Neutrino Oscillations in Finite Time Path Out-of-Equilibrium Thermal Field Theory
Abstract
:1. Introduction
2. PMNS Theory of Neutrino Oscillation
3. Neutrino Oscillation as a Dynamical Process
3.1. The Mass Mixing Term in the Interaction Lagrangian
3.2. Solution of the Dyson–Schwinger Equations for Oscillating Neutrinos
- The self-energy is a simple matrix, not a retarded or advanced function;
- The ∗-products among the bare propagators turn to algebraic products except for the case where one factor is retarded (R or K,R) and the other is advanced (A or K,A);
- The matrix U is unitary.
3.3. The ∗-Products and the Average of Equal Time Limits
3.4. Contributions to Neutrino Oscillation
- Contributions without any ∗-product. These contributions (the first pair in (20)) are independent in time. They should reproduce the initial (input) density of neutrinos. By calculating geometrical series term by term, one would obtain the lowest order providing the input neutrino density. All the higher term would vanish, as they are equal time limit of the product of two or more retarded functions (or two or more advanced functions). The re-summed propagator is nonperturbative, and consequently the result renormalizes the initial density. Nevertheless, we obtain the input neutrino density.
- Contributions containing (the second pair in (20)). These refer to the initial input of flavor neutrinos of type . They contribute to oscillation.
3.5. The Algebraic Term
3.6. ∗-Product, Term Containing
3.7. ∗-Product, Term Containing and Terms
3.8. The Dominant Contribution
4. Final Result
- The result (42) is identical to the standard PMNS expression (4). The ultrarelativistic relation (3) reveals the equality of the arguments of the sines, while division by the initial distribution of the number of particles recasts (42) in terms of probability, as in (4). Thus, with the same presently available inputs, our result (42) would provide the same numerical results as, for example, [86].
- If we sum over , the oscillating contribution vanishes. This reflects the fact that the total neutrino number is conserved within the realm of chiral neutrinos; notably, the sterile neutrinos are not involved! Notice that our conclusion is valid for low energy neutrino beams as well; this is easily verified by looking at (31)–(34).
Conclusions
- Improving the model by taking into account the eventually-confirmed anomalies.
- If suitable for considering decays of heavier neutrinos, the model could be easily adapted to build these features in. In this case, the self-energies should again be provided through an adequate calculation.
- Applying the formalism to other oscillating and decay processes (e,g., decays of , , and mesons, positronium, the Cabbibo angle, etc.). This work is in progress and almost completed. It roughly confirms the Gell-Mann–Pais results. The factor which limits the predictive power is the rudimentary knowledge of the self-energies in the existing literature. Authors have mostly been concerned with obtaining the imaginary parts (decay rates), while the real parts (mass shifts) often involve renormalization.
- In a classical out-of-equilibrium problem, the damping rates are the first thing to address. Braaten–Pisarski re-summation has provided a good start. Even for this case, two-loop self-energy diagrams contain minimal time vertices, and possible “upgrades” could be very tricky. This is another area where work is in progress.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Finite Time Path Field Theory
- The time path C is closed and finite: .
- The subject of the S-matrix is amplitude (“wave function”), while in FTPFT it is a two-point function.
- The product of two point functions is not algebraic, instead being a convolution product (see Appendix A.2); only under special conditions does it become an algebraic product.
- Instead of Feynman propagators, matrix propagators are obtained. These are linearly transformed into (retarded), (advanced), and (Keldysh) propagators. Our method further separates into its retarded and advanced pieces (); contains single particle distribution functions of the unperturbed system (i.e., as they are determined at ).
- A measured quantity is obtained as an equal time limit of . Compared to a scattering matrix, these measured quantities are more inclusive: one particle is separated (and measured), while the others are integrated over. This is equivalent to the exclusive S-matrix approach. In addition, the calculated quantities correspond to a yield, i.e., the number of particles found at time t, while the equivalent in the S-matrix approach is the cross-section, i.e., related to the time derivative of the yield.
- While primarily developed for thermal equilibrium and out-of-equilibrium (particularly “almost equilibrated”) ensembles, nothing prevents it from being applied to decays and oscillations (as in this paper), or to scattering processes.
- For application to scattering processes, it is necessary to choose initial single particle distributions (i.e., for incoming particles) as two plane waves of extremely low intensities. After calculation it is then necessary to carry out the limit. In our experience, the results are physically equivalent to S-matrix calculation. Adiabatic switching (on and off) of the interaction is not possible in finite time. With an infinite time limit (), the lack of adiabatic switching does not matter.
Appendix A.2. Convolution Product of Two Two-Point Functions
- (1)
- The function of is analytic above (below) the real axis;
- (2)
- The function vanishes as approaches infinity in the upper (lower) semiplane.
Appendix A.3. Massive Neutrino Propagator
Appendix A.4. “Flavor Neutrino” Propagator
Appendix A.5. Oscillating Neutrino Propagator
Appendix A.6. Dyson–Schwinger Equation for Fermions
Appendix A.7. Fermion Particle Number
Appendix A.8. Massless Chiral Fermion Particle Number
References
- Davis, R., Jr.; Harmer, D.S.; Hoffman, K.C. Search for neutrinos from the sun. Phys. Rev. Lett. 1968, 20, 1205–1209. [Google Scholar] [CrossRef]
- Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Inoue, K.; Ishihara, K.; Ishino, H.; Itow, Y.; Kajita, T.; Kameda, J.; Kasuga, S.; et al. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 1998, 81, 1562. [Google Scholar] [CrossRef]
- Apollonio, M.; Baldini, A.; Bemporad, C.; Caffau, E.; Cei, F.; D’eclaise, Y.; de Kerret, H.; Dieterle, B.; Etenko, A.; George, J.; et al. Limits on neutrino oscillations from the CHOOZ experiment. Phys. Lett. B 1999, 466, 415–430. [Google Scholar] [CrossRef]
- Abazajian, K.N.; Acero, M.A.; Agarwalla, S.K.; Aguilar-Arevalo, A.A.; Albright, C.H.; Antusch, S.; Arguelles, C.A.; Balantekin, A.B.; Barenboim, G.; Barger, V.; et al. Light Sterile Neutrinos: A White Paper. arXiv 2012, arXiv:1204.5379. [Google Scholar]
- Aguilar, A.; Auerbach, L.B.; Burman, R.L.; Caldwell, D.O.; Church, E.D.; Cochran, E.D.; Donahue, J.B.; Fazely, A.; Garvey, G.T.; Gunasingha, R.M.; et al. Evidence for neutrino oscillations from the observation of νe appearance in a νμ beam. Phys. Rev. D 2001, 64, 112007. [Google Scholar] [CrossRef]
- Schechter, J.; Valle, J.W.F. Neutrino Masses in SU(2) x U(1) Theories. Phys. Rev. D 1980, 22, 2227. [Google Scholar] [CrossRef]
- Eguchi, K.; Enomoto, S.; Furuno, K.; Goldman, J.; Hanada, H.; Ikeda, H.; Ikeda, K.; Inoue, K.; Ishihara, K.; Itoh, W.; et al. First results from KamLAND: Evidence for reactor anti-neutrino disappearance. Phys. Rev. Lett. 2003, 90, 021802. [Google Scholar] [CrossRef]
- Hosaka, J.; Ishihara, K.; Kameda, J.; Koshio, Y.; Minamino, A.; Mitsuda, C.; Miura, M.; Moriyama, S.; Nakahata, M.; Namba, T.; et al. Solar neutrino measurements in super-Kamiokande-I. Phys. Rev. D 2006, 73, 112001. [Google Scholar] [CrossRef]
- Cervera, A.; Donini, A.; Gavela, M.B.; Cadenas, J.J.G.; Hernandez, P.; Mena, O.; Rigolin, S. Golden measurements at a neutrino factory. Nucl. Phys. B 2001, 579, 17–55. [Google Scholar] [CrossRef]
- Barger, V.; Marfatia, D.; Whisnant, K. Breaking eight fold degeneracies in neutrino CP violation, mixing, and mass hierarchy. Phys. Rev. D 2002, 65, 073023. [Google Scholar] [CrossRef]
- Yasuda, O. New plots and parameter degeneracies in neutrino oscillations. New J. Phys. 2004, 6, 83. [Google Scholar] [CrossRef]
- Burguet-Castell, J.; Gavela, M.B.; Gomez-Cadenas, J.J.; Hernandez, P.; Mena, O. On the Measurement of leptonic CP violation. Nucl. Phys. B 2001, 608, 301. [Google Scholar] [CrossRef]
- Minakata, H.; Nunokawa, H. Exploring neutrino mixing with low-energy superbeams. J. High Energy Phys. 2001, 001. [Google Scholar] [CrossRef]
- Fogli, G.L.; Lisi, E. Tests of three flavor mixing in long baseline neutrino oscillation experiments. Phys. Rev. D 1996, 54, 3667. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Abgrall, N.; Ajima, Y.; Aihara, H.; Albert, J.B.; Andreopoulos, C.; Andrieu, B.; Aoki, S.; Araoka, O.; Argyriades, J.; et al. Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam. Phys. Rev. Lett. 2011, 107, 041801. [Google Scholar] [CrossRef] [PubMed]
- Adamson, P.; Auty, D.J.; Ayres, D.S.; Backhouse, C.; Barr, G.; Betancourt, M.; Bishai, M.; Blake, A.; Bock, G.J.; Boehnlein, D.J.; et al. Active to sterile neutrino mixing limits from neutral-current interactions in MINOS. Phys. Rev. Lett. 2011, 107, 181802. [Google Scholar] [CrossRef] [PubMed]
- Abe, Y.; Aberle, C.; Akiri, T.; dos Anjos, J.C.; Ardellier, A.F.; Barbosa, F.; Baxter, A.; Bergevin, M.; Bernstein, A.; Bezerra, T.J.C.; et al. Indication of Reactor νe Disappearance in the Double Chooz Experiment. Phys. Rev. Lett. 2012, 108, 131801. [Google Scholar] [CrossRef]
- An, F.P.; Bai1, J.Z.; Balantekin, A.B.; Band, H.R.; Beavis, D.; Beriguete, W.; Bishai, M.; Blyth, S.; Boddy, K.; Brown, R.L.; et al. Observation of electron-antineutrino disappearance at Daya Bay. Phys. Rev. Lett. 2012, 108, 171803. [Google Scholar] [CrossRef]
- Ahn, J.K.; Chebotaryov, S.; Choi, J.H.; Choi, S.; Choi, W.; Choi, Y.; Jang, H.I.; Jang, J.S.; Jeon, E.J.; Jeong, I.S.; et al. Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment. Phys. Rev. Lett. 2012, 108, 191802. [Google Scholar] [CrossRef]
- Abe, K.; Akhlaq, N.; Akutsu, R.; Ali, A.; Alt, C.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Arihara, T.; Asada, Y.; et al. Neutron-antineutron oscillation search using a 0.37 megaton-years exposure of Super-Kamiokande. Phys. Rev. D 2021, 103, 112008. [Google Scholar] [CrossRef]
- Acero, M.A.; Adamson, P.; Aliaga, L.; Anfimov, N.; Antoshkin, A.; Arrieta-Diaz, E.; Asquith, L.; Aurisano, A.; Back, A.; Backhouse, C.; et al. Improved measurement of neutrino oscillation parameters by the NOvA experiment. Phys. Rev. D 2022, 106, 032004. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, M.C.; Maltoni, M.; Schwetz, T. NuFIT: Three-Flavour Global Analyses of Neutrino Oscillation Experiments. Universe 2021, 7, 459. [Google Scholar] [CrossRef]
- Capozzi, F.; Valentino, E.D.; Lisi, E.; Marrone, A.; Melchiorri, A.; Palazzo, A. Unfinished fabric of the three neutrino paradigm. Phys. Rev. D 2021, 104, 083031. [Google Scholar] [CrossRef]
- de Salas, P.F.; Forero, D.V.; Gariazzo, S.; Martínez-Miravé, P.; Mena, O.; Ternes, C.A.; Tórtola, M.; Valle, J.W.F. 2020 global reassessment of the neutrino oscillation picture. J. High Energy Phys. 2021, 2, 71. [Google Scholar] [CrossRef]
- Cleveland, B.T.; Daily, T.; Davis, R., Jr.; Distel, J.R.; Lande, K.; Lee, C.K.; Wildenhain, P.S.; Ullman, J. Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys. J. 1998, 496, 505–526. [Google Scholar] [CrossRef]
- Kaether, F.; Hampel, W.; Heusser, G.; Kiko, J.; Kirsten, T. Reanalysis of the GALLEX solar neutrino flux and source experiments. Phys. Lett. B 2010, 685, 47–54. [Google Scholar] [CrossRef]
- Abdurashitov, J.N.; Gavrin, V.N.; Gorbachev, V.V.; Gurkina, P.P.; Ibragimova, T.V.; Kalikhov, A.V.; Khairnasov, N.G.; Knodel, T.V.; Mirmov, I.N.; Shikhin, A.A.; et al. Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002–2007 data-taking period. Phys. Rev. C 2009, 80, 015807. [Google Scholar] [CrossRef]
- Cravens, J.P.; Abe, K.; Iida, T.; Ishihara, K.; Kameda, J.; Koshio, Y.; Minamino, A.; Mitsuda, C.; Miura, M.; Moriyama, S.; et al. Solar neutrino measurements in Super-Kamiokande-II. Phys. Rev. D 2008, 78, 032002. [Google Scholar] [CrossRef]
- Abe, K.; Hayato, Y.; Iida, T.; Ikeda, M.; Ishihara, C.; Iyogi, K.; Kameda, J.; Kobayashi, K.; Koshio, Y.; Kozuma, Y.; et al. Solar neutrino results in Super-Kamiokande-III. Phys. Rev. D 2011, 83, 052010. [Google Scholar] [CrossRef]
- Nakajima, Y. Recent results and future prospects from Super-Kamiokande. In Proceedings of the XXIX International Conference on Neutrino Physics and Astrophysics, Chicago, IL, USA, 22 June–2 July 2020. [Google Scholar] [CrossRef]
- Aharmim, B.; Ahmed, S.N.; Anthony, A.E.; Barros, N.; Beier, E.W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S.D.; Boudjemline, K.; et al. Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory. Phys. Rev. C 2013, 88, 025501. [Google Scholar] [CrossRef]
- Bellini, G.; Benziger, J.; Bick, D.; Bonetti, S.; Bonfini, G.; Avanzini, M.B.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Carraro, C.; et al. Precision measurement of the 7Be solar neutrino interaction rate in Borexino. Phys. Rev. Lett. 2011, 107, 141302. [Google Scholar] [CrossRef] [PubMed]
- Bellini, G.; Benziger, J.; Bonetti, S.; Buizza Avanzini, M.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Carraro, C.; Chavarria, A.; Chepurnov, A.; et al. Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector. Phys. Rev. D 2010, 82, 033006. [Google Scholar] [CrossRef]
- Borexino Collaboration; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Caminata, A.; et al. Neutrinos from the primary proton–proton fusion process in the Sun. Nature 2014, 512, 383–386. [Google Scholar]
- Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, H.; Koga, M.; Matsuda, R.; Matsuda, S.; et al. Reactor On-Off Antineutrino Measurement with KamLAND. Phys. Rev. D 2013, 88, 033001. [Google Scholar] [CrossRef]
- Abe, K.; Bronner, C.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kato, Y.; Kishimoto, Y.; Marti, L.; et al. Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV. Phys. Rev. D 2018, 97, 072001. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Arguelles, C.; Arlen, T.C.; et al. Measurement of the Atmospheric νe Spectrum with IceCube. Phys. Rev. D 2015, 91, 072004. [Google Scholar] [CrossRef]
- Bezerra, T. New Results from the Double Chooz Experiment. In Proceedings of the XXIX International Conference on Neutrino Physics and Astrophysics, Chicago, IL, USA, 22 June–2 July 2020. [Google Scholar] [CrossRef]
- Adey, D.; An, F.P.; Balantekin, A.B.; Band, H.R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G.F.; Cao, J.; Chan, Y.L. Measurement of the Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay. Phys. Rev. Lett. 2018, 121, 241805. [Google Scholar] [CrossRef]
- Yoo, J. Recent Results from RENO Experiment. In Proceedings of the XXIX International Conference on Neutrino Physics and Astrophysics, Chicago, IL, USA, 22 June–2 July 2020. [Google Scholar] [CrossRef]
- Adamson, P.; Anghel, I.; Backhouse, C.; Barr, G.; Bishai, M.; Blake, A.; Bock, G.J.; Bogert, D.; Cao, S.V.; Castromonte, C.M. Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS. Phys. Rev. Lett. 2013, 110, 251801. [Google Scholar] [CrossRef]
- Dunne, P. Latest Neutrino Oscillation Results from T2K. In Proceedings of the XXIX International Conference on Neutrino Physics and Astrophysics, Chicago, IL, USA, 22 June–2 July 2020. [Google Scholar] [CrossRef]
- Himmel, A. New Oscillation Results from the NOvA Experiment. In Proceedings of the XXIX International Conference on Neutrino Physics and Astrophysics, Chicago, IL, USA, 22 June–2 July 2020. [Google Scholar] [CrossRef]
- Altherr, T.; Salati, P. The Electric charge of neutrinos and plasmon decay. Nucl. Phys. B 1994, 421, 662–682. [Google Scholar] [CrossRef]
- Ho, C.M.; Boyanovsky, D.; de Vega, H.J. Neutrino oscillations in the early universe: A Real time formulation. Phys. Rev. D 2005, 72, 085016. [Google Scholar] [CrossRef]
- Blasone, M.; Jizba, P.; Mavromatos, N.E.; Smaldone, L. Dynamical generation of field mixing via flavor vacuum condensate. Phys. Rev. D 2019, 100, 045027. [Google Scholar] [CrossRef]
- Blasone, M.; Smaldone, L.; Vitiello, G. Neutrino mixing, entanglement and the gauge paradigm in quantum field theory. PoSCORFU2021 2022, 049. [Google Scholar] [CrossRef]
- Blasone, M.; Smaldone, L.; Vitiello, G. Non-Abelian gauge structure and flavor mixing in quantum field theory. J. Phys. Conf. Ser. 2023, 2533, 012010. [Google Scholar] [CrossRef]
- Schwinger, J. Brownian motion of a quantum oscillator. J. Math. Phys. 1961, 2, 407. [Google Scholar] [CrossRef]
- Keldysh, L.V. Diagram technique for nonequilibrium processes. Sov. Phys. JETP 1965, 20, 1018–1026. [Google Scholar]
- Kadanoff, L.P.; Baym, G. Quantum Statistical Mechanics; Benjamin: New York, NY, USA, 1962. [Google Scholar]
- Danielewicz, P. Quantum Theory of Nonequilibrium Processes. 1. Ann. Phys. 1984, 152, 239. [Google Scholar] [CrossRef]
- Chou, K.-C.; Su, Z.-B.; Hao, B.-L.; Yu, L. Equilibrium and Nonequilibrium Formalisms Made Unified. Phys. Rep. 1985, 118, 1. [Google Scholar] [CrossRef]
- Rammer, J.; Smith, H. Quantum field-theoretical methods in transport theory of metals. Rev. Mod. Phys. 1986, 58, 323. [Google Scholar] [CrossRef]
- Landsman, N.P.; van Weert, C.G. Real and Imaginary Time Field Theory at Finite Temperature and Density. Phys. Rep. 1987, 145, 141. [Google Scholar] [CrossRef]
- Calzetta, E.; Hu, B.L. Nonequilibrium Quantum Fields: Closed Time Path Effective Action, Wigner Function and Boltzmann Equation. Phys. Rev. D 1988, 37, 2878. [Google Scholar] [CrossRef]
- Bellac, M.L. Thermal Field Theory; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Brown, D.A.; Danielewicz, P. Partons in phase space. Phys. Rev. D 1998, 58, 094003. [Google Scholar] [CrossRef]
- Dadić, I. Two mechanisms for elimination of pinch singularities in/out of equilibrium thermal field theories. Phys. Rev. D 1999, 59, 125012. [Google Scholar] [CrossRef]
- Blaizot, J.-P.; Iancu, E. The Quark gluon plasma: Collective dynamics and hard thermal loops. Phys. Rep. 2002, 359, 355–528. [Google Scholar] [CrossRef]
- Dadić, I. Out of equilibrium thermal field theories: Finite time after switching on the interaction and Wigner transforms of projected functions. Phys. Rev. D 2000, 63, 025011. [Google Scholar] [CrossRef]
- Dadić, I. Out-of-equilibrium TFT-energy nonconservation at vertices. Nucl. Phys. A 2002, 702, 356. [Google Scholar] [CrossRef]
- Arleo, F.; Aurenche, P.; Bopp, F.W.; Dadić, I.; David, G.; Delagrange, H.; d’Enterria, D.G.; Eskola, K.J.; Gelis, F.; Guillet, J.P. Hard probes in heavy-ion collisions at the LHC: Photon physics in heavy ion collisions at the LHC. CERN Yellow Book CERN-2004-009-D. arXiv 2004, arXiv:hep-ph/0311131. [Google Scholar]
- Dadić, I. Retarded propagator representation of out-of-equilibrium thermal field theories. Nucl. Phys. A 2009, 820, 267C. [Google Scholar] [CrossRef]
- Millington, P.; Pilaftsis, A. Perturbative nonequilibrium thermal field theory. Phys. Rev. D 2013, 88, 085009. [Google Scholar] [CrossRef]
- Millington, P.; Pilaftsis, A. Thermal field theory to all orders in gradient expansion. J. Phys. Conf. Ser. 2013, 447, 012071. [Google Scholar] [CrossRef]
- Dadić, I.; Klabučar, D. Causality and Renormalization in Finite-Time-Path Out-of-Equilibrium ϕ3 QFT. Particles 2019, 2, 92–102. [Google Scholar] [CrossRef]
- Dadić, I.; Klabučar, D.; Kuić, D. Direct photons from Quark Matter in Renormalized Finite-Time-Path QED. Particles 2020, 3, 676–692. [Google Scholar] [CrossRef]
- Beuthe, M. Oscillations of neutrinos and mesons in quantum field theory. Phys. Rept. 2003, 375, 105–218. [Google Scholar] [CrossRef]
- Akhmedov, E.K.; Kopp, J. Neutrino Oscillations: Quantum Mechanics vs. Quantum Field Theory. J. High Energy Phys. 2013, 4, 8, Erratum in J. High Energy Phys. 2013, 10, 52. [Google Scholar] [CrossRef]
- Pontecorvo, B. Mesonium and anti-mesonium. Sov. Phys. JETP 1957, 6, 429. [Google Scholar]
- Maki, Z.; Nakagawa, M.; Sakata, S. Remarks on the unified model of elementary particles. Prog. Theor. Phys. 1962, 28, 870. [Google Scholar] [CrossRef]
- Wolfenstein, L. Neutrino Oscillations in Matter. Phys. Rev. D 1978, 17, 2369. [Google Scholar] [CrossRef]
- Gribov, V.N.; Pontecorvo, B. Neutrino astronomy and lepton charge. Phys. Lett. B 1969, 28, 493–496. [Google Scholar] [CrossRef]
- Mikheyev, S.P.; Smirnov, A.Y. Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos. Sov. J. Nucl. Phys. 1985, 42, 913–917. [Google Scholar]
- Aguilar-Arevalo, A.A.; Brown, B.C.; Conrad, J.M.; Dharmapalan, R.; Diaz, A.; Djurcic, Z.; Finley, D.A.; Ford, R.; Garvey, G.T.; Gollapinni, S. Updated MiniBooNE neutrino oscillation results with increased data and new background studies. Phys. Rev. D 2021, 103, 052002. [Google Scholar] [CrossRef]
- Mueller, T.A.; Lhuillier, D.; Fallot, M.; Letourneau, A.; Cormon, S.; Fechner, M.; Giot, L.; Lasserre, T.; Martino, J.; Mention, G.; et al. Improved Predictions of Reactor Antineutrino Spectra. Phys. Rev. C 2011, 83, 054615. [Google Scholar] [CrossRef]
- Huber, P. On the determination of anti-neutrino spectra from nuclear reactors. Phys. Rev. C 2011, 84, 024617. [Google Scholar] [CrossRef]
- Giunti, C.; Laveder, M. Neutron oscillations. Phys. Rev. D 2008, 77, 093002. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Amin, N.M.; Andeen, K. eV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory. et al. Phys. Rev. Lett. 2020, 125, 141801. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Marti, L.; Miura, M.; Moriyama, S. Solar Neutrino Measurements in Super-Kamiokande-IV. Phys. Rev. D 2016, 94, 052010. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, M.C.; Maltoni, M. Determination of matter potential from global analysis of neutrino oscillation data. J. High Energy Phys. 2013, 1309, 152. [Google Scholar] [CrossRef]
- Maltoni, M.; Smirnov, A.Y. Solar neutrinos and neutrino physics. Eur. Phys. J. A 2016, 52, 87. [Google Scholar] [CrossRef]
- Guzzo, M.M.; Masiero, A.; Petcov, S.T. On the MSW effect with massless neutrinos and no mixing in the vacuum. Phys. Lett. B 1991, 260, 154. [Google Scholar] [CrossRef]
- Roulet, E. MSW effect with flavor changing neutrino interactions. Phys. Rev. D 1991, 44, 935. [Google Scholar] [CrossRef]
- Yasuda, O. Neutrino oscillation phenomenology and the impact of Professor Masatoshi Koshiba. Prog. Theor. Exp. Phys. 2022, 12, 12B105. [Google Scholar] [CrossRef]
- Alves, G.F.S.; Bertuzzo, E.; Salla, G.M. On-shell approach to neutrino oscillations. Phys. Rev. D 2022, 106, 036028. [Google Scholar] [CrossRef]
- Banks, H.; Kelly, K.J.; McCullough, M. How broad is a neutrino. J. High Energy Phys. 2023, 02, 136. [Google Scholar] [CrossRef]
- Bilenky, S.M. Flavor neutrino oscillations and time-energy uncertainty relation. Phys. Scr. T 2006, 127, 8. [Google Scholar] [CrossRef]
- Bilenky, S.M.; von Feilitzsch, F.; Potzel, W. Neutrino Oscillations and Uncertainty Relations. J. Phys. G 2011, 38, 115002. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dadić, I.; Klabučar, D. Neutrino Oscillations in Finite Time Path Out-of-Equilibrium Thermal Field Theory. Symmetry 2023, 15, 1970. https://doi.org/10.3390/sym15111970
Dadić I, Klabučar D. Neutrino Oscillations in Finite Time Path Out-of-Equilibrium Thermal Field Theory. Symmetry. 2023; 15(11):1970. https://doi.org/10.3390/sym15111970
Chicago/Turabian StyleDadić, Ivan, and Dubravko Klabučar. 2023. "Neutrino Oscillations in Finite Time Path Out-of-Equilibrium Thermal Field Theory" Symmetry 15, no. 11: 1970. https://doi.org/10.3390/sym15111970