Binary Neutron Star Merger Simulations with a Calibrated Turbulence Model
Abstract
:1. Introduction
2. Methods
2.1. WhiskyTHC
2.2. GRLES
2.3. Models and Simulation Setup
3. Results
3.1. Qualitative Dynamics
3.2. Gravitational Waves
3.3. Outflows
4. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Aasi, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Advanced LIGO. Class. Quant. Grav. 2015, 32, 074001. [Google Scholar] [CrossRef]
- Acernese, F.; Agathos, M.; Agatsuma, K.; Aisa, D.; Allemandou, N.; Allocca, A.; Amarni, J.; Astone, P.; Balestri, G.; Ballardin, G.; et al. Advanced Virgo: A second-generation interferometric gravitational wave detector. Class. Quant. Grav. 2015, 32, 024001. [Google Scholar] [CrossRef] [Green Version]
- Aso, Y.; Michimura, Y.; Somiya, K.; Ando, M.; Miyakawa, O.; Sekiguchi, T.; Tatsumi, D.; Yamamoto, H. Interferometer design of the KAGRA gravitational wave detector. Phys. Rev. 2013, D88, 043007. [Google Scholar] [CrossRef] [Green Version]
- Eichler, D.; Livio, M.; Piran, T.; Schramm, D.N. Nucleosynthesis, Neutrino Bursts and Gamma-Rays from Coalescing Neutron Stars. Nature 1989, 340, 126–128. [Google Scholar] [CrossRef]
- Narayan, R.; Paczynski, B.; Piran, T. Gamma-ray bursts as the death throes of massive binary stars. Astrophys. J. 1992, 395, L83–L86. [Google Scholar] [CrossRef] [Green Version]
- Berger, E. Short-Duration Gamma-Ray Bursts. Ann. Rev. Astron. Astrophys. 2014, 52, 43–105. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Zhang, B. The physics of gamma-ray bursts & relativistic jets. Phys. Rep. 2014, 561, 1–109. [Google Scholar] [CrossRef] [Green Version]
- Fernández, R.; Metzger, B.D. Electromagnetic Signatures of Neutron Star Mergers in the Advanced LIGO Era. Ann. Rev. Nucl. Part. Sci. 2016, 66, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Metzger, B.D. Kilonovae. Living Rev. Rel. 2020, 23, 1. [Google Scholar] [CrossRef] [Green Version]
- Nakar, E. The electromagnetic counterparts of compact binary mergers. arXiv 2019, arXiv:1912.05659. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Properties of the binary neutron star merger GW170817. Phys. Rev. 2019, X9, 011001. [Google Scholar] [CrossRef] [Green Version]
- Wanajo, S.; Sekiguchi, Y.; Nishimura, N.; Kiuchi, K.; Kyutoku, K.; Shibata, M. Production of all the r-process nuclides in the dynamical ejecta of neutron star mergers. Astrophys. J. 2014, 789, L39. [Google Scholar] [CrossRef] [Green Version]
- Hotokezaka, K.; Beniamini, P.; Piran, T. Neutron Star Mergers as sites of r-process Nucleosynthesis and Short Gamma-Ray Bursts. Int. J. Mod. Phys. 2018, D27, 1842005. [Google Scholar] [CrossRef] [Green Version]
- Cowan, J.J.; Sneden, C.; Lawler, J.E.; Aprahamian, A.; Wiescher, M.; Langanke, K.; Martínez-Pinedo, G.; Thielemann, F.K. Origin of the Heaviest Elements: The Rapid Neutron-Capture Process. arXiv 2019, arXiv:1901.01410. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼3.4M⊙. Astrophys. J. Lett. 2020, 892, L3. [Google Scholar] [CrossRef]
- Foley, R.J.; Coulter, D.A.; Kilpatrick, C.D.; Piro, A.L.; Ramirez-Ruiz, E.; Schwab, J. Updated Parameter Estimates for GW190425 Using Astrophysical Arguments and Implications for the Electromagnetic Counterpart. Mon. Not. Roy. Astron. Soc. 2020, 494, 190–198. [Google Scholar] [CrossRef] [Green Version]
- LIGO-Virgo Scientific Collaboration. Gravitational-Wave Candidate Event Database. Available online: https://gracedb.ligo.org/ (accessed on 1 May 2020).
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Rel. 2018, 21, 3. [Google Scholar] [CrossRef]
- Hinderer, T. Tidal Love numbers of neutron stars. Astrophys. J. 2008, 677, 1216–1220. [Google Scholar] [CrossRef]
- Damour, T.; Nagar, A. Relativistic tidal properties of neutron stars. Phys. Rev. 2009, D80, 084035. [Google Scholar] [CrossRef] [Green Version]
- Damour, T.; Nagar, A.; Villain, L. Measurability of the tidal polarizability of neutron stars in late-inspiral gravitational-wave signals. Phys. Rev. 2012, D85, 123007. [Google Scholar] [CrossRef] [Green Version]
- Margalit, B.; Metzger, B.D. Constraining the Maximum Mass of Neutron Stars From Multi-Messenger Observations of GW170817. Astrophys. J. Lett. 2017, 850, L19. [Google Scholar] [CrossRef]
- Annala, E.; Gorda, T.; Kurkela, A.; Vuorinen, A. Gravitational-wave constraints on the neutron-star-matter Equation of State. Phys. Rev. Lett. 2018, 120, 172703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De, S.; Finstad, D.; Lattimer, J.M.; Brown, D.A.; Berger, E.; Biwer, C.M. Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817. Phys. Rev. Lett. 2018, 121, 091102, [Erratum: Phys. Rev. Lett. 2018, 121, 259902, doi:10.1103/PhysRevLett.121.259902]. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, M.; Shapiro, S.L.; Tsokaros, A. GW170817, General Relativistic Magnetohydrodynamic Simulations, and the Neutron Star Maximum Mass. Phys. Rev. 2018, D97, 021501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauswein, A.; Just, O.; Janka, H.T.; Stergioulas, N. Neutron-star radius constraints from GW170817 and future detections. Astrophys. J. Lett. 2017, 850, L34. [Google Scholar] [CrossRef] [Green Version]
- Radice, D.; Perego, A.; Zappa, F.; Bernuzzi, S. GW170817: Joint Constraint on the Neutron Star Equation of State from Multi-messenger Observations. Astrophys. J. Lett. 2018, 852, L29. [Google Scholar] [CrossRef] [Green Version]
- Most, E.R.; Weih, L.R.; Rezzolla, L.; Schaffner-Bielich, J. New constraints on radii and tidal deformabilities of neutron stars from GW170817. Phys. Rev. Lett. 2018, 120, 261103. [Google Scholar] [CrossRef] [Green Version]
- Tews, I.; Margueron, J.; Reddy, S. Critical examination of constraints on the equation of state of dense matter obtained from GW170817. Phys. Rev. C 2018, 98, 045804. [Google Scholar] [CrossRef] [Green Version]
- Radice, D.; Dai, L. Multi-messenger Parameter Estimation of GW170817. Eur. Phys. J. 2019, A55, 50. [Google Scholar] [CrossRef] [Green Version]
- Kiuchi, K.; Kyutoku, K.; Shibata, M.; Taniguchi, K. Revisiting the lower bound on tidal deformability derived by AT 2017gfo. Astrophys. J. Lett. 2019, 876, L31. [Google Scholar] [CrossRef] [Green Version]
- Shibata, M.; Zhou, E.; Kiuchi, K.; Fujibayashi, S. Constraint on the maximum mass of neutron stars using GW170817 event. Phys. Rev. 2019, D100, 023015. [Google Scholar] [CrossRef] [Green Version]
- Capano, C.D.; Tews, I.; Brown, S.M.; Margalit, B.; De, S.; Kumar, S.; Brown, D.A.; Krishnan, B.; Reddy, S. Stringent constraints on neutron-star radii from multi-messenger observations and nuclear theory. arXiv 2019, arXiv:1908.10352. [Google Scholar]
- Annala, E.; Gorda, T.; Kurkela, A.; Nättilä, J.; Vuorinen, A. Quark-matter cores in neutron stars. arXiv 2019, arXiv:1903.09121. [Google Scholar]
- Dietrich, T.; Coughlin, M.W.; Pang, P.T.H.; Bulla, M.; Heinzel, J.; Issa, L.; Tews, I.; Antier, S. New Constraints on the Supranuclear Equation of State and the Hubble Constant from Nuclear Physics—Multi-Messenger Astronomy. arXiv 2020, arXiv:2002.11355. [Google Scholar]
- Ruiz, M.; Lang, R.N.; Paschalidis, V.; Shapiro, S.L. Binary Neutron Star Mergers: A jet Engine for Short Gamma-ray Bursts. Astrophys. J. Lett. 2016, 824, L6. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 2017, 848, L13. [Google Scholar] [CrossRef]
- Lazzati, D.; Perna, R.; Morsony, B.J.; López-Cámara, D.; Cantiello, M.; Ciolfi, R.; Giacomazzo, B.; Workman, J.C. Late time afterglow observations reveal a collimated relativistic jet in the ejecta of the binary neutron star merger GW170817. Phys. Rev. Lett. 2018, 120, 241103. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Zrake, J.; MacFadyen, A. Numerical Simulations of the Jet Dynamics and Synchrotron Radiation of Binary Neutron Star Merger Event GW170817/GRB 170817A. Astrophys. J. 2018, 863, 58. [Google Scholar] [CrossRef] [Green Version]
- Hajela, A.; Margutti, R.; Alexander, K.D.; Kathirgamaraju, A.; Baldeschi, A.; Guidorzi, C.; Giannios, D.; Fong, W.; Wu, Y.; MacFadyen, A.; et al. Two Years of Nonthermal Emission from the Binary Neutron Star Merger GW170817: Rapid Fading of the Jet Afterglow and First Constraints on the Kilonova Fastest Ejecta. Astrophys. J. Lett. 2019, 886, L17. [Google Scholar] [CrossRef]
- Lazzati, D.; Ciolfi, R.; Perna, R. Intrinsic properties of the engine and jet that powered the short gamma-ray burst associated with GW170817. arXiv 2020, arXiv:2004.10210. [Google Scholar]
- Rosswog, S.; Liebendoerfer, M.; Thielemann, F.K.; Davies, M.B.; Benz, W.; Piran, T. Mass ejection in neutron star mergers. Astron. Astrophys. 1999, 341, 499–526. [Google Scholar]
- Lee, W.H.; Ramirez-Ruiz, E.; Lopez-Camara, D. Phase transitions and He-synthesis driven winds in neutrino cooled accretion disks: Prospects for late flares in short gamma-ray bursts. Astrophys. J. 2009, 699, L93–L96. [Google Scholar] [CrossRef] [Green Version]
- Hotokezaka, K.; Kiuchi, K.; Kyutoku, K.; Okawa, H.; Sekiguchi, Y.i.; Shibata, M.; Taniguchi, K. Mass ejection from the merger of binary neutron stars. Phys. Rev. 2013, D87, 024001. [Google Scholar] [CrossRef] [Green Version]
- Bauswein, A.; Goriely, S.; Janka, H.T. Systematics of dynamical mass ejection, nucleosynthesis, and radioactively powered electromagnetic signals from neutron-star mergers. Astrophys. J. 2013, 773, 78. [Google Scholar] [CrossRef] [Green Version]
- Perego, A.; Rosswog, S.; Cabezón, R.M.; Korobkin, O.; Käppeli, R.; Arcones, A.; Liebendörfer, M. Neutrino-driven winds from neutron star merger remnants. Mon. Not. Roy. Astron. Soc. 2014, 443, 3134–3156. [Google Scholar] [CrossRef]
- Sekiguchi, Y.; Kiuchi, K.; Kyutoku, K.; Shibata, M.; Taniguchi, K. Dynamical mass ejection from the merger of asymmetric binary neutron stars: Radiation-hydrodynamics study in general relativity. Phys. Rev. 2016, D93, 124046. [Google Scholar] [CrossRef] [Green Version]
- Foucart, F.; Haas, R.; Duez, M.D.; O’Connor, E.; Ott, C.D.; Roberts, L.; Kidder, L.E.; Lippuner, J.; Pfeiffer, H.P.; Scheel, M.A. Low mass binary neutron star mergers: Gravitational waves and neutrino emission. Phys. Rev. 2016, D93, 044019. [Google Scholar] [CrossRef] [Green Version]
- Radice, D.; Galeazzi, F.; Lippuner, J.; Roberts, L.F.; Ott, C.D.; Rezzolla, L. Dynamical Mass Ejection from Binary Neutron Star Mergers. Mon. Not. Roy. Astron. Soc. 2016, 460, 3255–3271. [Google Scholar] [CrossRef]
- Lehner, L.; Liebling, S.L.; Palenzuela, C.; Caballero, O.L.; O’Connor, E.; Anderson, M.; Neilsen, D. Unequal mass binary neutron star mergers and multi-messenger signals. Class. Quant. Grav. 2016, 33, 184002. [Google Scholar] [CrossRef]
- Dietrich, T.; Ujevic, M.; Tichy, W.; Bernuzzi, S.; Bruegmann, B. Gravitational waves and mass ejecta from binary neutron star mergers: Effect of the mass-ratio. Phys. Rev. 2017, D95, 024029. [Google Scholar] [CrossRef] [Green Version]
- Siegel, D.M.; Metzger, B.D. Three-Dimensional General-Relativistic Magnetohydrodynamic Simulations of Remnant Accretion Disks from Neutron Star Mergers: Outflows and r-Process Nucleosynthesis. Phys. Rev. Lett. 2017, 119, 231102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasen, D.; Metzger, B.; Barnes, J.; Quataert, E.; Ramirez-Ruiz, E. Origin of the heavy elements in binary neutron-star mergers from a gravitational wave event. Nature 2017, 551, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Foucart, F.; O’Connor, E.; Roberts, L.; Kidder, L.E.; Pfeiffer, H.P.; Scheel, M.A. Impact of an improved neutrino energy estimate on outflows in neutron star merger simulations. Phys. Rev. 2016, D94, 123016. [Google Scholar] [CrossRef] [Green Version]
- Fujibayashi, S.; Kiuchi, K.; Nishimura, N.; Sekiguchi, Y.; Shibata, M. Mass Ejection from the Remnant of a Binary Neutron Star Merger: Viscous-Radiation Hydrodynamics Study. Astrophys. J. 2018, 860, 64. [Google Scholar] [CrossRef] [Green Version]
- Fernández, R.; Tchekhovskoy, A.; Quataert, E.; Foucart, F.; Kasen, D. Long-term GRMHD simulations of neutron star merger accretion discs: Implications for electromagnetic counterparts. Mon. Not. Roy. Astron. Soc. 2019, 482, 3373–3393. [Google Scholar] [CrossRef] [Green Version]
- Radice, D.; Perego, A.; Hotokezaka, K.; Fromm, S.A.; Bernuzzi, S.; Roberts, L.F. Binary Neutron Star Mergers: Mass Ejection, Electromagnetic Counterparts and Nucleosynthesis. Astrophys. J. 2018, 869, 130. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.M.; Ryan, B.R.; Dolence, J.C.; Burrows, A.; Fontes, C.J.; Fryer, C.L.; Korobkin, O.; Lippuner, J.; Mumpower, M.R.; Wollaeger, R.T. Full Transport Model of GW170817-Like Disk Produces a Blue Kilonova. Phys. Rev. 2019, D100, 023008. [Google Scholar] [CrossRef] [Green Version]
- Vincent, T.; Foucart, F.; Duez, M.D.; Haas, R.; Kidder, L.E.; Pfeiffer, H.P.; Scheel, M.A. Unequal Mass Binary Neutron Star Simulations with Neutrino Transport: Ejecta and Neutrino Emission. Phys. Rev. 2020, D101, 044053. [Google Scholar] [CrossRef] [Green Version]
- Nedora, V.; Bernuzzi, S.; Radice, D.; Perego, A.; Endrizzi, A.; Ortiz, N. Spiral-wave wind for the blue kilonova. Astrophys. J. Lett. 2019, 886, L30. [Google Scholar] [CrossRef]
- Fujibayashi, S.; Shibata, M.; Wanajo, S.; Kiuchi, K.; Kyutoku, K.; Sekiguchi, Y. Mass ejection from disks surrounding a low-mass black hole: Viscous neutrino-radiation hydrodynamics simulation in full general relativity. Phys. Rev. 2020, D101, 083029. [Google Scholar] [CrossRef] [Green Version]
- Palenzuela, C.; Liebling, S.L.; Neilsen, D.; Lehner, L.; Caballero, O.L.; O’Connor, E.; Anderson, M. Effects of the microphysical Equation of State in the mergers of magnetized Neutron Stars With Neutrino Cooling. Phys. Rev. 2015, D92, 044045. [Google Scholar] [CrossRef] [Green Version]
- Most, E.R.; Papenfort, L.J.; Rezzolla, L. Beyond second-order convergence in simulations of magnetized binary neutron stars with realistic microphysics. Mon. Not. Roy. Astron. Soc. 2019, 490, 3588–3600. [Google Scholar] [CrossRef] [Green Version]
- Mösta, P.; Radice, D.; Haas, R.; Schnetter, E.; Bernuzzi, S. A magnetar engine for short GRBs and kilonovae. arXiv 2020, arXiv:2003.06043. [Google Scholar]
- Jesse, J.; Duez, M.D.; Foucart, F.; Haddadi, M.; Knight, A.L.; Cadenhead, C.L.; Hébert, F.; Kidder, L.E.; Pfeiffer, H.P.; Scheel, M.A. Axisymmetric Hydrodynamics in Numerical Relativity Using a Multipatch Method. arXiv 2020, arXiv:2005.01848. [Google Scholar]
- Radice, D.; Perego, A.; Bernuzzi, S.; Zhang, B. Long-lived Remnants from Binary Neutron Star Mergers. Mon. Not. Roy. Astron. Soc. 2018, 481, 3670–3682. [Google Scholar] [CrossRef] [Green Version]
- Radice, D.; Bernuzzi, S.; Perego, A. The Dynamics of Binary Neutron Star Mergers and of GW170817. arXiv 2020, arXiv:2002.03863. [Google Scholar]
- Obergaulinger, M.; Aloy, M.A.; Muller, E. Local simulations of the magnetized Kelvin-Helmholtz instability in neutron-star mergers. Astron. Astrophys. 2010, 515, A30. [Google Scholar] [CrossRef]
- Bucciantini, N.; Metzger, B.D.; Thompson, T.A.; Quataert, E. Short GRBs with Extended Emission from Magnetar Birth: Jet Formation and Collimation. Mon. Not. Roy. Astron. Soc. 2012, 419, 1537. [Google Scholar] [CrossRef] [Green Version]
- Siegel, D.M.; Ciolfi, R.; Harte, A.I.; Rezzolla, L. Magnetorotational instability in relativistic hypermassive neutron stars. Phys. Rev. 2013, D87, 121302. [Google Scholar] [CrossRef] [Green Version]
- Kiuchi, K.; Kyutoku, K.; Sekiguchi, Y.; Shibata, M.; Wada, T. High resolution numerical-relativity simulations for the merger of binary magnetized neutron stars. Phys. Rev. 2014, D90, 041502. [Google Scholar] [CrossRef] [Green Version]
- Giacomazzo, B.; Zrake, J.; Duffell, P.; MacFadyen, A.I.; Perna, R. Producing Magnetar Magnetic Fields in the Merger of Binary Neutron Stars. Astrophys. J. 2015, 809, 39. [Google Scholar] [CrossRef] [Green Version]
- Kiuchi, K.; Cerdá-Durán, P.; Kyutoku, K.; Sekiguchi, Y.; Shibata, M. Efficient magnetic-field amplification due to the Kelvin-Helmholtz instability in binary neutron star mergers. Phys. Rev. 2015, D92, 124034. [Google Scholar] [CrossRef] [Green Version]
- Kiuchi, K.; Kyutoku, K.; Sekiguchi, Y.; Shibata, M. Global simulations of strongly magnetized remnant massive neutron stars formed in binary neutron star mergers. Phys. Rev. 2018, D97, 124039. [Google Scholar] [CrossRef] [Green Version]
- Duez, M.D.; Liu, Y.T.; Shapiro, S.L.; Stephens, B.C. General relativistic hydrodynamics with viscosity: Contraction, catastrophic collapse, and disk formation in hypermassive neutron stars. Phys. Rev. 2004, D69, 104030. [Google Scholar] [CrossRef] [Green Version]
- Duez, M.D.; Liu, Y.T.; Shapiro, S.L.; Shibata, M. Evolution of magnetized, differentially rotating neutron stars: Simulations in full general relativity. Phys. Rev. 2006, D73, 104015. [Google Scholar] [CrossRef] [Green Version]
- Hotokezaka, K.; Kiuchi, K.; Kyutoku, K.; Muranushi, T.; Sekiguchi, Y.i.; Shibata, M.; Taniguchi, K. Remnant massive neutron stars of binary neutron star mergers: Evolution process and gravitational waveform. Phys. Rev. 2013, D88, 044026. [Google Scholar] [CrossRef] [Green Version]
- Ciolfi, R.; Kastaun, W.; Kalinani, J.V.; Giacomazzo, B. First 100 ms of a long-lived magnetized neutron star formed in a binary neutron star merger. Phys. Rev. 2019, D100, 023005. [Google Scholar] [CrossRef] [Green Version]
- Guilet, J.; Bauswein, A.; Just, O.; Janka, H.T. Magnetorotational instability in neutron star mergers: Impact of neutrinos. Mon. Not. Roy. Astron. Soc. 2017, 471, 1879–1887. [Google Scholar] [CrossRef]
- Radice, D. General-Relativistic Large-Eddy Simulations of Binary Neutron Star Mergers. Astrophys. J. 2017, 838, L2. [Google Scholar] [CrossRef] [Green Version]
- Shibata, M.; Kiuchi, K.; Sekiguchi, Y.i. General relativistic viscous hydrodynamics of differentially rotating neutron stars. Phys. Rev. 2017, D95, 083005. [Google Scholar] [CrossRef] [Green Version]
- Eyink, G.L.; Drivas, T.D. Cascades and Dissipative Anomalies in Relativistic Fluid Turbulence. Phys. Rev. 2018, X8, 011023. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, F.; Viganò, D.; Palenzuela, C. Gradient subgrid-scale model for relativistic MHD large-eddy simulations. Phys. Rev. 2020, D101, 063003. [Google Scholar] [CrossRef] [Green Version]
- Viganò, D.; Aguilera-Miret, R.; Carrasco, F.; Miñano, B.; Palenzuela, C. GRMHD large eddy simulations with gradient subgrid-scale model. arXiv 2020, arXiv:2004.00870. [Google Scholar]
- Rosofsky, S.G.; Huerta, E.A. Artificial neural network subgrid models of 2D compressible magnetohydrodynamic turbulence. Phys. Rev. 2020, D101, 084024. [Google Scholar] [CrossRef] [Green Version]
- Zappa, F.; Bernuzzi, S.; Radice, D.; Perego, A.; Dietrich, T. Gravitational-wave luminosity of binary neutron stars mergers. Phys. Rev. Lett. 2018, 120, 111101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radice, D.; Perego, A.; Hotokezaka, K.; Bernuzzi, S.; Fromm, S.A.; Roberts, L.F. Viscous-Dynamical Ejecta from Binary Neutron Star Merger. Astrophys. J. Lett. 2018, 869, L35. [Google Scholar] [CrossRef] [Green Version]
- Perego, A.; Bernuzzi, S.; Radice, D. Thermodynamics conditions of matter in neutron star mergers. Eur. Phys. J. 2019, A55, 124. [Google Scholar] [CrossRef] [Green Version]
- Bernuzzi, S.; Breschi, M.; Daszuta, B.; Endrizzi, A.; Logoteta, D.; Nedora, V.; Perego, A.; Schianchi, F.; Radice, D.; Zappa, F.; et al. Accretion-induced prompt black hole formation in asymmetric neutron star mergers, dynamical ejecta and kilonova signals. arXiv 2020, arXiv:2003.06015. [Google Scholar]
- Radice, D.; Rezzolla, L. THC: A new high-order finite-difference high-resolution shock-capturing code for special-relativistic hydrodynamics. Astron. Astrophys. 2012, 547, A26. [Google Scholar] [CrossRef] [Green Version]
- Radice, D.; Rezzolla, L.; Galeazzi, F. Beyond second-order convergence in simulations of binary neutron stars in full general-relativity. Mon. Not. Roy. Astron. Soc. 2014, 437, L46–L50. [Google Scholar] [CrossRef]
- Radice, D.; Rezzolla, L.; Galeazzi, F. High-Order Fully General-Relativistic Hydrodynamics: New Approaches and Tests. Class. Quant. Grav. 2014, 31, 075012. [Google Scholar] [CrossRef]
- Radice, D.; Rezzolla, L.; Galeazzi, F. High-Order Numerical-Relativity Simulations of Binary Neutron Stars. ASP Conf. Ser. 2015, 498, 121–126. [Google Scholar]
- Bernuzzi, S.; Hilditch, D. Constraint violation in free evolution schemes: Comparing BSSNOK with a conformal decomposition of Z4. Phys. Rev. 2010, D81, 084003. [Google Scholar] [CrossRef] [Green Version]
- Hilditch, D.; Bernuzzi, S.; Thierfelder, M.; Cao, Z.; Tichy, W.; Bruegmann, B. Compact binary evolutions with the Z4c formulation. Phys. Rev. 2013, D88, 084057. [Google Scholar] [CrossRef] [Green Version]
- Pollney, D.; Reisswig, C.; Schnetter, E.; Dorband, N.; Diener, P. High accuracy binary black hole simulations with an extended wave zone. Phys. Rev. 2011, D83, 044045. [Google Scholar] [CrossRef] [Green Version]
- Reisswig, C.; Ott, C.D.; Abdikamalov, E.; Haas, R.; Moesta, P.; Schnetter, E. Formation and Coalescence of Cosmological Supermassive Black Hole Binaries in Supermassive Star Collapse. Phys. Rev. Lett. 2013, 111, 151101. [Google Scholar] [CrossRef] [Green Version]
- Babiuc-Hamilton, M.; Brandt, S.R.; Diener, P.; Elley, M.; Etienne, Z.; Ficarra, G.; Haas, R.; Witek, H.; Alcubierre, M.; Alic, D.; et al. The Einstein Toolkit. Zenodo 2019. [Google Scholar] [CrossRef]
- Loffler, F.; Faber, J.; Bentivegna, E.; Bode, T.; Diener, P.; Haas, R.; Hinder, I.; Mundim, B.C.; Ott, C.D.; Schnetter, E.; et al. The Einstein Toolkit: A Community Computational Infrastructure for Relativistic Astrophysics. Class. Quant. Grav. 2012, 29, 115001. [Google Scholar] [CrossRef] [Green Version]
- Gottlieb, S.; Ketcheson, D.I.; Shu, C.W. High Order Strong Stability Preserving Time Discretizations. J. Sci. Comput. 2008, 38, 251–289. [Google Scholar] [CrossRef]
- Schnetter, E.; Hawley, S.H.; Hawke, I. Evolutions in 3-D numerical relativity using fixed mesh refinement. Class. Quant. Grav. 2004, 21, 1465–1488. [Google Scholar] [CrossRef] [Green Version]
- Berger, M.J.; Oliger, J. Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations. J. Comput. Phys. 1984, 53, 484. [Google Scholar] [CrossRef]
- Berger, M.J.; Colella, P. Local Adaptive Mesh Refinement for Shock Hydrodynamics. J. Comput. Phys. 1989, 82, 64–84. [Google Scholar] [CrossRef] [Green Version]
- Reisswig, C.; Haas, R.; Ott, C.D.; Abdikamalov, E.; Mösta, P.; Pollney, D.; Schnetter, E. Three-Dimensional General-Relativistic Hydrodynamic Simulations of Binary Neutron Star Coalescence and Stellar Collapse with Multipatch Grids. Phys. Rev. 2013, D87, 064023. [Google Scholar] [CrossRef] [Green Version]
- Banyuls, F.; Font, J.A.; Ibanez, J.M.A.; Marti, J.M.A.; Miralles, J.A. Numerical 3+1 General Relativistic Hydrodynamics: A Local Characteristic Approach. Astrophys. J. 1997, 476, 221. [Google Scholar] [CrossRef] [Green Version]
- Smagorinsky, J. General circulation experiments with the primitive equations. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Shakura, N.I.; Sunyaev, R.A. Reprint of 1973A&A....24..337S. Black holes in binary systems. Observational appearance. Astro. Astrophys. 1973, 500, 33–51. [Google Scholar]
- Shibata, M.; Taniguchi, K.; Uryu, K. Merger of binary neutron stars with realistic equations of state in full general relativity. Phys. Rev. 2005, D71, 084021. [Google Scholar] [CrossRef] [Green Version]
- Kastaun, W.; Ciolfi, R.; Giacomazzo, B. Structure of Stable Binary Neutron Star Merger Remnants: A Case Study. Phys. Rev. 2016, D94, 044060. [Google Scholar] [CrossRef] [Green Version]
- Hanauske, M.; Takami, K.; Bovard, L.; Rezzolla, L.; Font, J.A.; Galeazzi, F.; Stöcker, H. Rotational properties of hypermassive neutron stars from binary mergers. Phys. Rev. 2017, D96, 043004. [Google Scholar] [CrossRef] [Green Version]
- Ciolfi, R.; Kastaun, W.; Giacomazzo, B.; Endrizzi, A.; Siegel, D.M.; Perna, R. General relativistic magnetohydrodynamic simulations of binary neutron star mergers forming a long-lived neutron star. Phys. Rev. 2017, D95, 063016. [Google Scholar] [CrossRef] [Green Version]
- Lattimer, J.M.; Swesty, F.D. A Generalized equation of state for hot, dense matter. Nucl. Phys. 1991, A535, 331–376. [Google Scholar] [CrossRef]
- Gourgoulhon, E.; Grandclément, P.; Marck, J.A.; Novak, J.; Taniguchi, K. LORENE; Paris Observatory, Meudon Section—LUTH Laboratory: Paris, France, 1999. [Google Scholar]
- Bernuzzi, S.; Radice, D.; Ott, C.D.; Roberts, L.F.; Moesta, P.; Galeazzi, F. How loud are neutron star mergers? Phys. Rev. 2016, D94, 024023. [Google Scholar] [CrossRef] [Green Version]
- Bauswein, A.; Janka, H.T. Measuring neutron-star properties via gravitational waves from binary mergers. Phys. Rev. Lett. 2012, 108, 011101. [Google Scholar] [CrossRef] [Green Version]
- Takami, K.; Rezzolla, L.; Baiotti, L. Constraining the Equation of State of Neutron Stars from Binary Mergers. Phys. Rev. Lett. 2014, 113, 091104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernuzzi, S.; Dietrich, T.; Nagar, A. Modeling the complete gravitational wave spectrum of neutron star mergers. Phys. Rev. Lett. 2015, 115, 091101. [Google Scholar] [CrossRef] [Green Version]
- Breschi, M.; Bernuzzi, S.; Zappa, F.; Agathos, M.; Perego, A.; Radice, D.; Nagar, A. kiloHertz gravitational waves from binary neutron star remnants: Time-domain model and constraints on extreme matter. Phys. Rev. 2019, D100, 104029. [Google Scholar] [CrossRef] [Green Version]
- Shibata, M.; Kiuchi, K. Gravitational waves from remnant massive neutron stars of binary neutron star merger: Viscous hydrodynamics effects. Phys. Rev. 2017, D95, 123003. [Google Scholar] [CrossRef] [Green Version]
- Rezzolla, L.; Takami, K. Gravitational-wave signal from binary neutron stars: A systematic analysis of the spectral properties. Phys. Rev. 2016, D93, 124051. [Google Scholar] [CrossRef] [Green Version]
- Weih, L.R.; Hanauske, M.; Rezzolla, L. Postmerger Gravitational-Wave Signatures of Phase Transitions in Binary Mergers. Phys. Rev. Lett. 2020, 124, 171103. [Google Scholar] [CrossRef] [PubMed]
- Shibata, M.; Hotokezaka, K. Merger and Mass Ejection of Neutron-Star Binaries. Ann. Rev. Nucl. Part. Sci. 2019, 69, 41–64. [Google Scholar] [CrossRef] [Green Version]
- Lippuner, J.; Roberts, L.F. r-Process Lanthanide Production and Heating Rates in Kilonovae. Astrophys. J. 2015, 815, 82. [Google Scholar] [CrossRef] [Green Version]
- Metzger, B.D.; Piro, A.L.; Quataert, E. Time-Dependent Models of Accretion Disks Formed from Compact Object Mergers. Mon. Not. Roy. Astron. Soc. 2008, 390, 781. [Google Scholar] [CrossRef]
- Metzger, B.D.; Piro, A.L.; Quataert, E. Neutron-Rich Freeze-Out in Viscously Spreading Accretion Disks Formed from Compact Object Mergers. Mon. Not. Roy. Astron. Soc. 2009, 396, 304. [Google Scholar] [CrossRef] [Green Version]
- Fernández, R.; Metzger, B.D. Delayed outflows from black hole accretion tori following neutron star binary coalescence. Mon. Not. Roy. Astron. Soc. 2013, 435, 502. [Google Scholar] [CrossRef] [Green Version]
- Just, O.; Bauswein, A.; Pulpillo, R.A.; Goriely, S.; Janka, H.T. Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers. Mon. Not. Roy. Astron. Soc. 2015, 448, 541–567. [Google Scholar] [CrossRef] [Green Version]
- Metzger, B.D.; Fernández, R. Red or blue? A potential kilonova imprint of the delay until black hole formation following a neutron star merger. Mon. Not. Roy. Astron. Soc. 2014, 441, 3444–3453. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.; Perego, A.; Arcones, A.; Thielemann, F.K.; Korobkin, O.; Rosswog, S. Neutrino-driven winds in the aftermath of a neutron star merger: Nucleosynthesis and electromagnetic transients. Astrophys. J. 2015, 813, 2. [Google Scholar] [CrossRef] [Green Version]
- Siegel, D.M.; Metzger, B.D. Three-dimensional GRMHD simulations of neutrino-cooled accretion disks from neutron star mergers. Astrophys. J. 2018, 858, 52. [Google Scholar] [CrossRef]
- Siegel, D.M. GW170817—The first observed neutron star merger and its kilonova: Implications for the astrophysical site of the r-process. Eur. Phys. J. 2019, A55, 203. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radice, D. Binary Neutron Star Merger Simulations with a Calibrated Turbulence Model. Symmetry 2020, 12, 1249. https://doi.org/10.3390/sym12081249
Radice D. Binary Neutron Star Merger Simulations with a Calibrated Turbulence Model. Symmetry. 2020; 12(8):1249. https://doi.org/10.3390/sym12081249
Chicago/Turabian StyleRadice, David. 2020. "Binary Neutron Star Merger Simulations with a Calibrated Turbulence Model" Symmetry 12, no. 8: 1249. https://doi.org/10.3390/sym12081249