The Effects of Low-Impact Development Best Management Practices on Reducing Stormwater Caused by Land Use Changes in Urban Areas: A Case Study of Tehran City, Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methodology
2.3.1. Land Use Land Cover (LULC) Change
2.3.2. Hydrology
Hydrological Divisions of the Area
Longitudinal Profile of the Main Stream and Slope Calculation
Calculation of Stormwater Using the Soil Conservation Service Curve Number (SCS-CN) Method
TOC
2.3.3. Meteorology
Rainfall Gradient in the Area
Average Maximum 24-Hour Rainfall in Different Return Periods
Analysis of Short-Term Rainfall and the Intensity, Duration, and Frequency (IDF) Curve
Unit Hydrograph of Sub-Basins by SCS-CN Method
2.3.4. Selection of Suitable LID-BMPs
2.3.5. Optimal Location Identification for LID-BMPs
2.3.6. Modeling of the Selected LID-BMPs
3. Results
3.1. Spatio-Temporal Land Use Change
3.2. Annual Rainfall Values and Average Maximum 24-Hour Rainfall
3.3. Investigating Flooding Potential in the Basin
3.4. The Relationship Between Land Use/Land Cover Change and the Increase in Peak Discharge and Flood Volume
3.5. Site Selection of Optimal Low-Impact Developments
3.6. Simulation Results
4. Discussion
4.1. Urban LULC Change
4.2. Effect of LULC Change on Urban Stormwater
4.3. Site Selection of Low-Impact Developments
4.4. Limitation and Uncertainties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, C.-L.; Hsu, N.-S.; Liu, H.-J.; Huang, Y.-H. Optimization of low impact development layout designs for megacity flood mitigation. J. Hydrol. 2018, 564, 542–558. [Google Scholar] [CrossRef]
- Pour, S.H.; Abd Wahab, A.K.; Shahid, S.; Asaduzzaman, M.; Dewan, A. Low impact development techniques to mitigate the impacts of climate-change-induced urban floods: Current trends, issues and challenges. Sustain. Cities Soc. 2020, 62, 102373. [Google Scholar] [CrossRef]
- Shahid, S.; Wang, X.-J.; Harun, S.B.; Shamsudin, S.B.; Ismail, T.; Minhans, A. Climate variability and changes in the major cities of Bangladesh: Observations, possible impacts and adaptation. Reg. Environ. Chang. 2016, 16, 459–471. [Google Scholar] [CrossRef]
- Quichimbo-Miguitama, F.; Matamoros, D.; Jiménez, L.; Quichimbo-Miguitama, P. Influence of Low-Impact Development in Flood Control: A Case Study of the Febres Cordero Stormwater System of Guayaquil (Ecuador). Sustainability 2022, 14, 7109. [Google Scholar] [CrossRef]
- Sohn, W.; Kim, J.-H.; Li, M.-H.; Brown, R. The influence of climate on the effectiveness of low impact development: A systematic review. J. Environ. Manag. 2019, 236, 365–379. [Google Scholar] [CrossRef]
- Cooper, R.T. Projection of future precipitation extremes across the Bangkok Metropolitan Region. Heliyon 2019, 5, e01678. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Niyogi, D. Meta-analysis of urbanization impact on rainfall modification. Sci. Rep. 2019, 9, 7301. [Google Scholar] [CrossRef]
- Bartholomew, I.; Nienow, P.; Sole, A.; Mair, D.; Cowton, T.; Palmer, S.; Wadham, J. Supraglacial forcing of subglacial drainage in the ablation zone of the Greenland ice sheet. Geophys. Res. Lett. 2011, 38, L08502. [Google Scholar] [CrossRef]
- Qin, H.-P.; Li, Z.-X.; Fu, G. The effects of low impact development on urban flooding under different rainfall characteristics. J. Environ. Manag. 2013, 129, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Chen, Z.; Chen, X.; Yu, G. An assessment of the hydrologic effectiveness of low impact development (LID) practices for managing runoff with different objectives. J. Environ. Manag. 2019, 231, 504–514. [Google Scholar] [CrossRef]
- Fan, G.; Lin, R.; Wei, Z.; Xiao, Y.; Shangguan, H.; Song, Y. Effects of low impact development on the stormwater runoff and pollution control. Sci. Total Environ. 2022, 805, 150404. [Google Scholar] [CrossRef]
- Huang, J.J.; Xiao, M.; Li, Y.; Yan, R.; Zhang, Q.; Sun, Y.; Zhao, T. The optimization of Low Impact Development placement considering life cycle cost using Genetic Algorithm. J. Environ. Manag. 2022, 309, 114700. [Google Scholar] [CrossRef] [PubMed]
- Bae, C.; Lee, D.K. Effects of low-impact development practices for flood events at the catchment scale in a highly developed urban area. Int. J. Disaster Risk Reduct. 2020, 44, 101412. [Google Scholar] [CrossRef]
- Hager, J.; Hu, G.; Hewage, K.; Sadiq, R. Performance of low-impact development best management practices: A critical review. Environ. Rev. 2019, 27, 17–42. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, H. Low impact development planning through a comprehensive optimization framework: Current gaps and future perspectives. Resour. Conserv. Recycl. 2023, 190, 106861. [Google Scholar] [CrossRef]
- Naeini, A.M.; Tabesh, M.; Soltaninia, S. Modeling the effect of land use change to design a suitable low impact development (LID) system to control surface water pollutants. Sci. Total Environ. 2024, 932, 172756. [Google Scholar] [CrossRef] [PubMed]
- Yaraghifard, M.; Shokouhibidhendi, M. Futuristic research of resilience of water resources with scenario planning approach based on case study: Zayandeh Rood watershed. Water Soil Manag. Model. 2024, 5, 26–37. [Google Scholar]
- Chen, P.-Y.; Tung, C.-P.; Li, Y.-H. Low impact development planning and adaptation decision-making under climate change for a community against pluvial flooding. Water 2017, 9, 756. [Google Scholar] [CrossRef]
- Houdeshel, C.D.; Pomeroy, C.A.; Hair, L.; Moeller, J. Cost-estimating tools for low-impact development best management practices: Challenges, limitations, and implications. J. Irrig. Drain. Eng. 2011, 137, 183–189. [Google Scholar] [CrossRef]
- Zhang, K.; Chui, T.F.M. A comprehensive review of spatial allocation of LID-BMP-GI practices: Strategies and optimization tools. Sci. Total Environ. 2018, 621, 915–929. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Yao, H.; Yu, S.L. Advances in LID BMPs research and practice for urban runoff control in China. Front. Environ. Sci. Eng. 2013, 7, 709–720. [Google Scholar] [CrossRef]
- Zhou, Q.; Lai, Z.; Blohm, A. Optimising the combination strategies for pipe and infiltration-based low impact development measures using a multiobjective evolution approach. J. Flood Risk Manag. 2019, 12, e12457. [Google Scholar] [CrossRef]
- Dietz, M.E. Low impact development practices: A review of current research and recommendations for future directions. Water Air Soil Pollut. 2007, 186, 351–363. [Google Scholar] [CrossRef]
- Todeschini, S.; Papiri, S.; Ciaponi, C. Performance of stormwater detention tanks for urban drainage systems in northern Italy. J. Environ. Manag. 2012, 101, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhao, N.; Zhang, R.; Zeng, X. Storm water management of low impact development in urban areas based on SWMM. Water 2018, 11, 33. [Google Scholar] [CrossRef]
- Bibi, T.S.; Kara, K.G. Evaluation of climate change, urbanization, and low-impact development practices on urban flooding. Heliyon 2023, 9, e12955. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; She, D.; Xia, J.; Song, J.; Xiao, T.; Zhou, Y. The quantitative assessment of impact of pumping capacity and LID on urban flood susceptibility based on machine learning. J. Hydrol. 2023, 617, 129116. [Google Scholar] [CrossRef]
- Alfredo, K.; Montalto, F.; Goldstein, A. Observed and modeled performances of prototype green roof test plots subjected to simulated low-and high-intensity precipitations in a laboratory experiment. J. Hydrol. Eng. 2010, 15, 444–457. [Google Scholar] [CrossRef]
- Wu, J.; Chen, Y.; Yang, R.; Zhao, Y. Exploring the optimal cost-benefit solution for a low impact development layout by zoning, as well as considering the inundation duration and inundation depth. Sustainability 2020, 12, 4990. [Google Scholar] [CrossRef]
- Seo, M.; Jaber, F.; Srinivasan, R. Evaluating various low-impact development scenarios for optimal design criteria development. Water 2017, 9, 270. [Google Scholar] [CrossRef]
- Zhan, W.; Chui, T.F.M. Evaluating the life cycle net benefit of low impact development in a city. Urban For. Urban Green. 2016, 20, 295–304. [Google Scholar] [CrossRef]
- Khosravi, H.; Abrishami, M.; Mehrian, M.R.; Chamberlain, B. The positive impact of transit-oriented-development characteristics on Metro Station usage: A case study of Tehran’s metro stations and TOD index calculation. Cities 2024, 148, 104840. [Google Scholar] [CrossRef]
- Recanatesi, F.; Petroselli, A.; Ripa, M.; Leone, A.; Ripa, M.N. Assessment of stormwater runoff management practices and BMPs under soil sealing. J. Environ. Manag. 2017, 201, 6–18. [Google Scholar] [CrossRef]
- Salaudeen, A.; Shahid, S.; Ismail, A.; Adeogun, B.K.; Ajibike, M.A.; Bello, A.-A.D.; Salau, O.B. Adaptation measures under the impacts of climate and land-use/land-cover changes using HSPF model simulation: Application to Gongola river basin, Nigeria. Sci. Total Environ. 2023, 858, 159874. [Google Scholar] [CrossRef] [PubMed]
- Shorabeh, S.N.; Kakroodi, A.; Firozjaei, M.K.; Minaei, F.; Homaee, M. Impact assessment modeling of climatic conditions on spatial-temporal changes in surface biophysical properties driven by urban physical expansion using satellite images. Sustain. Cities Soc. 2022, 80, 103757. [Google Scholar] [CrossRef]
- Nadizadeh Shorabeh, S.; Hamzeh, S.; Zanganeh Shahraki, S.; Firozjaei, M.K.; Jokar Arsanjani, J. Modelling the intensity of surface urban heat island and predicting the emerging patterns: Landsat multi-temporal images and Tehran as case study. Int. J. Remote Sens. 2020, 41, 7400–7426. [Google Scholar] [CrossRef]
- Miralha, L.; Muenich, R.L.; Schaffer-Smith, D.; Myint, S.W. Spatiotemporal land use change and environmental degradation surrounding CAFOs in Michigan and North Carolina. Sci. Total Environ. 2021, 800, 149391. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ghamary Asl, M. Monitoring urban growth in Google Earth Engine from 1991 to 2021 and predicting in 2041 using CA-MARKOV and geometry: Case study—Tehran. Arab. J. Geosci. 2023, 16, 107. [Google Scholar] [CrossRef]
- Mohimi, A.; Esmaeily, A. Spatiotemporal analysis of urban sprawl using a multi-technique approach and remote sensing satellite imagery from 1990 to 2020: Kerman/Iran. Environ. Dev. Sustain. 2024, 26, 18033–18068. [Google Scholar] [CrossRef]
- Naikoo, M.W.; Rihan, M.; Ishtiaque, M. Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using landsat datasets. J. Urban Manag. 2020, 9, 347–359. [Google Scholar] [CrossRef]
- Devianti; Jayanti, D.S.; Mulia, I.; Sitorus, A.; Sartika, T.D. Model of surface runoff estimation on oil palm plantation with or without biopore infiltration hole using SCS-CN and ANN methods. IOP Conf. Ser. Earth Environ. Sci. 2019, 365, 012065. [Google Scholar] [CrossRef]
- Walega, A.; Amatya, D.M.; Caldwell, P.; Marion, D.; Panda, S. Assessment of storm direct runoff and peak flow rates using improved SCS-CN models for selected forested watersheds in the Southeastern United States. J. Hydrol. Reg. Stud. 2020, 27, 100645. [Google Scholar] [CrossRef]
- Verma, S.; Singh, P.; Mishra, S.K.; Singh, V.; Singh, V.; Singh, A. Activation soil moisture accounting (ASMA) for runoff estimation using soil conservation service curve number (SCS-CN) method. J. Hydrol. 2020, 589, 125114. [Google Scholar] [CrossRef]
- McCuen, R.H.; Wong, S.L.; Rawls, W.J. Estimating urban time of concentration. J. Hydraul. Eng. 1984, 110, 887–904. [Google Scholar] [CrossRef]
- Sultan, D.; Tsunekawa, A.; Tsubo, M.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Fenta, A.A.; Ebabu, K.; Berihun, M.L.; Setargie, T.A. Evaluation of lag time and time of concentration estimation methods in small tropical watersheds in Ethiopia. J. Hydrol. Reg. Stud. 2022, 40, 101025. [Google Scholar] [CrossRef]
- Biantoro, A.W.; Wahyudi, S.; Ni’am, M.F.; Mahardika, A. Time of Concentration Estimated Using Some Methods and Application in The Ciliwung Watershed, Jakarta. Int. J. Adv. Res. Eng. Innov. 2022, 4, 17–25. [Google Scholar]
- Tan, X.; Mai, Q.; Chen, G.; Liu, B.; Wang, Z.; Lai, C.; Chen, X. Intensity-duration-frequency curves in the Guangdong-Hong Kong-Macao Greater Bay Area inferred from the Bayesian hierarchical model. J. Hydrol. Reg. Stud. 2023, 46, 101327. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Kozonis, D.; Manetas, A. A mathematical framework for studying rainfall intensity-duration-frequency relationships. J. Hydrol. 1998, 206, 118–135. [Google Scholar] [CrossRef]
- Ghahraman, B.; Abkhezr, H. Improvement in intensity-duration-frequency relationships of rainfall in Iran. JWSS-Isfahan Univ. Technol. 2004, 8, 1–14. [Google Scholar]
- Al-Ghobari, H.; Dewidar, A.; Alataway, A. Estimation of surface water runoff for a semi-arid area using RS and GIS-based SCS-CN method. Water 2020, 12, 1924. [Google Scholar] [CrossRef]
- Jia, H.; Yao, H.; Tang, Y.; Yu, S.L.; Zhen, J.X.; Lu, Y. Development of a multi-criteria index ranking system for urban runoff best management practices (BMPs) selection. Environ. Monit. Assess. 2013, 185, 7915–7933. [Google Scholar] [CrossRef]
- Jia, H.; Yao, H.; Tang, Y.; Shaw, L.Y.; Field, R.; Tafuri, A.N. LID-BMPs planning for urban runoff control and the case study in China. J. Environ. Manag. 2015, 149, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Shorabeh, S.N.; Firozjaei, M.K.; Nematollahi, O.; Firozjaei, H.K.; Jelokhani-Niaraki, M. A risk-based multi-criteria spatial decision analysis for solar power plant site selection in different climates: A case study in Iran. Renew. Energy 2019, 143, 958–973. [Google Scholar] [CrossRef]
- Qureshi, S.; Shorabeh, S.N.; Samany, N.N.; Minaei, F.; Homaee, M.; Nickravesh, F.; Firozjaei, M.K.; Arsanjani, J.J. A new integrated approach for municipal landfill siting based on urban physical growth prediction: A case study mashhad metropolis in Iran. Remote Sens. 2021, 13, 949. [Google Scholar] [CrossRef]
- Khosravian, J.; Qureshi, S.; Rostamzadeh, S.; Moradi, B.; Derakhshesh, P.; Yousefi, S.; Jamali, K.; Ahmadi, R.; Nickravesh, F. Evaluating the feasibility of constructing shopping centers on urban vacant land through a spatial multi-criteria decision-making model. Front. Sustain. Cities 2024, 6, 1373331. [Google Scholar] [CrossRef]
- Saadat Foomani, M.; Malekmohammadi, B. Site selection of sustainable urban drainage systems using fuzzy logic and multi-criteria decision-making. Water Environ. J. 2020, 34, 584–599. [Google Scholar] [CrossRef]
- Altuwaijri, H.A.; Alotaibi, M.H.; Almudlaj, A.M.; Almalki, F.M. Predicting urban growth of Arriyadh city, capital of the Kingdom of Saudi Arabia, using Markov cellular automata in TerrSet geospatial system. Arab. J. Geosci. 2019, 12, 135. [Google Scholar] [CrossRef]
- Shorabeh, S.N.; Argany, M.; Rabiei, J.; Firozjaei, H.K.; Nematollahi, O. Potential assessment of multi-renewable energy farms establishment using spatial multi-criteria decision analysis: A case study and mapping in Iran. J. Clean. Prod. 2021, 295, 126318. [Google Scholar] [CrossRef]
- Zarei, M.; Mohseni, F.; Sohrabi, P. Correlates of spatial structure variability in Bushehr port-city: A comprehensive analysis using fuzzy cognitive mapping methodology. J. Infrastruct. Policy Dev. 2024, 8, 8789. [Google Scholar] [CrossRef]
- Tang, Z.; Engel, B.; Pijanowski, B.C.; Lim, K. Forecasting land use change and its environmental impact at a watershed scale. J. Environ. Manag. 2005, 76, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Engel, B.A.; Lim, K.J.; Larson, V.; Duncan, B. Runoff impacts of land-use change in Indian River Lagoon watershed. J. Hydrol. Eng. 2002, 7, 245–251. [Google Scholar] [CrossRef]
- Zhou, F.; Xu, Y.; Chen, Y.; Xu, C.-Y.; Gao, Y.; Du, J. Hydrological response to urbanization at different spatio-temporal scales simulated by coupling of CLUE-S and the SWAT model in the Yangtze River Delta region. J. Hydrol. 2013, 485, 113–125. [Google Scholar] [CrossRef]
- Olivera, F.; DeFee, B.B. Urbanization and Its effect on runoff in the Whiteoak Bayou Watershed, Texas 1. JAWRA J. Am. Water Resour. Assoc. 2007, 43, 170–182. [Google Scholar] [CrossRef]
- Huq, E.; Abdul-Aziz, O.I. Climate and land cover change impacts on stormwater runoff in large-scale coastal-urban environments. Sci. Total Environ. 2021, 778, 146017. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Thakur, P.K.; Kumar, P.; Ashraful Alam, M.; Garg, V.; Rousta, I.; Olafsson, H. Decadal urban land use/land cover changes and its impact on surface runoff potential for the Dhaka City and surroundings using remote sensing. Remote Sens. 2020, 13, 83. [Google Scholar] [CrossRef]
- Zhao, Y.; Xia, J.; Xu, Z.; Qiao, Y.; Shen, J.; Ye, C. Impact of urbanization on regional rainfall-runoff processes: Case study in Jinan City, China. Remote Sens. 2023, 15, 2383. [Google Scholar] [CrossRef]
- Shrestha, B.B. Approach for analysis of land-cover changes and their impact on flooding regime. Quaternary 2019, 2, 27. [Google Scholar] [CrossRef]
- Shorabeh, S.N.; Firozjaei, H.K.; Firozjaei, M.K.; Jelokhani-Niaraki, M.; Homaee, M.; Nematollahi, O. The site selection of wind energy power plant using GIS-multi-criteria evaluation from economic perspectives. Renew. Sustain. Energy Rev. 2022, 168, 112778. [Google Scholar] [CrossRef]
- Gholamalizadeh, A.; Shorabeh, S.N.; Choubineh, K.; Karimi, A.; Ghahremani, L.; Firozjaei, M.K. Exploring the climatic conditions effect on spatial urban photovoltaic systems development using a spatial multi-criteria decision analysis: A multi-city analysis. Sustain. Cities Soc. 2024, 116, 105941. [Google Scholar] [CrossRef]
- Ebrahimi Sirizi, M.; Taghavi Zirvani, E.; Esmailzadeh, A.; Khosravian, J.; Ahmadi, R.; Mijani, N.; Soltannia, R.; Jokar Arsanjani, J. A Scenario-Based Multi-Criteria Decision-Making Approach for Allocation of Pistachio Processing Facilities: A Case Study of Zarand, Iran. Sustainability 2023, 15, 15054. [Google Scholar] [CrossRef]
- Shorabeh, S.N.; Varnaseri, A.; Firozjaei, M.K.; Nickravesh, F.; Samany, N.N. Spatial modeling of areas suitable for public libraries construction by integration of GIS and multi-attribute decision making: Case study Tehran, Iran. Libr. Inf. Sci. Res. 2020, 42, 101017. [Google Scholar] [CrossRef]
- Boloorani, A.D.; Shorabeh, S.N.; Samany, N.N.; Mousivand, A.; Kazemi, Y.; Jaafarzadeh, N.; Zahedi, A.; Rabiei, J. Vulnerability mapping and risk analysis of sand and dust storms in Ahvaz, IRAN. Environ. Pollut. 2021, 279, 116859. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Bortolot, Z.J. Quantifying the impacts of land cover change on catchment-scale urban flooding by classifying aerial images. J. Clean. Prod. 2022, 344, 130992. [Google Scholar] [CrossRef]
- Miller, J.D.; Kim, H.; Kjeldsen, T.R.; Packman, J.; Grebby, S.; Dearden, R. Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover. J. Hydrol. 2014, 515, 59–70. [Google Scholar] [CrossRef]
Satellite | Sensor | Spectral Bands | Month/Year | Path/Row |
---|---|---|---|---|
Landsat 7 | ETM+ | 8 | July 2000 | 164/35 |
Landsat 8 | OLI/TIRS | 11 | July 2022 | 164/35 |
Sub-Basin | A | B | C | Dint | E | F | G | H |
---|---|---|---|---|---|---|---|---|
Basin slope (%) | 47.79 | 41.11 | 45.03 | 20.21 | 24.14 | 6.30 | 4.31 | 13.16 |
Channel slope (%) | 44.93 | 39.87 | 43.67 | 19.30 | 23.34 | 6 | 3.93 | 12.38 |
Difference (%) | 2.86 | 1.24 | 1.36 | 0.91 | 0.80 | 0.30 | 0.38 | 0.78 |
Meteorological Station | Average Annual Rainfall | Statistical Distribution |
---|---|---|
Kolakchall | 511.7 | Wakeby (ξ: 189.15; α: 11.046; β: 8.697; γ: 0.19457; δ: 16.588) |
Niavaran | 243.3 | LogLogistic (α: 3.7741; β: 19.409; γ: 7.1402) |
Abbaspour | 334 | LogLogistic (α: 2.558; β: 15.643; γ: 17.546) |
Meteorological Station | Average Maximum 24-Hour Rainfall with Return Period (Year) | ||||||
---|---|---|---|---|---|---|---|
2 | 5 | 10 | 25 | 50 | 100 | ||
Kolakchall | 40.2 | 50.2 | 59.0 | 72.6 | 84.7 | 98.5 | |
Niavaran | 26.6 | 35.2 | 41.9 | 52.2 | 61.6 | 72.7 | |
Abbaspour | 33.2 | 44.4 | 54.5 | 71.7 | 89.2 | 111.8 | |
Rainfall gradient | R2 | 0.99 | 0.95 | 0.90 | 0.78 | 0.65 | 0.50 |
Gradient of a line | 0.0491 | 0.0526 | 0.0584 | 0.0663 | 0.0708 | 0.0724 | |
Intercept | 15.47 | 24.17 | 30.58 | 41.44 | 52.78 | 68.06 |
Sub-Basin | Area (km2) | Tc (h) | D (h) | Ti (h) | Tp (h) | Qp (m3/s) |
---|---|---|---|---|---|---|
A | 19.81 | 0.66 | 0.09 | 0.40 | 0.44 | 9.31 |
B | 0.96 | 0.15 | 0.02 | 0.09 | 0.10 | 1.98 |
C | 5.13 | 0.25 | 0.03 | 0.15 | 0.17 | 6.37 |
Dint | 3.24 | 0.38 | 0.05 | 0.23 | 0.26 | 2.63 |
E | 3.99 | 0.45 | 0.06 | 0.27 | 0.30 | 2.75 |
F | 3.78 | 0.62 | 0.08 | 0.37 | 0.41 | 1.91 |
G | 1.40 | 0.54 | 0.07 | 0.32 | 0.36 | 0.81 |
H | 1.57 | 0.19 | 0.03 | 0.11 | 0.13 | 2.60 |
Darabad basin | 39.87 | 0.93 | 0.12 | 0.56 | 0.62 | 13.39 |
Criterion | Fuzzy Function | Weight | ||||
---|---|---|---|---|---|---|
Bioretention Basin | Green Roof | Grass Swale | Porous Pavement | |||
Slope | Linear (decrease) | Min: 20 Max: 0 | 0.217 | 0.097 | 0.243 | 0.297 |
Groundwater level | Linear (increase) | Min: 1.22 Max: 97.3 | 0.062 | 0.04 | 0.138 | 0.115 |
Distance from waterway | Linear (increase) | Min: 0 Max: 2220 | 0.04 | 0.041 | 0.057 | 0.035 |
Distance from street | Linear (decrease) | Min: 6556.7 Max: 0 | 0.122 | 0.045 | 0.303 | 0.224 |
Distance from fault line | Linear (increase) | Min: 0 Max: 5.790 | 0.083 | 0.068 | 0.064 | 0.057 |
Flooding potential | Linear (increase) | Min: 0.66 Max: 1.28 | 0.073 | 0.14 | 0.053 | 0.078 |
Rainfall | Linear (increase) | Min: 432 Max: 555.12 | 0.032 | 0.231 | 0.034 | 0.056 |
Land use | User defined | 0.371 | 0.338 | 0.108 | 0.138 |
Land Use | Location Priority | |||
---|---|---|---|---|
Bioretention Basin | Green Roof | Grass Swale | Porous Pavement | |
Public services | 5 | 2 | 4 | 4 |
Pertaining to the police | 10 | 10 | 10 | 10 |
Residential garden | 3 | 5 | 5 | 9 |
Residential | 4 | 1 | 6 | 8 |
Green space | 1 | - | 2 | 1 |
Recreational | 2 | - | 3 | 2 |
Religulous | 5 | 4 | 7 | 4 |
Parking | 6 | 6 | 7 | 3 |
Bare land | 6 | - | 1 | - |
Rocky land | 5 | - | 5 | - |
Commercial–industrial–therapeutic–infrastructure | 8 | 3 | 9 | 5 |
LID-BMP | Stormwater Quantity Control | |||
---|---|---|---|---|
Stormwater Volume | Peak Flow | Flow Rate | Total | |
Bioretention basin | 16.25 | 18.3 | 14.3 | 48.75 |
Green roof | 14.75 | 16.8 | 14 | 45.5 |
Grass swale | 15.75 | 17.8 | 13.8 | 47.25 |
Porous pavement | 16 | 18.5 | 13.3 | 47.75 |
Year | Built-Up | Barren Land | Vegetation | Rangeland | Ridge | |||||
---|---|---|---|---|---|---|---|---|---|---|
ha | % | ha | % | ha | % | ha | % | ha | % | |
2000 | 662 | 43.49% | 262 | 67.17% | 357 | 52.19% | 1332 | 52.44% | 1380 | 48.43% |
2022 | 860 | 56.51% | 128 | 32.83% | 327 | 47.81% | 1208 | 47.56% | 1469 | 51.57% |
Total change | +198 | +13.02% | −134 | −34.34% | −30 | −4.38% | −124 | −4.88 | −89 | +3.14 |
Sub-Basin | Area of LID-BMP (ha) | Total Area (ha) | Ratio |
---|---|---|---|
Dint | 27.60 | 323.98 | 8.51% |
E | 49.72 | 398.53 | 12.47% |
F | 63.23 | 377.67 | 16.74% |
G | 56.43 | 140.03 | 40.29% |
H | 15.04 | 118.82 | 12.65 |
Sub-Basin | A | B | C | Dint | E | F | G | H | Darabad Basin |
---|---|---|---|---|---|---|---|---|---|
CN values | 94.54 | 94.93 | 94.46 | 95.81 | 95.66 | 87.62 | 90.33 | 93.11 | 93.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rostamzadeh, S.; Malekmohammadi, B.; Mashhadimohammadzadehvazifeh, F.; Arsanjani, J.J. The Effects of Low-Impact Development Best Management Practices on Reducing Stormwater Caused by Land Use Changes in Urban Areas: A Case Study of Tehran City, Iran. Land 2025, 14, 28. https://doi.org/10.3390/land14010028
Rostamzadeh S, Malekmohammadi B, Mashhadimohammadzadehvazifeh F, Arsanjani JJ. The Effects of Low-Impact Development Best Management Practices on Reducing Stormwater Caused by Land Use Changes in Urban Areas: A Case Study of Tehran City, Iran. Land. 2025; 14(1):28. https://doi.org/10.3390/land14010028
Chicago/Turabian StyleRostamzadeh, Sajedeh, Bahram Malekmohammadi, Fatemeh Mashhadimohammadzadehvazifeh, and Jamal Jokar Arsanjani. 2025. "The Effects of Low-Impact Development Best Management Practices on Reducing Stormwater Caused by Land Use Changes in Urban Areas: A Case Study of Tehran City, Iran" Land 14, no. 1: 28. https://doi.org/10.3390/land14010028
APA StyleRostamzadeh, S., Malekmohammadi, B., Mashhadimohammadzadehvazifeh, F., & Arsanjani, J. J. (2025). The Effects of Low-Impact Development Best Management Practices on Reducing Stormwater Caused by Land Use Changes in Urban Areas: A Case Study of Tehran City, Iran. Land, 14(1), 28. https://doi.org/10.3390/land14010028