Comparison of the Calcareous Shells of Belemnitida and Sepiida: Is the Cuttlebone Prong an Analogue of the Belemnite Rostrum Solidum?
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Belemnitida
3.2. Sepiida
4. Discussion: Is the Cuttlebone Prong an Analogue of the Belemnite Rostrum?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Spaeth, C.H.R.; Hoefs, J.; Vetter, U. Some aspects of isotopic composition of belemnites and related paleotemperatures. GSA Bull. 1971, 82, 3139–3150. [Google Scholar] [CrossRef]
- Veizer, J. Chemical diagenesis of belemnite shells and possible consequences for paleotemperature determinations. N. Jahrb. Geol. Paläont. Abh. 1974, 147, 91–111. [Google Scholar]
- Price, G.D.; Sellwood, B.W. Palaeotemperatures indicated by Upper Jurassic (Kimmeridgian Tithonian) fossils from Mallorca determined by oxygen isotope composition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1994, 110, 1–10. [Google Scholar] [CrossRef]
- Price, G.D.; Sellwood, B.W. “Warm” palaeotemperatures from high Late Jurassic palaeolatitudes (Falkland Plateau): Ecological, environmental or diagenetic controls? Palaeogeogr. Palaeoclimatol. Palaeoecol. 1997, 129, 315–327. [Google Scholar] [CrossRef]
- Jones, C.E.; Jenkyns, H.C.; Coe, A.L.; Hesselbo, S.P. Sr-isotopic variations in Jurassic and Cretaceous seawater. Geochim. Cosmochim. Acta 1994, 58, 3061–3074. [Google Scholar] [CrossRef]
- Jones, C.E.; Jenkyns, H.C.; Hesselbo, S.P. Strontium isotopes in Early Jurassic seawater. Geochim. Cosmochim. Acta 1994, 58, 1285–1301. [Google Scholar] [CrossRef]
- Podhala, O.G.; Mutterlose, J.; Veizer, J. Preservation of δ18O and δ13C in belemnite rostra from the Jurassic/Early Cretaceous successions. Am. J. Sci. 1998, 298, 324–347. [Google Scholar] [CrossRef]
- Veizer, J.; Ala, D.; Azmy, K.; Bruckschen, P.; Buhl, D.; Bruhn, F.; Carden, G.A.F.; Diener, A.; Ebneth, S.; Godderis, Y.; et al. 87Sr/86Sr, 13C and 18O evolution of Phanerozoic seawater. Chem. Geol. 1999, 161, 59–88. [Google Scholar] [CrossRef] [Green Version]
- McArthur, J.M.; Donovan, D.T.; Thirlwall, M.F.; Fouke, B.W.; Mattey, D. Strontium isotope profile of the early Toarcian (Jurassic) ocean anoxic event, the duration of ammonite biozones, and belemnite palaeotemperatures. Earth Planet. Sci. Lett. 2000, 179, 269–285. [Google Scholar] [CrossRef]
- Niebuhr, B.; Joachimski, M.M. Stable isotope and trace element geochemistry of Upper Cretaceous carbonates and belemnite rostra (Middle Campanian, north Germany). Geobios 2002, 35, 51–64. [Google Scholar] [CrossRef]
- Price, G.D.; Gröcke, D.R. Strontium-isotope stratigraphy and oxygen- and carbon-isotope variation during the Middle Jurassic-Early Cretaceous of the Falkland Plateau, South Atlantic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 183, 209–222. [Google Scholar] [CrossRef]
- Rosales, I.; Quesada, S.; Robles, S. Paleotemperature variations of Early Jurassic seawater recorded in geochemical trends of belemnites from the Basque-Cantabrian basin, northern Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 203, 253–275. [Google Scholar] [CrossRef]
- Rosales, I.; Robles, S.; Quesada, S. Elemental and oxygen isotope composition of Early Jurassic belemnites: Salinity vs. temperature signals. J. Sediment. Res. 2004, 74, 342–354. [Google Scholar] [CrossRef]
- Wierzbowski, H. Carbon and oxygen isotope composition of Oxfordian-Early Kimmeridgian belemnite rostra: Palaeoenvironmental implications for Late Jurassic seas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 203, 153–168. [Google Scholar] [CrossRef]
- Wierzbowski, H.; Dembicz, K.; Praszkier, T. Oxygen and carbon isotope composition of Callovian-Lower Oxfordian (Middle-Upper Jurassic) belemnite rostra from central Poland: A record of a Late Callovian global sea-level rise? Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 283, 182–194. [Google Scholar] [CrossRef]
- Nieto, L.M.; Ruiz-Ortiz, P.A.; Rey, J.; Benito, M.I. Sr-Isotope Stratigraphy (SIS) elucidates the age of condensed levels: Examples from the Subbetic (Southern Spain). Sedimentology 2008, 55, 1–29. [Google Scholar]
- Price, G.D.; Rogov, M.A. An isotopic appraisal of the Late Jurassic greenhouse phase in the Russian Platform. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 273, 41–49. [Google Scholar] [CrossRef]
- Alberti, M.; Fürsich, F.T.; Pandey, D.K.; Ramkumar, M. Stable isotope analyses of belemnites from the Kachchh Basin, western India: Paleoclimatic implications for the Middle to Late Jurassic transition. Facies 2011, 18. [Google Scholar] [CrossRef]
- Prokoph, A.; Shields, G.A.; Veizer, J. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Sci. Rev. 2008, 87, 113–133. [Google Scholar] [CrossRef]
- Nunn, E.V.; Price, G.D.; Hart, M.B.; Page, K.N.; Leng, M.J. Isotopic signals from Callovian-Kimmerdgian (Middle-Upper Jurassic) belemnite and bulk organic carbon, Staffin Bay, Isle of Skye, Scotland. J. Geol. Soc. Lond. 2009, 166, 633–641. [Google Scholar] [CrossRef]
- Nunn, E.V.; Price, G.D. Late Jurassic (Kimmeridgian-Tithonian) stable isotopes (δ18O, δ13C) and Mg/Ca ratios: New palaeoclimate data from Helmsdale, northeast Scotland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 292, 325–335. [Google Scholar] [CrossRef]
- Wierzbowski, H.; Rogov, M. Reconstructing the palaeoenvironment of the Middle Russian Sea during the Middle–Late Jurassic transition using stable isotope ratios of cephalopod shells and variations in faunal assemblages. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 299, 250–264. [Google Scholar] [CrossRef]
- Li, Q.; McArthur, J.M.; Atkinson, T.C. Lower Jurassic belemnites as indicators of palaeo-temperature. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 315–316, 38–45. [Google Scholar] [CrossRef]
- Veizer, J.; Prokoph, A. Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth-Sci. Rev. 2015, 146, 92–104. [Google Scholar] [CrossRef]
- Ait-Itto, F.Z.; Price, G.D.; Ait Addi, A.; Chafiki, D.; Mannani, I. Bulk-carbonate and belemnite carbon-isotope records across the Pliensbachian-Toarcian boundary on the northern margin of Gondwana (Issouka, Middle Atlas, Morocco). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 466, 128–136. [Google Scholar] [CrossRef]
- Wierzbowski, H.; Bajnai, D.; Wacker, U.; Rogov, M.A.; Fiebig, J.; Tesakova, E.M. Clumped isotope record of salinity variations in the Subboreal Province at the Middle-Late Jurassic transition. Glob. Planet. Chang. 2018, 167, 172–189. [Google Scholar] [CrossRef]
- Rosales, I.; Barnolas, A.; Goy, A.; Sevillano, A.; Armendariz, M. Isotope records (C-O-Sr) of late Pliensbachian-early Toarcian environmental perturbations in the westernmost Tethys (Majorca Island, Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 497, 168–185. [Google Scholar] [CrossRef]
- Ebel, K. Zur Schwimmf¨ahigkeit von Belemniten. Paläontol. Z. 1987, 61, 229–251. [Google Scholar] [CrossRef]
- Monks, N.; Hardwick, J.D.; Gale, A.S. The function of the belemnite guard. Paläontol. Z. 1996, 70, 425–431. [Google Scholar] [CrossRef]
- Benito, M.I.; Reolid, M. Belemnite taphonomy (Upper Jurassic, Western Tethys) Part II: Fossil-diagenetic analysis including combined petrographic and geochemical techniques. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 358–360, 89–108. [Google Scholar] [CrossRef]
- Benito, M.I.; Reolid, M.; Viedma, C. On the microstructure, growth pattern and original porosity of belemnite rostra: Insights from calcitic Jurassic belemnites. J. Iber. Geol. 2016, 42, 201–226. [Google Scholar]
- Dera, G.; Toumoulin, A.; De Baets, K. Diversity and morphological evolution of Jurassic belemnites from South Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 457, 80–97. [Google Scholar] [CrossRef]
- Stevens, K.; Griesshaber, E.; Schmahl, W.; Casella, L.; Iba, Y.; Mutterlose, J. Belemnite biomineralization, development, and geochemistry: The complex rostrum of Neohibolites Minimus. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 468, 388–402. [Google Scholar] [CrossRef]
- Rita, P.; De Baets, K.; Schlott, M. Rostrum size differences between Toarcian belemnite battlefields. Mitteilungen aus dem Museum für Naturkunde in Berlin. Foss. Rec. 2018, 21, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Rita, P.; Nätscher, P.; Duarte, L.V.; Weis, R.; De Baets, K. Mechanisms and drivers of belemnite body-size dynamics across the Pliensbachian–Toarcian crisis. R. Soc. Open Sci. 2019, 6, 190494. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, R.; Stevens, K. The palaeobiology of belemnites—Foundation for the interpretation of rostrum geochemistry. Biol. Rev. 2020, 95, 94–123. [Google Scholar] [CrossRef]
- Spaeth, C.H.R. Weitere Untersuchungen der Primär- und Fremdstrukturen in calcitischen und aragonitischen Schalenlagen englischer Unterkreide-Belemniten. Paläontol. Z. 1973, 47, 163–174. [Google Scholar] [CrossRef]
- Spaeth, C.H.R. Zur Frage der Schwimmverhältnisse bei Belemniten in Abhängigkeit vom Primärgefüge der Hartteile. Paläontol. Z. 1975, 49, 321–331. [Google Scholar] [CrossRef]
- Richter, D.K.; Götte, T.; Götze, J.; Neuser, R.D. Progress in application of cathodoluminescence (CL) in sedimentary petrology. Mineral. Petrol. 2003, 79, 127–166. [Google Scholar] [CrossRef]
- Florek, M.; Youn, H.S.; Ro, C.; Wierzbowski, H.; Osán, J.; Kazimierczak, W.; Kuczumow, A. Investigation of chemical composition of belemnite rostra by synchrotron-based X-ray microfluorescence and diffraction and electron microprobe. J. Alloys Compd. 2004, 362, 99–106. [Google Scholar] [CrossRef]
- Ullmann, C.V.; Frei, R.; Korte, C.; Hesselbo, S.P. Chemical and isotopic architecture of the belemnite rostrum. Geochem. Cosmochim. Acta 2015, 159, 231–243. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, R.; Richter, D.K.; Neuser, N.; Jöns, B.J.; Lemanis, R.E.; Fusseis, F.; Xiao, X.; Immenhauser, A. Evidence for a composite organic-inorganic fabric of belemnite rostra: Implications for palaeoceanography and palaeoecology. Sediment. Geol. 2016, 341, 203–251. [Google Scholar] [CrossRef] [Green Version]
- Bandel, K.; Engeser, T.; Reitner, J. Die Embryonal Entwicklung von Hibolithes (Be1emnitida, Cephalopoda). N. Jahrb. Geol. Paläont. Abh. 1984, 167, 275–303. [Google Scholar]
- Sælen, G. Diagenesis and construction of the belemnite rostrum. Palaeontology 1989, 32, 765–798. [Google Scholar]
- Kröger, B.; Vinther, J.; Fuchs, D. Cephalopod origin and evolution: A congruent picture emerging from fossils, development and molecules: Extant cephalopods are younger than previously realised and were under major selection to become agile, shell-less predators. Bioessays 2011, 33, 602–613. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, D.; Iba, Y.; Ifrim, C.; Nishimura, T.; Kennedy, W.J.; Keupp, H.; Tanabe, K. Longibelus gen. nov., a new Cretaceous coleoid genus linking Belemnoidea and early Decabrachia. Palaeontology 2013, 56, 1081–1106. [Google Scholar]
- Arkhipkin, A.I.; Bizikov, V.A.; Fuchs, D. Vestigial phragmoconoe in the gladius points to a deepwater origin of squid (Mollusca: Cephalopoda). Deep Sea Res. Part I 2012, 61, 109–122. [Google Scholar] [CrossRef]
- Rexfort, A.; Mutterlose, J. Stable isotope records from Sepia officinalis: A key to understanding the ecology of belemnites? Earth Planet. Sci. Lett. 2006, 247, 212–221. [Google Scholar] [CrossRef]
- Mutterlose, J.; Malkoc, M.; Schouten, S.; Sinninghe Damsté, J.P.; Forster, A. TEX86 and stable d18O paleothermometry of early Cretaceous sediments: Implications for belemnite ecology and paleotemperature proxy application. Earth Planet. Sci. Lett. 2010, 298, 286–298. [Google Scholar] [CrossRef]
- Jeletzky, J.A. Paleontological Contributions. In Comparative Morphology, Phylogeny, and Classification of Fossil Coleoidea. Mollusca, Article 7; University of Kansas: Lawrence, KS, USA, 1966; pp. 1–162. [Google Scholar]
- Dauphin, Y. Microstructures des Céphalopodes. IV Le ‘‘rostre’’ de Belosepia (Dibranchiata). Paläontol. Z. 1984, 58, 99–117. [Google Scholar] [CrossRef]
- House, M.R. Major features of Cephalopod evolution. In Cephalopods: Present and Past; Wiedman, J., Kullmann, J., Eds.; University of Kansas Press: Lawrence, KS, USA, 1988; pp. 1–16. [Google Scholar]
- Adam, W.; Rees, W.J. A Review of the Cephalopod Family Sepiidae. British Museum (Natural History), The John Murray Expedition 1933–34. Sci. Rep. 1966, 11, 1–165. [Google Scholar]
- Bandel, K.; Boletzky, S.V. A comparative study of the structure, development and morphological relationships of chambered cephalopod shells. Veliger 1979, 21, 313–354. [Google Scholar]
- Yancey, T.E.; Garvie, C.L.; Wicksten, M. The middle Eocene Belosaepia ungula (Cephalopoda: Coleoida) from Texas: Structure, ontogeny and function. J. Paleont. 2010, 84, 267–287. [Google Scholar] [CrossRef]
- Yancey, T.E.; Garvie, C.L. Redescription of Anomalosaepia (Cephalopoda: Coleoida): A sepioid with a bimineralic calcite and aragonite skeleton. J. Paleont. 2011, 85, 904–915. [Google Scholar] [CrossRef]
- Rosales, I.; Quesada, S.; Robles, S. Primary and diagenetic isotopic signal in fossils and hemipelagjc carbonates: The Lower Jurassic of northern Spain. Sedimentology 2001, 48, 1149–1169. [Google Scholar] [CrossRef]
- Bandel, K.; Spaeth, C. Structural differences in the ontogeny of some belemnite rostra. In Cephalopods: Present and Past; Wiedmann, J., Kullmann, J., Eds.; Schweizerbart’sche Verlagschhandlung: Stuttgart, Germany, 1988; pp. 247–271. [Google Scholar]
- Doguzhaeva, L.A. The original composition of the Pro-ostracum of an Early Sinemurian belemnite from Belgium deduced from mode of fossilization and ultrastructure. Palaeontology 2012, 55, 249–260. [Google Scholar] [CrossRef]
- Engeser, T.; Reitner, J. Chitinobelus acifer Fischer 1981, ein Belemnoteuthide (Coleoidea) mit epirostrom. N. Jahrb. Geol. Paläont. Abh. 1983, 161, 496–501. [Google Scholar]
- Naydin, D.P.; Barskov, I.S.; Kiyachko, S.I. Aragonitic and calcitic composition of the belemnitid rostra from Upper Cretaceous of the western Taymyr: Stable isotopic composition of oxygen and carbon. Paleontol. Žurnal. 1987, 3, 3–8. [Google Scholar]
- Bandel, K.; Kulicki, C. Belemnoteuthis polonica: A belemnite with an aragonitic rostrum. In Cephalopods: Present and Past; Wiedmann, J., Kullmann, J., Eds.; Schweizerbart’sche Verlagschhandlung: Stuttgart, Germany, 1988; pp. 303–316. [Google Scholar]
- Doyle, P.; Shakides, E. The Jurassic Belemnite Suborder Belemnotheutina. Palaeontology 2004, 47, 983–998. [Google Scholar] [CrossRef]
- Dauphin, Y.; Williams, C.T.; Barskov, I.S. Aragonitic rostra of the Turonian belemnitid Goniocamax: Arguments from diagenesis. Acta Palaeont. Pol. 2007, 52, 85–97. [Google Scholar]
- Naef, A. Die fossilen Titenfische; Verlag von Gustav Fischer: Jena, Germany, 1922; pp. 1–322.
- Abel, O. Palaobiologie der cephalopoden aus der Gruppe der Dibranchiaten; Verlag von Gustav Fischer: Jena, Germany, 1916; pp. 1–289.
- Krymgol’ts, G.Y. Subclass Endocochlia. In Principles of Paleontology. Mollusca-Cephalopoda 2; Luppov, N.P., Drushchits, V.V., Eds.; Gosgeoltekhizdat: Moscow, Russia, 1958; pp. 145–178. (In Russian) [Google Scholar]
- Naydin, D.P. Morphology and Paleobiology of Upper Cretaceous Belemnites; Izd-vo Moskov University: Moscow, Russia, 1969; pp. 1–302. (In Russian) [Google Scholar]
- Barskov, I.S. Mikrostruktura sloyev skeletal sepia I spiruly I ikh sopostavleniye so sloyami rakoviny drugokh mollyuskov. Paleontol. Žurnal. 1973, 3, 3–13. [Google Scholar]
- Dauphin, Y. Implications of a microstructural comparison in some fossil and recent coleoid cephalopod shells. Palaeontogr. Abteilung A 1985, 191, 69–83. [Google Scholar]
- Fuchs, D. The “rostrum”-problem in coleoid terminology: An attempt to clarify inconsistencies. Geobios 2012, 45, 29–39. [Google Scholar] [CrossRef]
- Košt’ák, M.; Jagt, J.W.M.; Speijer, R.P.; Stassen, P.; Steurbaut, E. New Paleocene sepiid coleoids (Cephalopoda) from Egypt: Evolutionary significance and origin of the sepiid ‘rostrum’. PLoS ONE 2013, 8, e81180. [Google Scholar]
- Bizikov, V.A. Evolution of the Shell in Cephalopoda. In Ruthenica; VNIRO Publishing: Moscow, Russia, 2008. [Google Scholar]
- Bandel, K. Cephalopod shell structure and general mechanisms of shell formation. In Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends; Carter, J.G., Reinhold, V.N., Eds.; Wiley: New York, NY, USA, 1990; pp. 97–115. [Google Scholar]
- Doguzhaeva, L.A. A rare coleoid mollusc from the upper Jurassic of central Russia. Acta Palaeont. Pol. 2000, 45, 389–406. [Google Scholar]
- Bettencourt, V.; Guerra, A. Carbon-and oxygen-isotope composition of the cuttlebone of Sepia officinalis: A tool for predicting ecological information? Mar. Biol. 1999, 133, 651–657. [Google Scholar] [CrossRef]
- Rexfort, A.; Mutterlose, J. The role of biogeography and ecology on the signature of cuttlefishes (Cephalopoda, Sepiidae) and the impact on belemnite studies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 284, 153–163. [Google Scholar] [CrossRef]
- Reolid, M.; Mattioli, E.; Nieto, L.M.; Rodríguez-Tovar, F.J. The Early Toarcian Ocanic Anoxic Event in the External Subbetic (Southiberian Palaeomargin, Westernmost Tethys): Geochemistry, nannofossils and ichnology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 411, 79–94. [Google Scholar] [CrossRef]
- Iversen, T.H. Elektronmikroskopi; Tapir Forlag: Trondheim, Norway, 1973; 108p. [Google Scholar]
- Sabatini, D.D.; Miller, F.; Barnet, R.J. Aldehyde fixation for morphological and enzyme histochemical studies with the electron microscope. J. Histochem. Cytochem. 1964, 12, 57. [Google Scholar] [CrossRef] [Green Version]
- Doguzhaeva, L.A.; Weis, R.; Delsate, D.; Mariotti, N. Embryonic shell structure of Early-Middle Jurassic belemnites, and its significance for belemnite expansion and diversification in the Jurassic. Lethaia 2014, 47, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Müller-Stoll, H. Beitrage zur Anatomie der Belemnoidea. Nova Acta Leopoldina Neue Serie 1936, 4, 159–226. [Google Scholar]
- Wierzbowski, H. Life span and growth rate of Middle Jurassic mesohibolitid belemnites deduced from rostrum microincrements. Volumina Jurassica 2013, 11, 1–18. [Google Scholar]
- Richter, D.; Nauser, R.D.; Schreuer, J.; Gies, H.; Imenhauser, A. Radiaxial-fibrous calcites: A new look at an old problem. Sed. Geol. 2011, 239, 23–36. [Google Scholar] [CrossRef]
- Gutowska, M.A.; Melzner, F.; Pörtner, H.O.; Meier, S. Cuttlebone calcification increases during exposure to elevated seawater pCO2 in the cephalopod Sepia officinalis. Mar. Biol. 2010, 157, 1653–1663. [Google Scholar] [CrossRef]
- Florek, M.; Fornal, E.; Gómez-Romero, P.; Zieba, E.; Paszkowicz, W.; Lekki, J.; Nowak, J.; Kuczumow, A. Complementary microstructural and chemical analyses of Sepia officinalis endoskeleton. Mater. Sci. Eng. C 2009, 29, 1220–1226. [Google Scholar] [CrossRef]
- Checa, A.G.; Cartwrght, J.H.E.; Sánchez-Almazo, I.; Andrade, J.P.; Ruiz-Raya, F. The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor. Sci. Rep. 2015, 5, 11513. [Google Scholar] [CrossRef] [Green Version]
- Birchall, J.D.; Thomas, N.L. On the architecture and function of cuttlefish bone. J. Mater. Sci. 1983, 18, 2081–2086. [Google Scholar] [CrossRef]
- Sherrard, K.M. Cuttlebone morphology limits habitat depth in eleven species of Sepia (Cephalopoda: Sepiidae). Biol. Bull. 2000, 198, 404–414. [Google Scholar] [CrossRef]
- Cuif, J.-P.; Dauphin, Y.; Sorauf, J.E. Biominerals and Fossils Through Time; Cambridge University Press: Cambridge, UK, 2011; 504p. [Google Scholar]
- Dauphin, Y. Microstructures des coquilles de Céphalopodes. II—La seighe (Dibranchiata Decapoda). Paleontol. Abteilung 1981, 176, 35–51. [Google Scholar]
- Hewitt, R.A.; Westermann, G.E. Recurrences of hypotheses about ammonites and Argonauta. J. Paleont. 2003, 77, 792–795. [Google Scholar] [CrossRef]
- Stevens, K.; Iba, Y.; Suzuki, A.; Mutterlose, J. Biological and environmental signals recorded in shells of Argonauta argo (Cephalopoda, Octobrachia) from the Sea of Japan. Mar. Biol. 2015, 162, 2203–2215. [Google Scholar] [CrossRef]
- Drozdova, T.V. Organic matter of belemnites. Geokhimia 1969, 1281–1285. [Google Scholar]
- Barskov, I.S. Structure of the belemnitid rostrum. Paleontol. J. 1970, 4, 110–112. [Google Scholar]
- Westbroek, P.; Van der Meide, P.H.; Van der Wey-Kloppers, J.S.; Van der Sluis, R.J.; De Leeuw, J.W.; de Jong, E.W. Fossil macromolecules from cephalopod shells: Characterization, immunological response and diagenesis. Paleobiology 1979, 5, 151–167. [Google Scholar] [CrossRef]
- Clark, G.R., II. Organic matrix taphonomy in some molluscan shell microstructures. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1999, 149, 305–312. [Google Scholar] [CrossRef]
- Clark, G.R., II. Organic matrix in the porifera and cnidaria: Déjà vu through a temporal telescope. Geol. Soc. Am. Abstr. Progr. 2005, 37, 366. [Google Scholar]
- Dunca, E.; Doguzhaeva, L.; Schöne, B.R.; Schootbrugge, B. Growth patterns in rostra of the Middle Jurassic belemnite Megateuthis giganteus: Controlled by the moon? Acta Univ. Carol. Geol. 2006, 49, 107–117. [Google Scholar]
- Wierzbowski, H.; Joachimski, M.M. Stable isotopes, elemental distribution, and growth rings of belemnopsid belemnite rostra: Proxies for belemnite life habitat. Palaios 2009, 24, 377–386. [Google Scholar] [CrossRef]
- Weiner, S.; Mahamid, J.; Politi, Y.; Ma, Y.; Addadi, L. Overview of the amorphous precursor phase strategy in biomineralization. Front. Mater. Sci. Chin. 2009, 3, 104–108. [Google Scholar] [CrossRef]
- Cölfen, H.; Antonietti, M. Mesocrystals and Non-Classical Mineralization; John Wiley & Sons, Ltd.: London, UK, 2008; 276p. [Google Scholar]
- Marin, F.; Narayanappa, P.; Motreuil, S. Acidic Shell proteins of the mediterranean fan mussel Pinna nobilis. In Progress in Molecular and Subcellular Biology: Marine Molecular Biotechnology; Müller, W.E.G., Ed.; Springer: Berlin/Heidelberg Germany, 2001; pp. 353–395. [Google Scholar]
- Meldrum, F.C.; Cölfen, H. Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 2008, 108, 4332–4432. [Google Scholar] [CrossRef] [PubMed]
Features | This Study | Related References | ||
---|---|---|---|---|
Convergences | Divergences | Belemnite Rostrum Solidum (BR) | Sepia Prong (SP) | |
Primary mineralogy | BR: Calcite SP: Aragonite | Veizer [2], Sælen [44], Podhala et al., [7], Arkhipkin et al. [47], Bandel & Spaeth [58], Rosales et al., [57] | Jeletzky [50], Dauphin [51], House [52] | |
Spherulitic-prismatic microestructure | Radially arranged crystals start growing from spherulites from which crystals emerge and diverge | BR: Spherulites observed along the apical line (Figure 6). SP: Spherulites observed in the apical area of the prong (Figure 10I) | Bandel et al., [43], Benito et al., [31], Stevens et al., [33], Hoffmann and Stevens [36] | Benito et al., [31] |
Microfibrous texture of crystals | Radially arranged crystals displays micro-fibrous texture (Figure 7, Figure 8 and Figure 14). | Bandel et al., [43], Sælen [44]; Richter et al., [84], Benito and Reolid [30], Benito et al., [31] | ||
Relationship between the concentric and radial pattern | Concentric pattern, observed at different scales, is traversed by the radially-arranged micro-fibrous crystals. | BR: Concentric pattern is formed by an alternation of thin layers, displaying intense FL (organic-rich) and layers displaying internal radial micro-fibrous texture and weak FL (organic-poor) (Figure 7). SP: Concentric pattern is formed by an alternation of thin and organic-rich laminae and organic-poor layers comprising radially arranged aragonite crystals (Figure 10I and Figure 13). | Sælen [44], Benito et al., [31] | |
Primary porosity | High primary porosity inferred (BR) or observed (SP) along the apical area. | BR: Primary porosity is not preserved because it was later filled by calcite cement (Figure 9). SP: Primary porosity is preserved (Figure 10) | Spaeth et al., [1], Spaeth [37,38], Veizer [2], Richter et al., [39], Florek et al., [40], Benito et al., [31], Hoffmann et al., [42] | |
Organic matter content | High original organic matter content inferred (BR) and observed(SP) along the apical area and in thin concentric layers | BR: Original organic matter is not preserved; it is inferred based on petrographic features and on geochemical data obtained in the studied BR by Benito and Reolid [30] and Benito et al. [31] (Figure 7and Figure 9). SP: Organic matter is preserved (Figure 13 and Figure 15) | Müller-Stoll 1936 [82], Bandel et al., 1984 [43], Sælen [44], Florek et al., [40], Dunca et al., [100], Benito and Reolid [30], Benito et al., [31], Hoffmann et al., [42], Stevens et al., [33] | |
Non-classical mineralization | Non-classical crystallization processes are proposed to be involved in the formation of Sepia endoskeleton | Cuif et al., [90], Benito et al., [31] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benito, M.I.; Reolid, M. Comparison of the Calcareous Shells of Belemnitida and Sepiida: Is the Cuttlebone Prong an Analogue of the Belemnite Rostrum Solidum? Minerals 2020, 10, 713. https://doi.org/10.3390/min10080713
Benito MI, Reolid M. Comparison of the Calcareous Shells of Belemnitida and Sepiida: Is the Cuttlebone Prong an Analogue of the Belemnite Rostrum Solidum? Minerals. 2020; 10(8):713. https://doi.org/10.3390/min10080713
Chicago/Turabian StyleBenito, M. Isabel, and Matías Reolid. 2020. "Comparison of the Calcareous Shells of Belemnitida and Sepiida: Is the Cuttlebone Prong an Analogue of the Belemnite Rostrum Solidum?" Minerals 10, no. 8: 713. https://doi.org/10.3390/min10080713