A Comparative Analysis of Spatial Resolution Sentinel-2 and Pleiades Imagery for Mapping Urban Tree Species
Abstract
:1. Introduction
- Phytosanitary Management: Urban environments predispose vegetation to phytosanitary issues that must be promptly managed. Pollution, soil compaction, and limited rooting space stress trees, making them more susceptible to pests and diseases. Accurate identification and monitoring of tree species are essential for early detection and management of these issues [25,26].
- Remote Sensing Methodologies: A remote sensing-based methodology capable of surveying tree species is indispensable for the proper planning and management of urban vegetation. Remote sensing techniques provide cost-effective and efficient means of collecting large-scale spatial data, allowing comprehensive assessments of urban tree populations. Accurate mapping of tree species distribution and abundance enables prioritization of conservation efforts, identification of areas for tree planting initiatives, and monitoring of changes in tree cover over time [27,28].
2. Materials and Methods
2.1. Study Area
2.2. Data Set
2.2.1. Satellite Images
2.2.2. Ground Locating Tree Species
2.3. Methodology
- Step #1: In the first level (Level 1), a preliminary classification for land cover mapping was performed to reduce spatial heterogeneity within the three study areas. This approach allowed for the discrimination of tree cover only, on which tree species identification and mapping were subsequently carried out;
- Step #2: Identification of the main tree species present in the three study areas and definition of ROI to train the mapping algorithm;
- Step #3: Mapping of tree species using the RF algorithm;
- Step #4: Evaluation of the accuracy of the result through validation points and the elaboration of an error matrix.
2.3.1. Step #1: Preliminary Classification for Masking Vegetated Areas in VHR Images
2.3.2. Step #2: Training and Validation Sites
2.3.3. Step #3: Image Classification
2.3.4. Step #4: Accuracy Assessment
3. Results
4. Discussion
5. Conclusions
- Spatial ResolutionPléiades data provides higher spatial resolution, enabling detailed capture of canopy structure, leaf arrangement, and tree crown delineation. This level of detail is crucial for distinguishing species with similar spectral characteristics but differing morphological features, such as Quercus ilex (Holm oak) and Pinus pinea (Stone pine), whose distinct crown shapes and canopy structures are better resolved with Pléiades, enhancing both User’s and Producer’s Accuracy.
- In contrast, Sentinel-2 data’s coarser spatial resolution results in mixed pixels, particularly in heterogeneous urban environments. This blending of spectral signatures from different species and land cover types poses challenges in accurately classifying species like Ulmus minor (Field maple) and Platanus acerifolia (London plane), which exhibit subtle differences in spectral and structural properties.
- Spectral CharacteristicsQuercus ilex and Pinus pinea: these species likely have distinct spectral signatures in the bands captured by Pléiades, which aids in their accurate classification. The higher resolution allows for better discrimination of their unique spectral responses, especially in the near-infrared and red-edge bands, which are sensitive to vegetation health and type.Acer campestre and Platanus acerifolia: These species may have spectral signatures that overlap more significantly with other species or land cover types, making them harder to distinguish using Sentinel-2’s broader spectral bands. The reduced ability to capture fine spectral differences exacerbates this issue, leading to lower classification accuracies.
- Urban Environment ComplexityUrban areas are characterized by a complex mosaic of different land covers, including buildings, roads, and various vegetation types. The higher resolution of Pléiades reduces the problem of mixed pixels, enabling more precise identification of tree species within this heterogeneous landscape.In contrast, Sentinel-2’s lower resolution means that pixels often contain a mix of multiple land cover types, complicating the classification process. This is particularly problematic for species like Ulmus minor and Platanus acerifolia, which might be interspersed with other vegetation types or non-vegetative surfaces.
- Tree Morphology and Canopy StructureThe physical characteristics of trees, such as canopy density, leaf size, and tree height, play a significant role in their spectral signatures. Quercus ilex and Pinus pinea have distinct morphological traits that are more easily captured with high-resolution imagery, aiding in their accurate classification.On the other hand, Ulmus minor and Platanus acerifolia may have more variable canopy structures or similarities with other urban tree species, making them harder to classify accurately with lower-resolution data.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The Dimensions of Global Urban Expansion: Estimates and Projections for All Countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Cohen, B. Urbanization in Developing Countries: Current Trends, Future Projections, and Key Challenges for Sustainability. Technol. Soc. 2006, 28, 63–80. [Google Scholar] [CrossRef]
- Gerland, P.; Hertog, S.; Wheldon, M.; Kantorova, V.; Gu, D.; Gonnella, G.; Williams, I.; Zeifman, L.; Bay, G.; Castanheira, H.; et al. World Population Prospects 2022: Summary of Results; United Nations: New York, NY, USA, 2022; ISBN 978-92-1-148373-4. [Google Scholar]
- Montgomery, M.R. The Urban Transformation of the Developing World. Science 2008, 319, 761–764. [Google Scholar] [CrossRef] [PubMed]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Khodadad, M.; Aguilar-Barajas, I.; Khan, A.Z. Green Infrastructure for Urban Flood Resilience: A Review of Recent Literature on Bibliometrics, Methodologies, and Typologies. Water 2023, 15, 523. [Google Scholar] [CrossRef]
- Yuan, D.; Wang, H.; Wang, C.; Yan, C.; Xu, L.; Zhang, C.; Wang, J.; Kou, Y. Characteristics of Urban Flood Resilience Evolution and Analysis of Influencing Factors: A Case Study of Yingtan City, China. Water 2024, 16, 834. [Google Scholar] [CrossRef]
- Zarco-Soto, I.M.; Zarco-Periñán, P.J.; Sánchez-Durán, R. Influence of Cities Population Size on Their Energy Consumption and CO2 Emissions: The Case of Spain. Environ. Sci. Pollut. Res. 2021, 28, 28146–28167. [Google Scholar] [CrossRef]
- Bai, X.; McPhearson, T.; Cleugh, H.; Nagendra, H.; Tong, X.; Zhu, T.; Zhu, Y.-G. Linking Urbanization and the Environment: Conceptual and Empirical Advances. Annu. Rev. Environ. Resour. 2017, 42, 215–240. [Google Scholar] [CrossRef]
- Kuddus, M.A.; Tynan, E.; McBryde, E. Urbanization: A Problem for the Rich and the Poor? Public Health Rev. 2020, 41, 1. [Google Scholar] [CrossRef]
- Wang, J.; Yu, C.W.; Cao, S.-J. Planning for Sustainable and Ecological Urban Environment: Current Trends and Future Developments. Indoor Built Environ. 2023, 32, 627–631. [Google Scholar] [CrossRef]
- Aditya, R.B.; Ningam, M.U.L. Assessing City Greenness Using Tree Canopy Cover: The Case of Yogyakarta, Indonesia. Geogr. Environ. Sustain. 2021, 14, 71–80. [Google Scholar] [CrossRef]
- Dobbs, C.; Kendal, D.; Nitschke, C.R. Multiple Ecosystem Services and Disservices of the Urban Forest Establishing Their Connections with Landscape Structure and Sociodemographics. Ecol. Indic. 2014, 43, 44–55. [Google Scholar] [CrossRef]
- Kabisch, N.; Strohbach, M.; Haase, D.; Kronenberg, J. Urban Green Space Availability in European Cities. Ecol. Indic. 2016, 70, 586–596. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Kroeger, T.; Wagner, J.E. Urban Forests and Pollution Mitigation: Analyzing Ecosystem Services and Disservices. Environ. Pollut. 2011, 159, 2078–2087. [Google Scholar] [CrossRef] [PubMed]
- Jim, C.Y.; Chen, W.Y. Assessing the Ecosystem Service of Air Pollutant Removal by Urban Trees in Guangzhou (China). J. Environ. Manag. 2008, 88, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J.; Crane, D.E. Carbon Storage and Sequestration by Urban Trees in the USA. Environ. Pollut. 2002, 116, 381–389. [Google Scholar] [CrossRef]
- Recanatesi, F.; Petroselli, A. Land Cover Change and Flood Risk in a Peri-Urban Environment of the Metropolitan Area of Rome (Italy). Water Resour. Manag. 2020, 34, 4399–4413. [Google Scholar] [CrossRef]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting Ecosystem and Human Health in Urban Areas Using Green Infrastructure: A Literature Review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef]
- Rizwan, A.M.; Dennis, L.Y.C.; Liu, C. A Review on the Generation, Determination and Mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Bou-Zeid, E.; Oppenheimer, M. The Effectiveness of Cool and Green Roofs as Urban Heat Island Mitigation Strategies. Environ. Res. Lett. 2014, 9, 055002. [Google Scholar] [CrossRef]
- Bratman, G.N.; Anderson, C.B.; Berman, M.G.; Cochran, B.; de Vries, S.; Flanders, J.; Folke, C.; Frumkin, H.; Gross, J.J.; Hartig, T.; et al. Nature and Mental Health: An Ecosystem Service Perspective. Sci. Adv. 2019, 5, eaax0903. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Hu, M.; Wang, X.-J. The Differences and Influence Factors in Extracting Urban Green Space from Various Resolutions of Data: The Perspective of Blocks. Remote Sens. 2023, 15, 1261. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, X.; Liu, Z.; Li, P.; Tang, J.; Xie, B.; Peng, C. A Review of General Methods for Quantifying and Estimating Urban Trees and Biomass. Forests 2022, 13, 616. [Google Scholar] [CrossRef]
- Gage, E.A.; Cooper, D.J. Urban Forest Structure and Land Cover Composition Effects on Land Surface Temperature in a Semi-Arid Suburban Area. Urban For. Urban Green. 2017, 28, 28–35. [Google Scholar] [CrossRef]
- Czaja, M.; Kołton, A.; Muras, P. The Complex Issue of Urban Trees—Stress Factor Accumulation and Ecological Service Possibilities. Forests 2020, 11, 932. [Google Scholar] [CrossRef]
- Freudenberg, M.; Magdon, P.; Nölke, N. Individual Tree Crown Delineation in High-Resolution Remote Sensing Images Based on U-Net. Neural Comput. Appl. 2022, 34, 22197–22207. [Google Scholar] [CrossRef]
- Steenberg, J.W.N.; Millward, A.A.; Nowak, D.J.; Robinson, P.J. A Conceptual Framework of Urban Forest Ecosystem Vulnerability. Environ. Rev. 2017, 25, 115–126. [Google Scholar] [CrossRef]
- Duncan, J.M.A.; Boruff, B. Monitoring Spatial Patterns of Urban Vegetation: A Comparison of Contemporary High-Resolution Datasets. Landsc. Urban Plan. 2023, 233, 104671. [Google Scholar] [CrossRef]
- Le Louarn, M.; Clergeau, P.; Briche, E.; Deschamps-Cottin, M. “Kill Two Birds with One Stone”: Urban Tree Species Classification Using Bi-Temporal Pléiades Images to Study Nesting Preferences of an Invasive Bird. Remote Sens. 2017, 9, 916. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Cui, Z.; Lei, K.; Zuo, Y.; Wang, J.; Hu, X.; Qiu, H. Very High Resolution Images and Superpixel-Enhanced Deep Neural Forest Promote Urban Tree Canopy Detection. Remote Sens. 2023, 15, 519. [Google Scholar] [CrossRef]
- Pu, R.; Landry, S. A Comparative Analysis of High Spatial Resolution IKONOS and WorldView-2 Imagery for Mapping Urban Tree Species. Remote Sens. Environ. 2012, 124, 516–533. [Google Scholar] [CrossRef]
- Rasmussen, M.O.; Göttsche, F.-M.; Diop, D.; Mbow, C.; Olesen, F.-S.; Fensholt, R.; Sandholt, I. Tree Survey and Allometric Models for Tiger Bush in Northern Senegal and Comparison with Tree Parameters Derived from High Resolution Satellite Data. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 517–527. [Google Scholar] [CrossRef]
- Carleer, A.; Wolff, E. Exploitation of Very High Resolution Satellite Data for Tree Species Identification. Photogramm. Eng. Remote Sens. 2004, 70, 135–140. [Google Scholar] [CrossRef]
- Neyns, R.; Canters, F. Mapping of Urban Vegetation with High-Resolution Remote Sensing: A Review. Remote Sens. 2022, 14, 1031. [Google Scholar] [CrossRef]
- Shekhar, S.; Aryal, J. Role of Geospatial Technology in Understanding Urban Green Space of Kalaburagi City for Sustainable Planning. Urban For. Urban Green. 2019, 46, 126450. [Google Scholar] [CrossRef]
- Waser, L.; Küchler, M.; Jütte, K.; Stampfer, T. Evaluating the Potential of WorldView-2 Data to Classify Tree Species and Different Levels of Ash Mortality. Remote Sens. 2014, 6, 4515–4545. [Google Scholar] [CrossRef]
- Caputi, E.; Delogu, G.; Patriarca, A.; Perretta, M.; Gatti, L.; Boccia, L.; Ripa, M.N. Comparative Performance of Machine Learning Algorithms for Forest Cover Classification Using ASI—PRISMA Hyperspectral Data. In Proceedings of the 2023 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Pisa, Italy, 6–8 November 2023; pp. 248–252. [Google Scholar]
- Perretta, M.; Delogu, G.; Funsten, C.; Patriarca, A.; Caputi, E.; Boccia, L. Testing the Impact of Pansharpening Using PRISMA Hyperspectral Data: A Case Study Classifying Urban Trees in Naples, Italy. Remote Sens. 2024, 16, 3730. [Google Scholar] [CrossRef]
- Delogu, G.; Perretta, M.; Caputi, E.; Patriarca, A.; Funsten, C.C.; Recanatesi, F.; Ripa, M.N.; Boccia, L. Leveraging the Potential of PRISMA Hyperspectral Data for Forest Tree Species Classification: A Case Study in Southern Italy. Remote Sens. 2024, 16, 4788. [Google Scholar] [CrossRef]
- Trisakti, B. Vegetation Type Classification and Vegetation Cover Percentage Estimation in Urban Green Zone Using Pleiades Imagery. IOP Conf. Ser. Earth Environ. Sci. 2017, 54, 012003. [Google Scholar] [CrossRef]
- Pu, R. Mapping Urban Forest Tree Species Using IKONOS Imagery: Preliminary Results. Environ. Monit. Assess. 2011, 172, 199–214. [Google Scholar] [CrossRef]
- Regione Lazio Land Use Map of Lazio Region. Available online: https://geoportale.regione.lazio.it/layers/geosdiownr:geonode:cus_2016 (accessed on 15 April 2024).
- Degas, A. View of the Villa Borghese from the Gardens of the Villa Medici, 1857. In City of the Soul: Rome and the Romantics; Pierpont Morgan Library: New York, NY, USA, 2016; pp. 100–1011. ISBN 978-0-87598-171-0. [Google Scholar]
- Gratani, L.; Varone, L.; Bonito, A. Carbon Sequestration of Four Urban Parks in Rome. Urban For. Urban Green. 2016, 19, 184–193. [Google Scholar] [CrossRef]
- Team, Q.D. Others QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2016. Available online: http://qgis.osgeo.org (accessed on 24 November 2024).
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef]
- CNES (Centre National D’Etudies Spatiales). The ORFEO Tool Box Software Guide Updated for OTB-5.6.0; CNES: Paris, France, 2016.
- Congedo, L. Semi-Automatic Classification Plugin: A Python Tool for the Download and Processing of Remote Sensing Images in QGIS. J. Open Source Softw. 2021, 6, 3172. [Google Scholar] [CrossRef]
- Blaschke, T. Object Based Image Analysis for Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, L.; Zhou, Q.; Wu, D.; Ren, L.; Luo, Y. Detection of Tree Species in Beijing Plain Afforestation Project Using Satellite Sensors and Machine Learning Algorithms. Forests 2023, 14, 1889. [Google Scholar] [CrossRef]
- Kang, B.; Cai, G. Urban green space identification by fusing satellite images from gf-2 and Sentinel-2. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-1-W2-2023, 1405–1410. [Google Scholar] [CrossRef]
- Arabi Aliabad, F.; Ghafarian Malamiri, H.; Sarsangi, A.; Sekertekin, A.; Ghaderpour, E. Identifying and Monitoring Gardens in Urban Areas Using Aerial and Satellite Imagery. Remote Sens. 2023, 15, 4053. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Z.; Huang, R.; You, H.; Han, X.; Yue, T.; Zhou, G. The Effects of Spatial Resolution and Resampling on the Classification Accuracy of Wetland Vegetation Species and Ground Objects: A Study Based on High Spatial Resolution UAV Images. Drones 2023, 7, 61. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, L.; Zhang, T.; Li, L.; Yu, Z.; Wu, R.; Bai, L.; Xiao, J.; Chen, L. Identification of Urban Green Space Types and Estimation of Above-Ground Biomass Using Sentinel-1 and Sentinel-2 Data. Forests 2022, 13, 1077. [Google Scholar] [CrossRef]
- Pu, R.; Landry, S. Mapping Urban Tree Species by Integrating Multi-Seasonal High Resolution Pléiades Satellite Imagery with Airborne LiDAR Data. Urban For. Urban Green. 2020, 53, 126675. [Google Scholar] [CrossRef]
- Lines, E.R.; Fischer, F.J.; Owen, H.J.F.; Jucker, T. The Shape of Trees: Reimagining Forest Ecology in Three Dimensions with Remote Sensing. J. Ecol. 2022, 110, 1730–1745. [Google Scholar] [CrossRef]
Id Class | Class Name | Description |
---|---|---|
1 | Grass | Areas covered with grass and other low-lying vegetation typically found in urban parks, lawns, and green spaces. |
2 | Water | Bodies of water, including rivers, lakes, ponds, and artificial water features within the urban environment. |
3 | Road network | The network of roads and streets that facilitate transportation within the urban area. |
4 | Buildings | Structures used for residential, commercial, industrial, and other urban purposes. |
5 | Trees | Urban tree vegetation, including individual trees and groups of trees in parks, along streets, and in other urban settings. |
6 | Projected shadows on the ground (*) | Shadows cast by buildings, trees, and other structures onto the ground surface. |
Training Data for PLEIADES | Validation Data for PLEIADES | ||||||||||||
Id Class | Class Name | Villa Doria Pamphilj | Villa Borghese | Villa Ada | Villa Doria Pamphilj | Villa Borghese | Villa Ada | ||||||
[# of Point] | [%] | [# of Point] | [%] | [# of Point] | [%] | [# of Point] | [%] | [# of Point] | [%] | [# of Point] | [%] | ||
1 | Grassland | 226 | 17.7 | 211 | 18.0 | 162 | 19.7 | 421 | 24.7 | 273 | 18.2 | 186 | 17.3 |
2 | Water | 17 | 1.3 | 15 | 1.3 | 4 | 0.5 | 25 | 1.5 | 32 | 2.1 | 8 | 0.7 |
3 | Road | 97 | 7.6 | 172 | 14.7 | 106 | 12.9 | 174 | 10.2 | 260 | 17.3 | 170 | 15.8 |
4 | Building | 46 | 3.6 | 122 | 10.4 | 60 | 7.3 | 74 | 4.3 | 186 | 12.4 | 87 | 8.1 |
5 | Tree vegetation | 727 | 56.8 | 557 | 47.5 | 413 | 50.2 | 787 | 46.2 | 601 | 40.0 | 506 | 47.0 |
6 | Ground shadow | 167 | 13.0 | 95 | 8.1 | 77 | 9.4 | 224 | 13.1 | 149 | 9.9 | 119 | 11.1 |
Total | 1280 | 100 | 1172 | 100 | 822 | 100.0 | 1705 | 100 | 1501 | 100 | 1076 | 100 | |
Training data for SENTINEL-2 | Validation data for SENTINEL-2 | ||||||||||||
# Class | Class Name | Villa Doria Pamphilj | Villa Borghese | Villa Ada | Villa Doria Pamphilj | Villa Borghese | Villa Ada | ||||||
[# of Point] | # Pixel | [# of Point] | # Pixel | [# of Point] | # Pixel | [# of Point] | [%] | [# of Point] | [%] | [# of Point] | [%] | ||
1 | Grassland | 20 | 662 | 13 | 75 | 10 | 172 | 421 | 28.1 | 273 | 20.1 | 186 | 19.4 |
2 | Water | 1 | 69 | 4 | 36 | 2 | 14 | 25 | 2.4 | 32 | 2.3 | 8 | 0.8 |
3 | Road | 6 | 212 | 20 | 155 | 8 | 45 | 174 | 11.5 | 260 | 19.2 | 170 | 17.8 |
4 | Building | 6 | 140 | 12 | 77 | 7 | 111 | 74 | 5.0 | 186 | 13.7 | 87 | 9.1 |
5 | Tree vegetation | 12 | 868 | 23 | 222 | 8 | 854 | 787 | 53.0 | 601 | 44.4 | 506 | 52.9 |
Total | 45 | 1951 | 72 | 565 | 35 | 1196 | 1481 | 100.0 | 1352 | 100 | 957 | 100 |
# Class | Species | Common Name/Description | Training | Validation | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sentinel-2 and Pleiades | Sentinel-2 | Pleiades | |||||||||
# of Polygons | # of Points | ||||||||||
Villa Doria Pamphilj | Villa Ada Savoia | Villa Borghese | Villa Doria Pamphilj | Villa Ada Savoia | Villa Borghese | Villa Doria Pamphilj | Villa Ada Savoia | Villa Borghese | |||
1 | Pinus pinea | Stone Pine | 429 | 202 | 70 | 206 | 396 | 214 | 150 | 189 | 243 |
2 | Quercus ilex | Holm Oak | 67 | 46 | 138 | 251 | 305 | 103 | 131 | 366 | |
3 | Platanus acerifolia | London Plane | 30 | 31 | 56 | 95 | 52 | 65 | |||
4 | Celtis australis | European Nettle Tree | 23 | 24 | 25 | 18 | 2 | 29 | |||
5 | Magnolia grandiflora | Southern Magnolia | 8 | 19 | |||||||
6 | Other Plant Species | Other Plant Species | 324 | 173 | 54 | 531 | 236 | 368 | 578 | 545 | 278 |
7 | Altre conifere | Other Conifers | 41 | 25 | |||||||
8 | Aesculus hippocastanum | Horse Chestnut | 18 | 8 | 1 | ||||||
9 | Populus alba | White Poplar | 49 | 12 | 14 | ||||||
10 | Cedrus spp. (Libani and Deodara) | Cedars (Lebanon and Deodar Cedar) | 138 | 58 | 24 | 31 | 71 | 90 | |||
11 | Ulmus minor | Field Elm | 13 | 1 | |||||||
12 | Nerium oleander | Oleander | 8 | 3 | |||||||
13 | Quercus suber | Cork Oak | 92 | 38 | 86 | 45 | |||||
Total | 1165 | 538 | 233 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |
Villa Ada Savoia | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OTB Classified Data-Pléiades | SCP Classified Data-Sentinel-2 | ||||||||||||
Class | Grass | Water | Road network | Buildings | Trees | Projected shadow | Grass | Water | Road network | Buildings | Trees | ||
1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | |||
Reference data | Grass | 1 | 172 | 0 | 10 | 1 | 3 | 0 | 94 | 0 | 10 | 18 | 55 |
Water | 2 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 6 | 1 | 0 | 0 | |
Road network | 3 | 10 | 0 | 143 | 16 | 1 | 0 | 40 | 1 | 39 | 49 | 20 | |
Buildings | 4 | 9 | 0 | 26 | 50 | 1 | 1 | 17 | 0 | 12 | 45 | 4 | |
Trees | 5 | 16 | 0 | 1 | 0 | 482 | 7 | 28 | 1 | 18 | 31 | 407 | |
Projected shadows | 6 | 0 | 0 | 0 | 0 | 21 | 98 | - | - | - | - | - | |
Validation indices | Kappa | 0.84 | 0.47 | ||||||||||
OA | 0.89 | 0.66 | |||||||||||
Class Comparison | 1 vs. all | 2 vs. all | 3 vs. all | 4 vs. all | 5 vs. all | 6 vs. all | 1 vs. all | 2 vs. all | 3 vs. all | 4 vs. all | 5 vs. all | ||
Accuracy | 0.831 | 1 | 0.794 | 0.746 | 0.949 | 0.925 | 0.522 | 0.750 | 0.488 | 0.315 | 0.837 | ||
Recall | 0.925 | 1 | 0.841 | 0.575 | 0.953 | 0.824 | 0.531 | 0.857 | 0.262 | 0.577 | 0.839 | ||
F-score | 0.875 | 1 | 0.817 | 0.649 | 0.951 | 0.871 | 0.527 | 0.8 | 0.341 | 0.407 | 0.838 |
Villa Borghese | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OTB Classified Data-Pléiades | OTB Classified Data-Sentinel-2 | ||||||||||||
Class | Grass | Water | Road network | Buildings | Trees | Projected shadow | Grass | Water | Road network | Buildings | Trees | ||
1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | |||
Reference data | Grass | 1 | 225 | 11 | 7 | 13 | 17 | 0 | 126 | 1 | 38 | 21 | 66 |
Water | 2 | 0 | 31 | 0 | 0 | 1 | 0 | 3 | 15 | 7 | 0 | 0 | |
Road network | 3 | 42 | 1 | 145 | 70 | 1 | 1 | 46 | 0 | 140 | 32 | 21 | |
Buildings | 4 | 20 | 1 | 54 | 107 | 3 | 1 | 24 | 0 | 59 | 74 | 5 | |
Trees | 5 | 36 | 0 | 1 | 1 | 560 | 3 | 78 | 3 | 26 | 11 | 478 | |
Projected shadows | 6 | 0 | 0 | 0 | 0 | 18 | 131 | - | - | - | - | - | |
Validation indices | Kappa | 0.73 | 0.50 | ||||||||||
OA | 0.80 | 0.65 | |||||||||||
Class Comparison | 1 vs. all | 2 vs. all | 3 vs. all | 4 vs. all | 5 vs. all | 6 vs. all | 1 vs. all | 2 vs. all | 3 vs. all | 4 vs. all | 5 vs. all | ||
Accuracy | 0.697 | 0.705 | 0.700 | 0.560 | 0.933 | 0.963 | 0.455 | 0.789 | 0.519 | 0.536 | 0.839 | ||
Recall | 0.824 | 0.969 | 0.558 | 0.575 | 0.932 | 0.879 | 0.500 | 0.600 | 0.586 | 0.457 | 0.802 | ||
F-score | 0.755 | 0.816 | 0.621 | 0.568 | 0.933 | 0.919 | 0.476 | 0.682 | 0.550 | 0.493 | 0.820 |
Villa Doria Pamphilj | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OTB Classified Data-Pléiades | OTB Classified Data-Sentinel-2 | ||||||||||||
Class | Grass | Water | Road network | Buildings | Trees | Projected shadow | Grass | Water | Road network | Buildings | Trees | ||
1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | |||
Reference data | Grass | 1 | 397 | 3 | 3 | 1 | 16 | 0 | 347 | 0 | 5 | 27 | 5 |
Water | 2 | 2 | 22 | 1 | 0 | 0 | 0 | 7 | 9 | 5 | 1 | 0 | |
Road network | 3 | 16 | 0 | 140 | 9 | 8 | 1 | 66 | 3 | 53 | 33 | 8 | |
Buildings | 4 | 17 | 3 | 20 | 28 | 3 | 3 | 31 | 0 | 16 | 22 | 0 | |
Trees | 5 | 22 | 0 | 3 | 0 | 748 | 13 | 129 | 4 | 23 | 29 | 583 | |
Projected shadows | 6 | 0 | 0 | 2 | 0 | 24 | 198 | ||||||
Validation indices | Kappa | 0.86 | 0.54 | ||||||||||
OA | 0.90 | 0.71 | |||||||||||
Class Comparison | 1 vs. all | 2 vs. all | 3 vs. all | 4 vs. all | 5 vs. all | 6 vs. all | 1 vs. all | 2 vs. all | 3 vs. all | 4 vs. all | 5 vs. all | ||
Accuracy | 0.874 | 0.786 | 0.828 | 0.737 | 0.936 | 0.921 | 0.598 | 0.563 | 0.520 | 0.196 | 0.936 | ||
Recall | 0.945 | 0.880 | 0.805 | 0.378 | 0.952 | 0.884 | 0.844 | 0.409 | 0.325 | 0.319 | 0.759 | ||
F-score | 0.908 | 0.830 | 0.816 | 0.500 | 0.944 | 0.902 | 0.700 | 0.474 | 0.400 | 0.243 | 0.838 |
Sentinel-2 Villa Ada Savoia | Pleiades Villa Ada Savoia | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | Reference Data | Total | UA (%) | σUA (%) | Reference Data | Total | UA (%) | σUA (%) | ||||||||||
Stone Pine | Other Plant Species | Libani and Deodara Cedrus | Cork Oak | Holm Oak | Stone Pine | Other Plant Species | Libani and Deodara Cedrus | Cork Oak | Holm Oak | |||||||||
1 | 6 | 10 | 13 | 14 | 1 | 6 | 10 | 13 | 14 | |||||||||
SCP Classified data | Stone Pine | 1 | 208 | 131 | 19 | 12 | 26 | 396 | 53 | 50 | 158 | 21 | 4 | 4 | 2 | 189 | 84 | 37 |
Other Plant Species | 6 | 49 | 159 | 13 | 5 | 10 | 236 | 67 | 47 | 37 | 378 | 12 | 20 | 98 | 545 | 69 | 46 | |
Libani and Deodara Cedrus | 10 | 14 | 3 | 13 | 1 | 0 | 31 | 42 | 49 | 22 | 23 | 37 | 0 | 9 | 91 | 41 | 49 | |
Cork Oak | 13 | 13 | 56 | 3 | 3 | 11 | 86 | 3 | 18 | 1 | 33 | 0 | 3 | 8 | 45 | 7 | 25 | |
Holm Oak | 14 | 19 | 158 | 4 | 5 | 65 | 251 | 26 | 44 | 1 | 96 | 1 | 1 | 32 | 131 | 24 | 43 | |
Total | 303 | 507 | 52 | 26 | 112 | 1.000 | 219 | 551 | 54 | 28 | 149 | 1.001 | ||||||
PA (%) | 69 | 31 | 25 | 12 | 58 | 0 | 69 | 69 | 11 | 21 | ||||||||
OA | 0.45 | 0.61 | ||||||||||||||||
Kappa | 0.24 | 0.38 |
Sentinel-2 Villa Doria Pamphilj | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | Reference Data | Total | UA (%) | σUA (%) | ||||||||||||
Stone Pine | London Plane | European Nettle Tree | Other Plant Species | Other Conifers | Horse Chestnut | White Poplar | Lebanon and Deodar Cedar | Field Elm | Oleander | Cork Oak | ||||||
1 | 3 | 4 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 14 | ||||||
SCP Classified data | Stone Pine | 1 | 113 | 1 | 0 | 61 | 8 | 0 | 0 | 11 | 0 | 0 | 12 | 206 | 55 | 50 |
London Plane | 3 | 0 | 3 | 0 | 49 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 56 | 5 | 23 | |
European Nettle Tree | 4 | 5 | 0 | 2 | 10 | 2 | 1 | 0 | 0 | 0 | 0 | 5 | 25 | 8 | 27 | |
Other Plant Species | 6 | 30 | 10 | 1 | 375 | 15 | 5 | 5 | 7 | 2 | 0 | 81 | 531 | 71 | 46 | |
Other Conifers | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | |
Horse Chestnut | 8 | 2 | 0 | 0 | 1 | 1 | 0 | 1 | 2 | 0 | 1 | 0 | 8 | 0 | 0 | |
White Poplar | 9 | 0 | 0 | 0 | 5 | 0 | 1 | 1 | 2 | 0 | 0 | 3 | 12 | 8 | 28 | |
Lebanon and Deodar Cedar | 10 | 8 | 0 | 1 | 8 | 2 | 0 | 0 | 5 | 0 | 0 | 0 | 24 | 21 | 41 | |
Field Elm | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | |
Oleander | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | |
Cork Oak | 14 | 10 | 1 | 0 | 74 | 3 | 0 | 2 | 2 | 0 | 0 | 46 | 138 | 33 | 47 | |
Total | 168 | 15 | 4 | 583 | 31 | 7 | 9 | 29 | 2 | 1 | 151 | 1000 | ||||
PA (%) | 67 | 20 | 50 | 64 | 0 | 0 | 11 | 17 | 0 | 0 | 30 | |||||
OA | 0.55 | |||||||||||||||
Kappa | 0.28 |
Pléiades Villa Doria Pamphilj | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reference Data | Total | UA (%) | σUA (%) | |||||||||||||
Class | Stone Pine | London Plane | European Nettle Tree | Other Plant Species | Other Conifers | Horse Chestnut | White Poplar | Lebanon and Deodar Cedar | Field Elm | Oleander | Cork Oak | |||||
1 | 3 | 4 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 14 | ||||||
SCP Classified data | Stone Pine | 1 | 110 | 1 | 0 | 24 | 3 | 0 | 3 | 7 | 0 | 0 | 2 | 150 | 73 | 44 |
London Plane | 3 | 0 | 16 | 0 | 32 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 52 | 31 | 46 | |
European Nettle Tree | 4 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | |
Other Plant Species | 6 | 7 | 10 | 3 | 437 | 26 | 5 | 6 | 9 | 2 | 2 | 73 | 580 | 75 | 43 | |
Other Conifers | 7 | 1 | 0 | 0 | 7 | 7 | 0 | 0 | 0 | 0 | 0 | 10 | 25 | 28 | 45 | |
Horse Chestnut | 8 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
White Poplar | 9 | 2 | 0 | 0 | 2 | 2 | 0 | 3 | 1 | 0 | 0 | 2 | 12 | 25 | 43 | |
Lebanon and Deodar Cedar | 10 | 10 | 1 | 0 | 34 | 4 | 1 | 0 | 17 | 0 | 0 | 4 | 71 | 24 | 43 | |
Field Elm | 11 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | - | - | |
Oleander | 12 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | - | - | |
Cork Oak | 14 | 3 | 1 | 0 | 60 | 1 | 0 | 0 | 3 | 0 | 0 | 35 | 103 | 34 | 47 | |
Total | 133 | 29 | 3 | 603 | 43 | 6 | 12 | 37 | 2 | 2 | 130 | 1000 | ||||
PA (%) | 83% | 55% | 0% | 72 | 16 | 0 | 25 | 46 | 0 | 0 | 27 | |||||
OA | 0.63 | |||||||||||||||
Kappa | 0.44 |
Sentinel-2 Villa Borghese | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Class | Reference Data | Total | UA (%) | σUA (%) | ||||||
Stone Pine | Holm Oak | London Plane | European Nettle Tree | Other Plant Species | ||||||
1 | 14 | 3 | 4 | 6 | ||||||
SCP Classified data | Stone Pine | 1 | 96 | 35 | 2 | 3 | 79 | 215 | 45 | 50 |
Holm Oak | 14 | 16 | 130 | 17 | 3 | 138 | 304 | 43 | 49 | |
London Plane | 3 | 2 | 7 | 24 | 1 | 61 | 95 | 25 | 43 | |
European Nettle Tree | 4 | 0 | 3 | 2 | 2 | 11 | 18 | 11 | 31 | |
Other plant species | 6 | 40 | 116 | 19 | 9 | 184 | 368 | 50 | 50 | |
Total | 154 | 291 | 64 | 18 | 473 | 1000 | ||||
PA (%) | 62 | 45 | 38 | 11 | 39 | |||||
OA | 0.44 | |||||||||
Kappa | 0.19 |
Pléiades-Villa Borghese | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Class | Reference Data | Total | UA (%) | σUA (%) | |||||||
Stone Pine | Holm Oak | London Plane | European Nettle Tree | Other Plant Species | Southern Magnolia | ||||||
1 | 14 | 3 | 4 | 6 | 5 | ||||||
SCP Classification | Stone Pine | 1 | 127 | 44 | 2 | 2 | 68 | 0 | 243 | 52 | 50 |
Holm Oak | 14 | 8 | 182 | 12 | 5 | 157 | 2 | 366 | 50 | 50 | |
London Plane | 3 | 1 | 0 | 27 | 2 | 35 | 0 | 65 | 42 | 49 | |
European Nettle Tree | 4 | 0 | 2 | 6 | 6 | 15 | 0 | 29 | 21 | 41 | |
Other plant species | 6 | 17 | 44 | 17 | 3 | 195 | 2 | 278 | 70 | 46 | |
Southern Magnolia | 5 | 0 | 3 | 1 | 0 | 11 | 4 | 19 | 21 | 41 | |
Total | 153 | 275 | 65 | 18 | 481 | 8 | 1000 | ||||
PA (%) | 83 | 66 | 42 | 33 | 41 | 50 | |||||
OA | 0.54 | ||||||||||
Kappa | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Recanatesi, F.; De Santis, A.; Gatti, L.; Patriarca, A.; Caputi, E.; Mancini, G.; Iavarone, C.; Rossi, C.M.; Delogu, G.; Perretta, M.; et al. A Comparative Analysis of Spatial Resolution Sentinel-2 and Pleiades Imagery for Mapping Urban Tree Species. Land 2025, 14, 106. https://doi.org/10.3390/land14010106
Recanatesi F, De Santis A, Gatti L, Patriarca A, Caputi E, Mancini G, Iavarone C, Rossi CM, Delogu G, Perretta M, et al. A Comparative Analysis of Spatial Resolution Sentinel-2 and Pleiades Imagery for Mapping Urban Tree Species. Land. 2025; 14(1):106. https://doi.org/10.3390/land14010106
Chicago/Turabian StyleRecanatesi, Fabio, Antonietta De Santis, Lorenzo Gatti, Alessio Patriarca, Eros Caputi, Giulia Mancini, Chiara Iavarone, Carlo Maria Rossi, Gabriele Delogu, Miriam Perretta, and et al. 2025. "A Comparative Analysis of Spatial Resolution Sentinel-2 and Pleiades Imagery for Mapping Urban Tree Species" Land 14, no. 1: 106. https://doi.org/10.3390/land14010106
APA StyleRecanatesi, F., De Santis, A., Gatti, L., Patriarca, A., Caputi, E., Mancini, G., Iavarone, C., Rossi, C. M., Delogu, G., Perretta, M., Boccia, L., & Ripa, M. N. (2025). A Comparative Analysis of Spatial Resolution Sentinel-2 and Pleiades Imagery for Mapping Urban Tree Species. Land, 14(1), 106. https://doi.org/10.3390/land14010106