesion: The Concept of Green Infrastructure and Its Integration into Policies Using Monitoring Systems; Publications Office: Luxembourg, 2011. [Google Scholar]
- Rayan, M.; Gruehn, D. Planning for Sustainable Green Urbanism: An Empirical Bottom-Up (Community-Led) Perspective on Green Infrastructure (GI) Indicators in Khyber Pakhtunkhwa (KP), Pakistan. Int. J. Environ. Res. Public Health 2022, 11, 11844. [Google Scholar] [CrossRef] [PubMed]
- Zulian, G.; Marando, F.; Mentaschi, L.; Alzetta, C.; Wilk, B.; Maes, J. Green Balance in Urban Areas as an Indicator for Policy Support: A Multi-Level Application. One Ecosystem 2022, 7, 1–39. [Google Scholar] [CrossRef]
- Evans, D.L.; Falagán, N.; Hardman, C.A.; Kourmpetli, S.; Liu, L.; Mead, B.R.; Davies, J.A.C. Ecosystem Service Delivery by Urban Agriculture and Green Infrastructure—A Systematic Review. Ecosyst. Serv. 2022, 54, 101405. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Benefits of Green Infrastructure; U.S. Environmental Protection Agency: Washington, DC, USA, 2024. Available online: https://www.epa.gov/green-infrastructure/benefits-green-infrastructure (accessed on 20 May 2024).
- Williamson, K.S.; Williamson, K. Growing with Green Infrastructure; Heritage Conservancy: Doylestown, PA, USA, 2003. [Google Scholar]
- Ersoy Mirici, M. The Ecosystem Services and Green Infrastructure: A Systematic Review and the Gap of Economic Valuation. Sustainability 2022, 14, 517. [Google Scholar] [CrossRef]
- Meneguetti, K.S.; de Oliveira, F.L. Reconsidering Green Belts, Green Wedges and Greenways. Acta Sci. Technol. 2021, 43, 2. [Google Scholar] [CrossRef]
- Howard, E. Garden Cities of To-Morrow; Duke University Library: Durham, NC, USA, 1902. [Google Scholar]
- Cathy, D. Knepper Greenbelt, Maryland: A Living Legacy of the New Deal Creating the North American Landscape; Center for American Places; Johns Hopkins University Press: Baltimore, MA, USA, 2001; Volume 275. [Google Scholar]
- Little, C.E. Greenways for America; Johns Hopkins University Press: Baltimore, MA, USA, 1990. [Google Scholar]
- Seiwert, A.; Rößler, S. Understanding the Term Green Infrastructure: Origins, Rationales, Semantic Content and Purposes as Well as Its Relevance for Application in Spatial Planning. Land Use Policy 2020, 97, 104785. [Google Scholar] [CrossRef]
- Florida Greenways Commission. Creating a Statewide Greenways System: For People… for Wildlife… for Florida; Florida Department of Environmental Protection: Tallahassee, FL, USA, 1994. [Google Scholar]
- Benedict, M.; McMahon, E.; Fund, T.; Bergen, L. Green Infrastructure: Linking Landscapes and Communities. In Bibliovault OAI Repository; The University of Chicago Press: Chicago, IL, USA, 2006; Volume 22. [Google Scholar]
- Davies, C.; Lafortezza, R. Urban Green Infrastructure in Europe: Is Greenspace Planning and Policy Compliant? Land Use Policy 2017, 69, 93–101. [Google Scholar] [CrossRef]
- Benedict, M.A.; McMahon, E.T. Smart Conservation for the 21st Century. Green. Infrastruct. 2002, 20, 12–17. [Google Scholar]
- The Countryside Agency & Partners. Green Infrastructure: Planning Guide Project. 2006, pp. 1–82. Available online: https://www.researchgate.net/publication/265012095_GREEN_INFRASTRUCTURE_PLANNING_GUIDE_Authors (accessed on 18 April 2024).
- Currie, J.; Borst, A.C.; Carter, M. Bibliometric Review of the Field of Australian Nurse Practitioner Research between January 2000 to May 2021. Collegian 2022, 29, 671–679. [Google Scholar] [CrossRef]
- Van Eck, N.; Waltman, L. VOSviewer Manual; Leiden University: Leiden, The Netherlands, 2018; pp. 1–82. Available online: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.18.pdf (accessed on 15 July 2023).
- Yanuar Zukmadini, A.; Ismail, I.; Rochman, S.; Rustaman, N.; Ramlan Ramalis, T.; Amri, K.; Ismail, I.; Hongko Putra, A. How Bibliometric Analysis Using VOSviewer Based on. ASEAN J. Sci. Eng. 2024, 4, 251–294. Available online: https://www.researchgate.net/publication/381962595_How_Bibliometric_Analysis_Using_VOSviewer_Based_on (accessed on 15 July 2023).
- Passas, I. Bibliometric Analysis: The Main Steps. Encyclopedia 2024, 4, 1014–1025. [Google Scholar] [CrossRef]
- Maes, J.; Fabrega Domenech, N.; Zulian, G.; Lopes Barbosa, A.; Vizcaino Martinez, M.; Ivits, E.; Polce, C.; Vandecasteele, I.; Mari Rivero, I.; Bastos De Morais Guerra, C.; et al. Mapping and Assessment of Ecosystems and Their Services: Trends in Ecosystems and Ecosystem Services in the European Union between 2000 and 2010; Publications Office: Luxembourg, 2015. [Google Scholar]
- Mao, Y.; Li, Y.; Bai, X.; Yang, X.; Han, Y.; Fu, X. Scenario-Based Green Infrastructure Installations for Building Urban Stormwater Resilience—A Case Study of Fengxi New City, China. Sustainability 2024, 16, 3990. [Google Scholar] [CrossRef]
- Daniels, B.J.; Yeakley, J.A. Catchment-Scale Hydrologic Effectiveness of Residential Rain Gardens: A Case Study in Columbia, Maryland, USA. Water 2024, 16, 1304. [Google Scholar] [CrossRef]
- Jayasooriya, V.M.; Ng, A.W.M.; Muthukumaran, S.; Perera, B.J.C. Green Infrastructure Practices for Improvement of Urban Air Quality. Urban For. Urban Green. 2017, 21, 34–47. [Google Scholar] [CrossRef]
- Picone, N.; Esposito, A.; Emmanuel, R.; Buccolieri, R. Potential Impacts of Green Infrastructure on NOx and PM10 in Different Local Climate Zones of Brindisi, Italy. Sustainability 2024, 16, 229. [Google Scholar] [CrossRef]
- Nastran, M.; Pintar, M.; Železnikar, Š.; Cvejić, R. Stakeholders’ Perceptions on the Role of Urban Green Infrastructure in Providing Ecosystem Services for Human Well-Being. Land 2022, 11, 299. [Google Scholar] [CrossRef]
- Valente, D.; Pasimeni, M.R.; Petrosillo, I. The Role of Green Infrastructures in Italian Cities by Linking Natural and Social Capital. Ecol. Indic. 2020, 108, 105694. [Google Scholar] [CrossRef]
- Jabbar, M.; Yusoff, M.M.; Shafie, A. Assessing the Role of Urban Green Spaces for Human Well-Being: A Systematic Review. Geo J. 2022, 87, 4405–4423. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; de Vries, S.; Assmuth, T.; Dick, J.; Hermans, T.; Hertel, O.; Jensen, A.; Jones, L.; Kabisch, S.; Lanki, T.; et al. Research Challenges for Cultural Ecosystem Services and Public Health in (Peri-)Urban Environments. Sci. Total Environ. 2019, 651, 2118–2129. [Google Scholar] [CrossRef] [PubMed]
- Crouzat, E.; De Frutos, A.; Grescho, V.; Carver, S.; Büermann, A.; Carvalho-Santos, C.; Kraemer, R.; Mayor, S.; Pöpperl, F.; Rossi, C.; et al. Potential Supply and Actual Use of Cultural Ecosystem Services in Mountain Protected Areas and Their Surroundings. Ecosyst. Serv. 2022, 53, 101395. [Google Scholar] [CrossRef]
- Andrade, M.; Fernandes, C.; Coutinho, A.; Figueiredo, A. Urban Green Infrastructure: Does Species’ Origin Impair Ecosystem Services Provision? Land 2024, 13, 23. [Google Scholar] [CrossRef]
- Cox, D.T.C.; Hudson, H.L.; Plummer, K.E.; Siriwardena, G.M.; Anderson, K.; Hancock, S.; Devine-Wright, P.; Gaston, K.J. Covariation in Urban Birds Providing Cultural Services or Disservices and People. J. Appl. Ecol. 2018, 55, 2308–2319. [Google Scholar] [CrossRef]
- Calatayud, V.; Cariñanos, P. Mapping Pollen Allergenicity from Urban Trees in Valencia: A Tool for Green Infrastructure Planning. Environ. Res. 2024, 252, 118823. [Google Scholar] [CrossRef]
- Cariñanos, P.; Ruiz-Peñuela, S.; Valle, A.M.; de la Guardia, C.D. Assessing Pollination Disservices of Urban Street-Trees: The Case of London-Plane Tree (Platanus x Hispanica Mill. Ex Münchh). Sci. Total Environ. 2020, 737, 139722. [Google Scholar] [CrossRef]
- Stinson, L.T.; Pejchar, L. The Effects of Introduced Plants on Songbird Reproductive Success. Biol. Invasions 2018, 20, 1403–1416. [Google Scholar] [CrossRef]
- Mangan, A.M.; Pejchar, L.; Werner, S.J. Bird Use of Organic Apple Orchards: Frugivory, Pest Control and Implications for Production. PLoS ONE 2017, 12, e0183405. [Google Scholar] [CrossRef]
- Cleveland, C.J.; Betke, M.; Federico, P.; Frank, J.D.; Hallam, T.G.; Horn, J.; López, J.D.; McCracken, G.F.; Medellín, R.A.; Moreno-Valdez, A.; et al. Economic Value of the Pest Control Service Provided by Brazilian Free-Tailed Bats in South-Central Texas. Front. Ecol. Environ. 2006, 4, 238–243. [Google Scholar] [CrossRef]
- Wong, S.M.; Montalto, F.A. Exploring the Long-Term Economic and Social Impact of Green Infrastructure in New York City. Water Resour. Res. 2020, 56, e2019WR027008. [Google Scholar] [CrossRef]
- Uzonnah, O.E.; Chukwu, I.N.; Ibem, E.O. Influence of Perceived Social Benefits on Motives for Visiting Urban Green Infrastructure Spaces in Small and Medium-Sized Towns in Southeast Nigeria. Cities 2023, 135, 104240. [Google Scholar] [CrossRef]
- Caparrós-Martínez, J.L.; Milán-García, J.; Martínez-Vázquez, R.M.; Valenciano, J.d.P. Green Infrastructures and Grand Environmental Challenges: A Review of Research Trends by Keyword. Agronomy 2021, 11, 782. [Google Scholar] [CrossRef]
- Von Döhren, P.; Haase, D. Ecosystem Disservices Research: A Review of the State of the Art with a Focus on Cities. Ecol. Indic. 2015, 52, 490–497. [Google Scholar] [CrossRef]
- Costanza, R. Valuing Natural Capital and Ecosystem Services toward the Goals of Efficiency, Fairness, and Sustainability. Ecosyst. Serv. 2020, 43, 101096. [Google Scholar] [CrossRef]
- Zhang, S.; Muñoz Ramírez, F. Assessing and Mapping Ecosystem Services to Support Urban Green Infrastructure: The Case of Barcelona, Spain. Cities 2019, 92, 59–70. [Google Scholar] [CrossRef]
- Du, R.; Liu, B.; Xu, M. Current Status and Trends in Island Ecosystem Services Research: A Bibliometric Analysis from 2000 to 2023. Mar. Policy 2024, 163, 106098. [Google Scholar] [CrossRef]
- Ying, J.; Zhang, X.; Zhang, Y.; Bilan, S. Green Infrastructure: Systematic Literature Review. Econ. Res. Ekon. Istraz. 2022, 35, 343–366. [Google Scholar] [CrossRef]
- Naumann, S.; Davis, M.; Kaphengst, T.; Pieterse, M. Design, Implementation and Cost Elements of Green Infrastructure Projects: Acknowledgements. Ecologic Institute. 2011. Available online: https://www.researchgate.net/publication/272352149_Design_implementation_and_cost_elements_of_Green_Infrastructure_projects (accessed on 13 July 2024).
- Okour, Y.; Shaweesh, H. Identifying the Barriers to Green Infrastructure Implementation in Semi-Arid Urban Areas Using the DPSIR Framework: A Case Study of Amman, Jordan. City Environ. Interact. 2024, 24, 100165. [Google Scholar] [CrossRef]
- Kulczyk, S.; Grzyb, T.; Woźniak, E.; Derek, M. Nature in Urban Green Spaces: Main Attractor or Nice Background? Drivers and Dynamics of Cultural Ecosystem Services Provision. Urban For. Urban Green. 2024, 96, 128328. [Google Scholar] [CrossRef]
Term | Description |
---|---|
Items | Objects of interest (e.g., publications, researchers, keywords, authors). |
Link | Connection or relation between two items (e.g., co-occurrence of keywords). |
Link strength | Attribute of each link, expressed by a positive numerical value. In the case of co-authorship links, the higher the value, the higher the number of publications the two researchers have co-authored. |
Network | Set of items connected by their links. |
Cluster | Set of items included in a map. One item can belong only to one cluster. |
Number of links | The number of links of an item with other items. |
Total link strength | The cumulative strength of the links of an item with other items such as between authors, keywords, or documents in a bibliographic dataset. The strength of a link between two items typically represents the frequency of co-occurrence or some other measure of association between them. |
Type of Analyses | Description |
---|---|
Co-authorship | In co-authorship networks, researchers or countries are linked to each other based on the number of publications they have authored jointly. |
Co-occurrence | The number of co-occurrences of two keywords is the number of publications in which both keywords occur together in the title, abstract or keyword list. |
Citation | In citation networks, two items are linked if at least one cites the other. |
GI and Cities | ESs and Cities | GI, ESs and Cities | ||||||
---|---|---|---|---|---|---|---|---|
Countries | № of Documents | Total Link Strength | Countries | № of Documents | Total Link Strength | Countries | № of Documents | Total Link Strength |
USA | 840 | 367 | USA | 1031 | 830 | Germany | 112 | 119 |
UK | 328 | 355 | Germany | 472 | 613 | UK | 96 | 107 |
Germany | 285 | 327 | UK | 408 | 561 | USA | 174 | 104 |
China | 397 | 250 | China | 1869 | 541 | Sweden | 52 | 81 |
Sweden | 118 | 197 | Sweden | 211 | 366 | China | 82 | 64 |
Italy | 275 | 193 | Spain | 209 | 349 | Italy | 111 | 63 |
The Netherlands | 110 | 175 | Italy | 417 | 341 | The Netherlands | 29 | 52 |
GI and Cities | ||
Keyword | Occurrences | Total Link Strength |
Green infrastructures | 1909 | 11,040 |
Green spaces | 796 | 6313 |
Urban policy | 776 | 5858 |
Urban areas | 643 | 5659 |
Climate change | 522 | 3973 |
Ecosystem services | 548 | 3963 |
Storms | 455 | 3901 |
Cities | 321 | 3446 |
ESs and Cities | ||
Keyword | Occurrences | Total Link Strength |
Ecosystem services | 3517 | 24,548 |
Ecosystems | 1485 | 13,586 |
Urban areas | 1086 | 10,006 |
Ecosystem | 666 | 8409 |
Cities | 669 | 7827 |
Land use | 804 | 7729 |
Urban policy | 914 | 7358 |
Urbanization | 799 | 7294 |
GI, ES and Cities | ||
Keyword | Occurrences | Total Link Strength |
Ecosystem services | 548 | 4125 |
Green infrastructures | 470 | 3229 |
Green spaces | 271 | 2516 |
Urban policy | 252 | 2185 |
Ecosystems | 200 | 2037 |
Urban areas | 192 | 2012 |
Cities | 105 | 1322 |
Urban ecosystem | 122 | 1231 |
Source | Documents | Citations |
---|---|---|
Urban Forestry and Urban Greening | 68 | 3115 |
Landscape and Urban Planning | 45 | 3068 |
Ecological Indicators | 23 | 1579 |
Environmental Science and Policy | 12 | 1426 |
Sustainability (Switzerland) | 65 | 1382 |
Ambio | 5 | 1210 |
Ecosystem Services | 18 | 1177 |
Science of the total environment | 22 | 982 |
Environmental Research | 7 | 928 |
International Journal of Environmental Research and Public Health | 10 | 699 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokolova, M.V.; Fath, B.D.; Grande, U.; Buonocore, E.; Franzese, P.P. The Role of Green Infrastructure in Providing Urban Ecosystem Services: Insights from a Bibliometric Perspective. Land 2024, 13, 1664. https://doi.org/10.3390/land13101664
Sokolova MV, Fath BD, Grande U, Buonocore E, Franzese PP. The Role of Green Infrastructure in Providing Urban Ecosystem Services: Insights from a Bibliometric Perspective. Land. 2024; 13(10):1664. https://doi.org/10.3390/land13101664
Chicago/Turabian StyleSokolova, Milena V., Brian D. Fath, Umberto Grande, Elvira Buonocore, and Pier Paolo Franzese. 2024. "The Role of Green Infrastructure in Providing Urban Ecosystem Services: Insights from a Bibliometric Perspective" Land 13, no. 10: 1664. https://doi.org/10.3390/land13101664