Corrosion Behavior and Mechanical Properties of AISI 316 Stainless Steel Clad Q235 Plate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microstructure and Hardness
2.2. Corrosion Testing
- ASTM G-48 test (method C). Coupons of size 20 mm × 30 mm × 1.5–2.5 mm thickness were taken from the AISI 316L clad layer. The carbon steel was machined and removed in order to obtain a flat surface. The other surface of the stainless steel coupons was practically left in the as-received condition, except for slight grinding and polishing. Duplicate specimens were considered. The ASTM G-48 test (method C) consisted of the determination of the CPT in a highly acidic media, e.g., ferric chloride. CPT temperature is defined as the lowest temperature at which pitting corrosion occurs. Test samples were exposed for 72 h to 6% ferric chloride solution. If no pitting corrosion was detected, the testing temperature was increased. The test performed was duplicated.
- ASTM A262 test (method C, Huey). This test consisted of a cyclic exposure to nitric acid of coupons (30 mm × 20 mm), taken from the AISI 316L clad layer, for 5 periods of 48 h each. The test performed was duplicated.
2.3. Heat Treatments
2.4. Chemical Composition by X-ray Fluorescence (XRF)
3. Results
3.1. As-Received Material
3.1.1. Light Microscopy Investigation
3.1.2. Hardness Profiles
3.1.3. SEM-EDS Investigation
3.1.4. Corrosion Resistance of Clad Layer
3.1.5. Chemical Composition Profiles
3.2. Stress-Relieving Effect
4. Conclusions
- (1)
- Corrosion tests on the clad and Q and T material, i.e., the determination of CPT by the ASTM G-48 test and Huey (ASTM A262 Type C) immersion tests to evaluate the intergranular corrosion resistance, were not promising when almost all weld overlays were sampled, likely due to excessive Fe content in the CRA layer. When cladding coupons were predominantly sampled from the second overlay pass, the corrosion resistance was significantly improved, although it remained slightly below what was expected for the standard AISI 316L steel.
- (2)
- The above results are related to the interface chemical composition. In particular, the results showed that the first 2 mm thick layer of the cladding showed a uniform composition at about 70% Fe content. However, depths greater than 2 mm gave an iron content >70%, with values that increased almost linearly, reaching 80% at 3.0 mm depth due to dilution phenomena.
- (3)
- Some hardness peaks (e.g., 250 to 270 HV10) were detected in the microalloyed steel close to the fusion line in the CGHAZ.
- (4)
- The hardness peaks in the CGHAZ of the microalloyed steel, close to the fusion line (0.3 mm distance), disappeared after Q and T; they composed all values lower than 220 HV10. This means that the reaustenitizing treatment, at temperatures below those experienced at 0.3 mm from the fusion line, produces a refinement of austenite grains, sufficient to decrease hardenability and hardness after tempering.
Author Contributions
Funding
Conflicts of Interest
References
- Lee, K.S.; Yoon, D.H.; Kim, H.K.; Kwon, Y.-N.; Lee, Y.-S. Effect of annealing on the interface microstructure and mechanical properties of a STS–Al–Mg 3-ply clad sheet. Mater. Sci. Eng. A 2012, 556, 319–330. [Google Scholar] [CrossRef]
- Liu, C.Y.; Wang, Q.; Jia, Y.Z.; Jing, R.; Zhang, B.; Ma, M.Z.; Liu, R.P. Microstructures and mechanical properties of Mg/Mg and Mg/Al/Mg laminated composites prepared via warm roll bonding. Mater. Sci. Eng. A 2012, 556, 1–8. [Google Scholar] [CrossRef]
- Hang, S.U.; Luo, X.-B.; Chai, F.; Shen, J.-C.; Sun, X.-J.; Lu, F. Manufacturing Technology and Application Trends of Titanium Clad Steel Plates. J. Iron Steel Res. Int. 2015, 22, 977–982. [Google Scholar]
- Marshall, P. Austenitic Stainless Steels: Microstructure and Mechanical Properties; Elsevier Applied Science Publisher: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Di Schino, A. Manufacturing and application of stainless steels. Metals 2020, 10, 327. [Google Scholar] [CrossRef] [Green Version]
- Rufini, R.; Di Pietro, O.; Di Schino, A. Predictive simulation of plastic processing of welded stainless steel pipes. Metals 2018, 8, 519. [Google Scholar] [CrossRef] [Green Version]
- Di Schino, A.; Di Nunzio, P.E.; Turconi, G.L. Microstrucure evolution during tempering of martensite in medium carbon steel. Mat. Sci. For. 2007, 558–559, 1435–1441. [Google Scholar]
- Di Schino, A.; Kenny, J.M.; Abbruzzese, G. Analysis pf the recrystallization and grain growth processes in AISI 316 stainless steel. J. Mat. Sci. 2002, 37, 5291–5298. [Google Scholar] [CrossRef]
- Di Schino, A.; Porcu, G.; Longobardo, M.; Lopez Turconi, G.; Scoppio, L. Metallurgical design and development of C125 grade for mild sour service application. In NACE-International Corrosion Conference Series, San Diego, CA, USA, 10–14 September 2006; NACE International: Houston, TX, USA; pp. 061251–0612514.
- Di Schino, A. Analysis of heat treatment effect on microstructural features evolution in a micro-alloyed martensitic steel. Acta Met. Slovaca 2016, 22, 266–270. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.K.; Filipponi, M.; Di Schino, A.; Rossi, F.; Castaldi, J. Corrosion behaviour of high temeperature fuel cells: Issues for materials selection. Metalurgija 2019, 58, 347–351. [Google Scholar]
- Cianetti, F.; Ciotti, M.; Palmieri, M.; Zucca, G. On the evaluation of surface fatigue strength of stainless steel aeronautical component. Metals 2019, 9, 455. [Google Scholar] [CrossRef] [Green Version]
- Di Schino, A.; Valentini, L.; Kenny, J.M.; Gerbig, Y.; Ahmed, I.; Hefke, H. Wear resistance of high-nitrogen austenitic stainless steel coated with nitrogenated amorphous carbon films. Surf. Coat. Technol. 2002, 161, 224–231. [Google Scholar] [CrossRef]
- Bregliozzi, G.; Ahmed, S.I.-U.; Di Schino, A.; Kenny, J.M.; Haefke, H. Friction and wear behavior of austenitic stainless steel: Influence of atmospheric humidity, load range, and grain size. Tribol. Lett. 2004, 17, 697–704. [Google Scholar] [CrossRef]
- Valentini, L.; Di Schino, A.; Kenny, J.M.; Gerbig, Y.; Haefke, H. Influence of grain size and film composition on wear resistance of ultrafine grained AISI 304 stainless steel coated with amorphous carbon films. Wear 2002, 253, 458–464. [Google Scholar] [CrossRef]
- Zitelli, C.; Folgarait, P.; Di Schino, A. Laser powder bed fusion of stainless-steel grades: A review. Metals 2019, 9, 731. [Google Scholar] [CrossRef] [Green Version]
- Di Schino, A.; Di Nunzio, P.E. Metallurgical aspects related to contact fatigue phenomena in steels for back up rolling. Acta Met. Slovaca 2017, 23, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Quin, G.; Tang, Y.; Zhang, B.; Lin, S.; Geng, P. Microstructures and mechanical properties of stainless steel clad plate joint with diverse filler metals. J. Mat. Res. Technol. 2020, 9, 2522–2534. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Wang, X.; Yan, H. Fabrication of a thick copper-stainless steel clad plate for nuclear fusion equipment by explosive welding. Fusion Eng. Des. 2018, 137, 91–96. [Google Scholar] [CrossRef]
- Qin, Q.; Zhang, D.-T.; Zang, Y.; Guan, B. A simulation study on the multi-pass rolling bond of 316L/Q345R stainless clad plate. Adv. Mech. Eng. 2015, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-W.; Liu, H.-T.; Wang, Z.-J.; Zhang, X.-M.; Wang, G.-D. Suppression of edge cracking and improvement of ductility in high borated stainless steel composite plate fabricated by hot-roll-bonding. Mater. Sci. Eng. A 2018, 731, 377–384. [Google Scholar] [CrossRef]
- Mousawi, A.; Barrett, S.A.A.; Al-Hassani, S.T.S. Explosive welding of metal plates. J. Mater. Process. Technol. 2008, 202, 224–239. [Google Scholar]
- Tian, M.J.; Chen, H.; Zhang, Y.K.; Wang, T.; Zhu, Z.Y. Welding process of composite plate for construction and its welded microstructure and properties. Heat Treat. Met. 2015, 40, 110–115. [Google Scholar]
- Qiu, T.; Wu, B.X.; Chen, Q.Y.; Chen, W.J. Analysis on welded joint properties of stainless clad steel plates. Electric Weld. Mach. 2013, 43, 83–87. [Google Scholar]
- Liao, H.M.; Song, K.Q.; Cao, Y.P.; Zeng, M. Welding process and welded joint microstructure of austenitic stainless clad steel plate. Hot Work. Technol. 2012, 41, 148–150. [Google Scholar]
- Wang, W.X.; Wang, Y.F.; Liu, M.C.; Cheng, F.C.; Wu, W. Microstructure and corrosion resistance of butt joint of 1Cr18Ni9Ti+Q235 composite plate. Trans. China Weld. Inst. 2010, 31, 89–92. [Google Scholar]
- Zhang, J.J.; Ju, Z.P. Investigation on welding performance of 321–Q345q–D composite steel plate used in railway bridge. Steel Constr. 2012, 27, 48–53. [Google Scholar]
- Napoli, G.; Di Schino, A.; Paura, M.; Vela, T. Colouring titanium alloys by anodic oxidation. Metalurgija 2018, 57, 111–113. [Google Scholar]
- Xin, J.; Song, Y.; Fang, J.; Wei, J.; Huang, C.; Wang, S. Evaluation of inter-granular corrosion susceptibility in 304LN austenitic stainless steel weldments. Fusion Eng. Des. 2018, 133, 70–76. [Google Scholar] [CrossRef]
- Aydogdu, G.H.; Aydinol, M.K. Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 304L type stainless steel. Corros. Sci. 2006, 8, 3565–3583. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Zhang, B.; Zhang, Q. Microstructure characterization and mechanical properties of stainless steel clad plate. Materials 2019, 12, 509. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, X.; Luo, Y. Equivalent properties of transition layer based on element distribution in laser bending of 304 stainless steel/Q235 carbon steel laminated plate. Materials 2018, 11, 2326. [Google Scholar] [CrossRef] [Green Version]
- Jing, Y.-A.; Qin, Y.; Zang, X.; Shang, Q.; Song, H. A novel reduction-bonding process to fabricate stainless steel clad plate. J. Alloys Compd. 2014, 617, 688–698. [Google Scholar] [CrossRef]
- Liu, B.X.; Wei, J.Y.; Yang, M.X.; Yin, F.X.; Xu, K.C. Effect of heat treatment on the mechanical properties of copper clad steel plates. Vacuum 2018, 154, 250–258. [Google Scholar] [CrossRef]
- Dhib, Z.; Guermazi, N.; Ktari, A.; Gasperini, M.; Haddar, N. Mechanical bonding properties and interfacial morphologies of austenitic stainless steel clad plates. Mater. Sci. Eng. A 2017, 696, 374–386. [Google Scholar] [CrossRef]
- Yu, T.; Jing, Y.-A.; Yan, X.; Li, W.; Pang, Q.; Jing, G. Microstructures and properties of roll-bonded stainless/medium carbon steel clad plates. J. Mater. Process. Technol. 2019, 266, 264–273. [Google Scholar]
- Chen, C.X.; Liu, M.Y.; Liu, B.X.; Yin, F.X.; Dong, Y.C.; Zhang, X.; Zhang, F.Y.; Zhang, Y.G. Tensile shear sample design and interfacial shear strength of stainless steel clad plate. Fusion Eng. Des. 2017, 125, 431–441. [Google Scholar] [CrossRef]
- Gabrel, J.; Coussement, C.; Verelest, L.; Blum, R.; Chen, Q.; Testani, C. Superheaters materials testing for USC Boilers: Steam side oxidation rate of 9 advanced materials in industrial conditions. Mat. Sci. For. 2001, 369, 931–938. [Google Scholar] [CrossRef]
- Zhang, S.; Xiao, H.; Xie, H.; Gu, L. The preparation and property research of the stainless steel/iron scrap clad plate. J. Mater. Process. Technol. 2014, 214, 1205–1210. [Google Scholar] [CrossRef]
- Di Schino, A.; Alleva, L.; Guagnelli, M. Microstructure evolution during quenching and tempering of martensite in a medium C steel. Mat. Sci. For. 2012, 715–716, 860–865. [Google Scholar] [CrossRef]
- Song, H.; Shin, H.; Shin, Y. Heat-treatment of clad steel plate for application of hull structure. Ocean Eng. 2016, 122, 278–287. [Google Scholar] [CrossRef]
Alloy | Cr | Ni | Mo | Mn | C | Si | P | S | Fe |
---|---|---|---|---|---|---|---|---|---|
AISI 316 L | 17.9 | 8.0 | 1.1 | 1.5 | 0.02 | 0.12 | 0.020 | 0.10 | Balance |
Q235 | 0 | 0 | 0 | 1.0 | 0.20 | 0.35 | 0.040 | 0.40 | Balance |
Welding Parameters | Values |
---|---|
Welding Current | 450–550 A |
Arc Voltage | 28–33 V |
Travel Speed | 2–3 mm/s |
Stick-out | 35 mm |
Overlap | 8–11 mm |
Heat Input Max | 5.3 (kJ/mm) |
Preheat temperature | About 150 °C |
Material State | Performed Tests | |
---|---|---|
Hardness | Microstructure | |
Q&T+ cladding | √ | √ |
Stress relieved at 640 °C × 2 h | √ | |
Stress relieved at 660 °C × 2 h | √ | √ |
Q&T (920 °C × 1 h + 670 °C × 2 h) | √ | √ |
Q&T (980 °C × 1 h + 670 °C × 2 h) | √ | √ |
Q&T (1000 °C × 1 h + 670 °C × 2 h) | √ | √ |
Cr % | Ni % | Mn % | Mo % | Fe, % | |
---|---|---|---|---|---|
Zone IV (CGHAZ) | 0.05 | 0.1 | 0.9 | 0.05 | 98.9 |
Zone III | 13.2 | 5.0 | 1.0 | 0.50 | 80.3 |
Zone II | 18.8 | 7.7 | 0.9 | 1.1 | 71.5 |
Zone I | 17.9 | 7.8 | 1.0 | 1.2 | 72.1 |
Cladding Specimens | CPT (°C) ASTM G-48 | Corrosion Rate (mm/year) ASTM A262-C |
---|---|---|
2.5 mm thickness (almost total weld overlay) | Failed at 20 °C (heavy corrosion) | 61 mm/year (first cycle) 2.6 mm/year (third cycle) |
1.5 mm thickness (second pass of the weld overlay) | Failed at 20 °C (5 pits) | 2.4 mm/year (first cycle) 2.4 mm/year (third cycle) |
1.5 mm thickness (second pass of the weld overlay) | Passed at 10 °C | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Schino, A.; Testani, C. Corrosion Behavior and Mechanical Properties of AISI 316 Stainless Steel Clad Q235 Plate. Metals 2020, 10, 552. https://doi.org/10.3390/met10040552
Di Schino A, Testani C. Corrosion Behavior and Mechanical Properties of AISI 316 Stainless Steel Clad Q235 Plate. Metals. 2020; 10(4):552. https://doi.org/10.3390/met10040552
Chicago/Turabian StyleDi Schino, Andrea, and Claudio Testani. 2020. "Corrosion Behavior and Mechanical Properties of AISI 316 Stainless Steel Clad Q235 Plate" Metals 10, no. 4: 552. https://doi.org/10.3390/met10040552