Fourth-Order Difference Approximation for Time-Fractional Modified Sub-Diffusion Equation
Abstract
:1. Introduction
- (i)
- ;
- (ii)
- ;
- (iii)
- There exists a positive constant such that ; and
- (iv)
2. Fourth-Order Implicit Difference Scheme
Stability
3. Numerical Experiments
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ali, U.; Abdullah, F.A.; Mohyud-Din, S.T. Modified implicit fractional difference scheme for 2D modified anomalous fractional sub-diffusion equation. Adv. Diff. Equ. 2017, 1–14. [Google Scholar] [CrossRef]
- Liu, F.; Yang, C.; Burrage, K. Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 2009, 231, 160–176. [Google Scholar] [CrossRef] [Green Version]
- Langlands, T.A.M. Solution of a modified fractional diffusion equation. Physica A 2006, 367, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Chen, Z. A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation. Numer. Meth. Part. Differ. Equ. 2014, 30, 289–300. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introductional the Fractional Calculus and Fractional Differential Equations; Academic Press: New York, NY, USA; London, UK, 1974. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA; London, UK, 1974. [Google Scholar]
- Liangliang, M.A.; Dongbing, L. An implicit difference approximation for fractional cable equation in high-dimensional case. J. Liao. Tech. Univ. 2014, 4, 24. [Google Scholar]
- Zhuang, P.; Liu, F.; Anh, V.; Turne, I. New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation. SIAM J. Numer. Anal. 2008, 46, 1079–1095. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, D. Improved efficient difference method for the modified anomalous sub-diffusion equation with a nonlinear source term. Int. J. Comput. Math. 2016, 94, 821–840. [Google Scholar] [CrossRef]
- Dehghan, M.; Abbaszadeh, M.; Mohebbi, A. Legendre spectral element method for solving time fractional modified anomalous sub-diffusion equation. Appl. Math. Model 2015, 40, 3635–3654. [Google Scholar] [CrossRef]
- Cao, X.; Xianxian, C.; Wen, L. The implicit midpoint method for the modified anomalous sub-diffusion equation with a nonlinear source term. J. Comput. Appl. Math. 2016, 1–12. [Google Scholar] [CrossRef]
- Ding, H.; Li, C. High-order compact difference schemes for the modified anomalous subdiffusion equation. Numer. Meth. Part. Differ. Equ. 2015, 213–242. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Vong, S. Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 2014, 277, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Al-Shibani, F.S.; Ismail, A.I.M. Compact Crank-Nicolson and Du Fort-Frankel method for the solution of the anomalous time fractional diffusion equation. Int. J. Comput. Methods 2013, 12, 1550041. [Google Scholar] [CrossRef]
- Adell, J.A.; Lekuona, A. Note on two extensions of the classical formula for sums of powers on arithmetic progressions. Adv. Differ. Equ. 2017, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Ali, U.; Abdullah, F.A.; Ismail, A.I. Crank-Nicolson finite difference method for two-dimensional fractional sub-diffusion equation. J. Interpolat. Approx. Sci. Comput. 2017, 2, 18–29. [Google Scholar] [CrossRef]
- Abbaszadeh, M.; Mohebbi, A. A fourth-order compact solution of the two-dimensional modified anomalous fractional sub-diffusion equation with a nonlinear source term. Comput. Math. Appl. 2013, 66, 1345–1359. [Google Scholar] [CrossRef]
- Mohebbi, A.; Abbaszadeh, M.; Dehghan, M. A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term. J. Comput. Phys. 2013, 240, 36–48. [Google Scholar] [CrossRef]
- Gao, W.; Yel, G.; Baskonus, H.M.; Cattani, C. Complex solitons in the conformable (2+ 1)-dimensional Ablowitz-Kaup-Newell-Segur equation. AIMS Math. 2019, 5, 507–521. [Google Scholar] [CrossRef]
- Gao, W.; Veeresha, P.; Prakasha, D.G.; Baskonus, H.M.; Yel, G. A powerful approach for fractional Drinfeld–Sokolov–Wilson equation with Mittag-Leffler law. Alex. Eng. J. 2019, 58, 1301–1311. [Google Scholar] [CrossRef]
- Gao, W.; Ghanbari, B.; Baskonus, H.M. New numerical simulations for some real world problems with Atangana–Baleanu fractional derivative. Chaos Solitons Fract. 2019, 128, 34–43. [Google Scholar] [CrossRef]
- Chen, C.M.; Liu, F.; Anh, V. Numerical analysis of the Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Appl. Math. Comput. 2008, 204, 340–351. [Google Scholar] [CrossRef] [Green Version]
- Ali, U.; Abdullah, F.A. Modified implicit difference method for one-dimensional fractional wave equation. In Proceedings of the AIP Conference Proceedings, Penang, Malaysia, 10–12 December 2018; Volume 2184, p. 060021. [Google Scholar]
- Sokolov, I.M.; Klafter, J. From diffusion to anomalous diffusion: A century after Einstein’s Brownian motion. Chaos 2005, 15, 026103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, P.; Liu, F.; Turner, L.; Anh, V. Galerkin finite element method and error analysis for the fractional cable equation. Numer. Algorithms 2016, 72, 447–466. [Google Scholar] [CrossRef] [Green Version]
- Oldham, K.B.; Spanier, J. The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order; Academic Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Metzler, R.; Klafter, J. The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 2004, 37, R161–R208. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, L. Implicit compact difference schemes the fractional cable equation. Appl. Math. Model 2012, 36, 4027–4043. [Google Scholar] [CrossRef]
- Gang, G.; Kun, L.; Yuhui, W. Exact solutions of a modified fractional diffusion equation in the finite and semi-infinite domains. Physica A 2015, 417, 193–201. [Google Scholar]
- Jumarie, G. Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results. Comput. Math. Appl. 2006, 51, 1367–1376. [Google Scholar]
- Podulbny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Ali, U.; Abdullah, F.A. Explicit Saul’yev finite difference approximation for two-dimensional fractional sub-diffusion equation. In Proceedings of the AIP Conference Proceedings, Pahang, Malaysia, 27–29 August 2018; Volume 1, p. 020111. [Google Scholar]
- Liu, F.; Yang, Q.; Turner, I. Two new implicit numerical methods for the fractional cable equation. J. Comput. Nonlinear Dyn. 2011, 6, 1–7. [Google Scholar] [CrossRef]
- Chen, C.M.; Liu, F.; Turner, I.; Anh, V. Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stocks’ first problem for a heated generalized second grade fluid. Comput. Math. Appl. 2011, 62, 971–986. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Liu, F.; Turner, I.; Anh, V. Finite element approximation for a modified anomalous subdiffusion equation. Appl. Math. Model 2011, 35, 4103–4116. [Google Scholar] [CrossRef]
- Oliveira, E.C.; Machado, J.A.T. A Review of Definitions for Fractional Derivatives and Integral. Math. Probl. Eng. 2014, 2014, 238459. [Google Scholar] [CrossRef] [Green Version]
- Ali, U. Numerical Solutions for two Dimensional Time-Fractional Differential Sub-Diffusion Equation. Ph.D. Thesis, University Sains Malaysia, Penang, Malaysia, 2019; pp. 1–200. [Google Scholar]
[17] | [1] | Scheme | -Order of Scheme | |
---|---|---|---|---|
1.5729 × 10 | 5.1782 × 10 | 4.9806 × 10 | - | |
7.8976 × 10 | 2.4390 × 10 | 2.2450 × 10 | 1.1497 | |
3.9560 × 10 | 1.1772 × 10 | 9.8504 × 10 | 1.1885 | |
1.9794 × 10 | 5.9755 × 10 | 4.0617 × 10 | 1.2782 | |
9.8995 × 10 | 3.3033 × 10 | 1.3919 × 10 | 1.5451 |
Scheme | -Order | ||
---|---|---|---|
1.6406 × 10 | - | ||
7.3344 × 10 | 4.4838 | ||
8.2233 × 10 | - | ||
3.8694 × 10 | 4.4099 |
5.0794 × 10 | 1.4043 × 10 | 6.2458 × 10 | |
5.9521 × 10 | 1.6387 × 10 | 6.8873 × 10 | |
6.7049 × 10 | 1.8575 × 10 | 7.5239 × 10 | |
7.4635 × 10 | 2.1414 × 10 | 8.1996 × 10 | |
8.2610 × 10 | 2.3888 × 10 | 8.9478 × 10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, U.; Sohail, M.; Usman, M.; Abdullah, F.A.; Khan, I.; Nisar, K.S. Fourth-Order Difference Approximation for Time-Fractional Modified Sub-Diffusion Equation. Symmetry 2020, 12, 691. https://doi.org/10.3390/sym12050691
Ali U, Sohail M, Usman M, Abdullah FA, Khan I, Nisar KS. Fourth-Order Difference Approximation for Time-Fractional Modified Sub-Diffusion Equation. Symmetry. 2020; 12(5):691. https://doi.org/10.3390/sym12050691
Chicago/Turabian StyleAli, Umair, Muhammad Sohail, Muhammad Usman, Farah Aini Abdullah, Ilyas Khan, and Kottakkaran Sooppy Nisar. 2020. "Fourth-Order Difference Approximation for Time-Fractional Modified Sub-Diffusion Equation" Symmetry 12, no. 5: 691. https://doi.org/10.3390/sym12050691