Evaluation of Non-Invasive Hemoglobin Monitoring in Perioperative Patients: A Retrospective Study of the Rad-67TM (Masimo)
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Measurements of the Hemoglobin
- (i)
- Spectrophotometry is a method used to measure how much light is absorbed by different hemoglobin species within the blood. The principle is based on the fact that various hemoglobin types (oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, methemoglobin) and other blood plasma components absorb light at distinct wavelengths. By passing visible and infrared light through the tissue and measuring the light absorption, the Rad-67™ distinguishes between these hemoglobin types. Each compound has a unique absorption spectrum, and the detector captures the amount of light that passes through the blood. The difference in light absorption at specific wavelengths allows for the identification and quantification of the various hemoglobin types.
- (ii)
- Photoplethysmography (PPG) is an optical technique that detects changes in blood volume in the tissue over time, based on light absorption related to the pulsatile nature of blood flow [21]. The PPG signal consists of a pulsatile component (‘AC’) due to cardiac activity and a slowly varying baseline (‘DC’) influenced by factors such as respiration and thermoregulation. By detecting the changes in light absorption caused by variations in arterial blood volume, the device can distinguish between arterial and venous blood.
- (iii)
- The signal extraction technique (SET®) is employed to separate the arterial signal from noise and interference, such as motion artifacts [22]. By improving the signal-to-noise ratio, SET® assists the device in providing more reliable measurements of SpHb.
2.3. Statistical Analysis
3. Results
3.1. Overview of the Cohort
3.2. Measurement Accuracy
3.3. Potential Confounders
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Null, N. Practice guidelines for perioperative blood management: An updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Management. Anesthesiology 2015, 122, 241–275. [Google Scholar] [CrossRef]
- Rumpf, F.; Hof, L.; Old, O.; Friederich, P.; Friedrich, J.; Thoma, J.; Wittmann, M.; Zacharowski, K.; Choorapoikayil, S.; Meybohm, P. Preoperative hemoglobin thresholds for survival equity in women and men. Front. Med. 2024, 11, 1334773. [Google Scholar] [CrossRef] [PubMed]
- Blum, L.V.; Schmitt, E.; Choorapoikayil, S.; Baumhove, O.; Bayer, A.; Friederich, P.; Friedrich, J.; Geisen, C.; Gruenewald, M.; Gutjahr, M.; et al. Association of anaemia, co-morbidities and red blood cell transfusion according to age groups: Multicentre sub-analysis of the German Patient Blood Management Network Registry. BJS Open 2022, 6, zrac128. [Google Scholar] [CrossRef] [PubMed]
- Smilowitz, N.R.; Ruetzler, K.; Berger, J.S. Perioperative bleeding and outcomes after noncardiac surgery. Am. Heart J. 2023, 260, 26–33. [Google Scholar] [CrossRef]
- Turan, A.; Rivas, E.; Devereaux, P.J.; Bravo, M.; Mao, G.; Cohen, B.; Maheshwari, K.; Pu, X.; Ruetzler, K.; Li, K.; et al. Association between postoperative haemoglobin concentrations and composite of non-fatal myocardial infarction and all-cause mortality in noncardiac surgical patients: Post hoc analysis of the POISE-2 trial. Br. J. Anaesth. 2021, 126, 87–93. [Google Scholar] [CrossRef]
- Rüsch, D.; Koch, T.; Spies, M.; Hj Eberhart, L. Pain During Venous Cannulation. Dtsch. Arztebl. Int. 2017, 114, 605–611. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, S.; Marsh, N.; Ray-Barruel, G.; Flynn, J.; Larsen, E.; Rickard, C.M. Infection risks associated with peripheral vascular catheters. J. Infect. Prev. 2016, 17, 207–213. [Google Scholar] [CrossRef]
- Helmer, P.; Hottenrott, S.; Steinisch, A.; Röder, D.; Schubert, J.; Steigerwald, U.; Choorapoikayil, S.; Meybohm, P. Avoidable Blood Loss in Critical Care and Patient Blood Management: Scoping Review of Diagnostic Blood Loss. J. Clin. Med. 2022, 11, 320. [Google Scholar] [CrossRef]
- Althoff, F.C.; Neb, H.; Herrmann, E.; Trentino, K.M.; Vernich, L.; Füllenbach, C.; Freedman, J.; Waters, J.H.; Farmer, S.; Leahy, M.F.; et al. Multimodal Patient Blood Management Program Based on a Three-pillar Strategy: A Systematic Review and Meta-analysis. Ann. Surg. 2019, 269, 794–804. [Google Scholar] [CrossRef]
- Meybohm, P.; Richards, T.; Isbister, J.; Hofmann, A.; Shander, A.; Goodnough, L.T.; Muñoz, M.; Gombotz, H.; Weber, C.F.; Choorapoikayil, S.; et al. Patient Blood Management Bundles to Facilitate Implementation. Transfus. Med. Rev. 2017, 31, 62–71. [Google Scholar] [CrossRef]
- Cros, J.; Dalmay, F.; Yonnet, S.; Charpentier, M.; Tran-Van-Ho, J.; Renaudeau, F.; Drouet, A.; Guilbaut, P.; Marin, B.; Nathan, N. Continuous hemoglobin and plethysmography variability index monitoring can modify blood transfusion practice and is associated with lower mortality. J. Clin. Monit. Comput. 2020, 34, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Ribed-Sánchez, B.; González-Gaya, C.; Varea-Díaz, S.; Corbacho-Fabregat, C.; Pérez-Oteyza, J.; Belda-Iniesta, C. Economic Analysis of the Reduction of Blood Transfusions during Surgical Procedures While Continuous Hemoglobin Monitoring Is Used. Sensors 2018, 18, 1367. [Google Scholar] [CrossRef]
- Saracoglu, A.; Abdullayev, R.; Sakar, M.; Sacak, B.; Girgin Incekoy, F.; Aykac, Z. Continuous hemoglobin measurement during frontal advancement operations can improve patient outcomes. J. Clin. Monit. Comput. 2022, 36, 1689–1695. [Google Scholar] [CrossRef]
- Tang, B.; Yu, X.; Xu, L.; Zhu, A.; Zhang, Y.; Huang, Y. Continuous noninvasive hemoglobin monitoring estimates timing for detecting anemia better than clinicians: A randomized controlled trial. BMC Anesthesiol. 2019, 19, 80. [Google Scholar] [CrossRef] [PubMed]
- Elsakka, A.; Hossam, W.; Helmy, G.; Helmy, N. Monitoring of plethysmography variability index and total hemoglobin levels during cesarean sections with antepartum hemorrhage for early detection of bleeding. Egypt. J. Anaesth. 2017, 33, 5–8. [Google Scholar] [CrossRef]
- Awada, W.N.; Mohmoued, M.F.; Radwan, T.M.; Hussien, G.Z.; Elkady, H.W. Continuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: A prospective cohort study. J. Clin. Monit. Comput. 2015, 29, 733–740. [Google Scholar] [CrossRef]
- Nakamori, E.; Shigematsu, K.; Higashi, M.; Yamaura, K. Postoperative Noninvasive Hemoglobin Monitoring Is Useful to Prevent Unnoticed Postoperative Anemia and Inappropriate Blood Transfusion in Patients Undergoing Total Hip or Knee Arthroplasty: A Randomized Controlled Trial. Geriatr. Orthop. Surg. Rehabil. 2021, 12, 21514593211060575. [Google Scholar] [CrossRef]
- Martin, J.R.; Camp, C.L.; Stitz, A.; Young, E.Y.; Abdel, M.P.; Taunton, M.J.; Trousdale, R.T. Noninvasive Hemoglobin Monitoring: A Rapid, Reliable, and Cost-Effective Method Following Total Joint Replacement. J. Bone Jt. Surg. 2016, 98, 349–355. [Google Scholar] [CrossRef]
- Park, S.K.; Hur, C.; Kim, Y.W.; Yoo, S.; Lim, Y.J.; Kim, J.T. Noninvasive hemoglobin monitoring for maintaining hemoglobin concentration within the target range during major noncardiac surgery: A randomized controlled trial. J. Clin. Anesth. 2024, 93, 111326. [Google Scholar] [CrossRef]
- Arai, Y.; Shoji, H.; Awata, K.; Inage, E.; Ikuse, T.; Shimizu, T. Evaluation of the use of non-invasive hemoglobin measurement in early childhood. Pediatr. Res. 2023, 93, 1036–1040. [Google Scholar] [CrossRef]
- Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1–R39. [Google Scholar] [CrossRef] [PubMed]
- Barker, S.J.; Wilson, W.C. Racial effects on Masimo pulse oximetry: A laboratory study. J. Clin. Monit. Comput. 2023, 37, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Clarke, W.L.; Cox, D.; Gonder-Frederick, L.A.; Carter, W.; Pohl, S.L. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care 1987, 10, 622–628. [Google Scholar] [CrossRef]
- Mills, K.; Vermeer, J.M.; Berry, W.E.; Karreman, E.; Lett, C.D. Determining the validity of non-invasive spot-check hemoglobin co-oximetry testing to detect anemia in postpartum women at a tertiary care centre, A prospective cohort study. BMC Pregnancy Childbirth 2023, 23, 479. [Google Scholar] [CrossRef]
- Hands, K.; Daru, J.; Evans, C.; Kotze, A.; Lewis, C.; Narayan, S.; Richards, T.; Taylor, C.; Timmins, S.; Wilson, A. Identification and management of preoperative anaemia in adults: A British Society for Haematology Guideline update. Br. J. Haematol. 2024, 205, 88–99. [Google Scholar] [CrossRef]
- Ke, Y.H.; Hwang, K.Y.; Thin, T.N.; Sim, Y.E.; Abdullah, H.R. The usefulness of non-invasive co-oximetry haemoglobin measurement for screening pre-operative anaemia. Anaesthesia 2021, 76, 54–60. [Google Scholar] [CrossRef]
- Schneider, L.; Clark, A.; Bailey, M. Predictive value of perfusion index (PI) on the discrepancy between oxygen saturation measurement via pulse oximetry and blood gas analysis. J. Emerg. Crit. Care Med. 2024, 8, 21. [Google Scholar] [CrossRef]
- Hornedo-González, K.D.; Jacob, A.K.; Burt, J.M.; Higgins, A.A.; Engel, E.M.; Hanson, A.C.; Belch, L.; Kor, D.J.; Warner, M.A. Non-invasive hemoglobin estimation for preoperative anemia screening. Transfusion 2023, 63, 315–322. [Google Scholar] [CrossRef]
- Beleta, M.I.; Abdallah, S.R.; Hammad, Y.M.; Yahia, H.E.M.; Ali, A.A.E.; Mohamed, A.A.; AbdElhameed, B.M. Noninvasive continuous hemoglobin monitoring of blood transfusion in obstetric procedures. Egypt. J. Anaesth. 2022, 38, 701–708. [Google Scholar] [CrossRef]
- Al Aseri, Z.A.A.; Aldawood, B.A.; Altamimi, A.A.; Mosleh, H.I.; Qaw, A.S.; Albatran, H.I.; AlMasri, M.M.; AlRihan, T.M.; AlAithan, F.B.; AlAssaf, L.S. Accuracy of non-invasive hemoglobin level measurement in the emergency department. Am. J. Emerg. Med. 2023, 64, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Bıcılıoğlu, Y.; Bal, A.; Demir Yenigürbüz, F.; Ergonul, E.; Geter, S.; Kazanasmaz, H.; Bal, U. Noninvasive Hemoglobin Measurement Reduce Invasive Procedures in Thalassemia Patients. Hemoglobin 2022, 46, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Welker, E.; Novak, J.; Jelsma, L.; Koehler, T.; Davis, A.; DeCou, J.; Durkin, E. Continuous hemoglobin monitoring in pediatric trauma patients with solid organ injury. J. Pediatr. Surg. 2018, 53, 2055–2058. [Google Scholar] [CrossRef] [PubMed]
- Adel, A.; Awada, W.; Abdelhamid, B.; Omar, H.; Abd El Dayem, O.; Hasanin, A.; Rady, A. Accuracy and trending of non-invasive hemoglobin measurement during different volume and perfusion statuses. J. Clin. Monit. Comput. 2018, 32, 1025–1031. [Google Scholar] [CrossRef]
- Gamal, M.; Abdelhamid, B.; Zakaria, D.; Dayem, O.A.E.; Rady, A.; Fawzy, M.; Hasanin, A. Evaluation of Noninvasive Hemoglobin Monitoring in Trauma Patients with Low Hemoglobin Levels. Shock 2018, 49, 150–153. [Google Scholar] [CrossRef]
- García-Soler, P.; Camacho Alonso, J.M.; González-Gómez, J.M.; Milano-Manso, G. Noninvasive hemoglobin monitoring in critically ill pediatric patients at risk of bleeding. Med. Intensiv. 2017, 41, 209–215. [Google Scholar] [CrossRef]
- Caulfield, K.C.; McMahon, O.; Dennis, A.T. Baseline haemoglobin variability by measurement technique in pregnant people on the day of childbirth. Anaesthesia 2024, 79, 178–185. [Google Scholar] [CrossRef]
- Tanner, L.; Lindau, S.; Velten, M.; Schlesinger, T.; Wittmann, M.; Kranke, P.; Berg, K.; Piekarski, F.; Füllenbach, C.; Choorapoikayil, S.; et al. Factors influencing the bias between blood gas analysis versus central laboratory hemoglobin testing. A secondary analysis of a randomized controlled trial. PLoS ONE 2020, 15, e0240721. [Google Scholar] [CrossRef]
Author | Year | Device | Number | Cohort | Bias | Correlation |
---|---|---|---|---|---|---|
Hornedo-González, K.D. [29] | 2023 | Masimo Pronto Pulse Co-Oximeter | 112 | preoperative elective surgical patients | 0.8 g/dL (LoA −2.2; 3.9 g/dL) | NA |
Al Aseri, Z.A.A. [31] | 2023 | Masimo Rad-67™ | 650 | emergency department | 0.146 g/dL (LoA −2.58; 2.87 g/dL) | r = 0.812 |
Arai, Y. [20] | 2023 | Masimo Rad-67™ | 102 | early childhood | 0.188 (LoA −1.61; 1.99 g/dL) | r = 0.548 |
Caulfield, KC. [37] | 2023 | Masimo Rad-67™ | 180 | neurosurgery patients | −1.4 g/dL (LoA −3.59; 0.79 g/dL) | NA |
Mills, K. [25] | 2023 | Masimo Rad-67™ | 301 | pregnant people on the day of childbirth | 2.2 g/dL (LoA 0.08; 4.30 g/dL) | ICC 0.4 |
Beleta, M.I. [30] | 2022 | Masimo pulse co-oximetry | 60 | elective CS under general anesthesia | 0.348 g/dL | r = 0.946 |
Bıcılıoğlu, Y. [32] | 2022 | - | 110 | patients aged 1–5 years | 0.3 g/dL | r = 0.675 |
Ke, Y.H. [27] | 2021 | Masimo Rad-67™ | 392 | screening pre-operative anaemia | 0.14 g/dL (LoA 2.24; −1.95 g/dL) | r = 0.76 |
Tang, B. [14] | 2019 | Masimo Radical-7™ | 28 | children with thalassemia | −0.29 g/dL (LoA −2.30; 1.72 g/dL) | r = 0.69 |
Welker, E. [33] | 2018 | Masimo Radical-7™ | 21 | spine surgery on multiple spinal segments and cytoreductive surgery | 0.80 g/dL (LoA 3.94; −2.33) | NA |
Adel, A. [34] | 2018 | Masimo Radical-7™ | 210 | pediatric trauma patients | 0.01 g/dL (LoA −1.33; 1.34 g/dL) | r = 0.938 |
Gamal, M. [35] | 2018 | Masimo Radical-7™ | 184 | primary or revision total hip or total knee arthroplasty | 0.12 g/dL (LoA −0.56; 0.79 g/dL) | r = 0.872 |
García-Soler, P. [36] | 2017 | Masimo Radical-7™ | 284 | trauma patients with low hemoglobin levels | 0.07 g/dL (LoA −2.26; 3.59 g/dL) | r = 0.72 |
Martin, J. [18] | 2016 | Masimo Pronto Pulse Co-Oximeter | 100 | general anesthesia with complete muscle relaxation, adult | −0,2 g/dL (LoA −3.4; 4.4 g/dL) | CCC = 0.69 |
Awada, W.N. [16] | 2015 | Masimo Radical-7™ | 83 | pediatric Intensive Care Unit | 0.0 g/dL (LoA −1.6; 1.5 g/dL) | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helmer, P.; Steinisch, A.; Hottenrott, S.; Schlesinger, T.; Sammeth, M.; Meybohm, P.; Kranke, P. Evaluation of Non-Invasive Hemoglobin Monitoring in Perioperative Patients: A Retrospective Study of the Rad-67TM (Masimo). Diagnostics 2025, 15, 128. https://doi.org/10.3390/diagnostics15020128
Helmer P, Steinisch A, Hottenrott S, Schlesinger T, Sammeth M, Meybohm P, Kranke P. Evaluation of Non-Invasive Hemoglobin Monitoring in Perioperative Patients: A Retrospective Study of the Rad-67TM (Masimo). Diagnostics. 2025; 15(2):128. https://doi.org/10.3390/diagnostics15020128
Chicago/Turabian StyleHelmer, Philipp, Andreas Steinisch, Sebastian Hottenrott, Tobias Schlesinger, Michael Sammeth, Patrick Meybohm, and Peter Kranke. 2025. "Evaluation of Non-Invasive Hemoglobin Monitoring in Perioperative Patients: A Retrospective Study of the Rad-67TM (Masimo)" Diagnostics 15, no. 2: 128. https://doi.org/10.3390/diagnostics15020128
APA StyleHelmer, P., Steinisch, A., Hottenrott, S., Schlesinger, T., Sammeth, M., Meybohm, P., & Kranke, P. (2025). Evaluation of Non-Invasive Hemoglobin Monitoring in Perioperative Patients: A Retrospective Study of the Rad-67TM (Masimo). Diagnostics, 15(2), 128. https://doi.org/10.3390/diagnostics15020128