Smoothed-Particle Hydrodynamics (SPH) Simulation of AA6061-AA5086 Dissimilar Friction Stir Welding
Abstract
:1. Introduction
2. Simulation of FSW
3. Experimental Procedure
4. Results and Discussion
5. Conclusions
- (1)
- The presented model can estimate temperature changes and residual stresses in dissimilar FSW of the AA5086 and AA6061 aluminum alloys with a maximum error of 14% and 11%, respectively.
- (2)
- Both simulation and experimental investigations reveal that changing the position of the AA6061 aluminum alloy on the advancing or retreating side significantly affects the thermal profile. Specifically, when the AA6061 alloy is on the retreating side, the temperature profile becomes more symmetrical than its previous state.
- (3)
- The strain rate distribution between the advancing and retreating sides is almost symmetrical when the AA5086 alloy is on the advancing side.The strain rate results indicate that when the AA6061 alloy is on the advancing side, both the strain rate and temperature are higher than in the other case.
- (4)
- When the AA5086 alloy is positioned on the advancing side, the maximum temperature and strain rate on the advancing side are higher than on the retreating side.
- (5)
- Using the same welding parameters, when the AA6061 alloy is located on the advancing side, the difference in strain rate between the advancing and retreating sides is around 15–18% greater than when the alloy is placed on the retreating side.
- (6)
- On the AA5086 side, because of recrystallization and generation of fine grains in the weld nugget, the micro-hardness is higher than the base metal. On the other hand, the partial dissolving of precipitates on the AA6061 side leads to an abrupt decrease in hardness.
- (7)
- Compared to base metals, by increasing the traverse speed from 10 to 15 cm/min at 900 rpm, the hardness of the stir zone on the AA5086 and AA6061 sides increases and decreases by 16 and 35%, respectively.
Funding
Data Availability Statement
Conflicts of Interest
References
- Babalola, S.A.; Dutta, S.; Murmu, N.C.; Akinnuli, B.O. In-situ process reliability monitoring strategy for friction stir welding machine. Mater. Today Proc. 2022, 66, 3883–3889. [Google Scholar] [CrossRef]
- Gopan, V.; Wins, K.L.D.; Surendran, A. Innovative potential of additive friction stir deposition among current laser based metal additive manufacturing processes: A review. CIRP J. Manuf. Sci. Technol. 2021, 32, 228–248. [Google Scholar] [CrossRef]
- Ahmed, M.M.Z.; Seleman, M.M.E.-S.; Fydrych, D.; Çam, G. Friction Stir Welding of Aluminum in the Aerospace Industry: The Current Progress and State-of-the-Art Review. Materials 2023, 16, 2971. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Society, A.W.; Meng, X.; Huang, Y. Entire-process simulation of friction stir welding—Part 1: Experiments and simulation. Weld. J. 2022, 101, 144–159. [Google Scholar] [CrossRef]
- Aval, H.J.; Serajzadeh, S.; Kokabi, A.H. Thermo-mechanical and microstructural issues in dissimilar friction stir welding of AA5086–AA6061. J. Mater. Sci. 2011, 46, 3258–3268. [Google Scholar] [CrossRef]
- Aval, H.J.; Serajzadeh, S.; Kokabi, A.H. The influence of tool geometry on the thermo-mechanical and microstructural behaviour in friction stir welding of AA5086. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2010, 225, 1–16. [Google Scholar] [CrossRef]
- Maniscalco, J.; Elmustafa, A.A.; Bhukya, S.; Wu, Z. Numerical Simulation of the Donor-Assisted Stir Material for Friction Stir Welding of Aluminum Alloys and Carbon Steel. Metals 2023, 13, 164. [Google Scholar] [CrossRef]
- Hossfeld, M. Modeling Friction Stir Welding: On Prediction and Numerical Tool Development. Metals 2022, 12, 1432. [Google Scholar] [CrossRef]
- Janga, V.S.R.; Awang, M. Influence of Plunge Depth on Temperatures and Material Flow Behavior in Refill Friction Stir Spot Welding of Thin AA7075-T6 Sheets: A Numerical Study. Metals 2022, 12, 927. [Google Scholar] [CrossRef]
- Iqbal, P.; Jain, R.; Pal, S.K.; Mandal, P. Numerical modelling of friction stir welding of pipes: Effect of tool shoulder on mechanical property and metallurgical characterization. J. Manuf. Process. 2022, 79, 326–339. [Google Scholar] [CrossRef]
- Su, H.; Wu, C. Numerical simulation for the optimization of polygonal pin profiles in friction stir welding of aluminum. Acta Met. Sin. (Engl. Lett.) 2021, 34, 1065–1078. [Google Scholar] [CrossRef]
- Nandan, R.; Roy, G.G.; Debroy, T. Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding. Met. Mater. Trans. A 2006, 37, 1247–1259. [Google Scholar] [CrossRef]
- Arora, A.; Zhang, Z.; De, A.; DebRoy, T. Strains and strain rates during friction stir welding. Scr. Mater. 2009, 61, 863–866. [Google Scholar] [CrossRef]
- Chen, G.; Feng, Z.; Zhu, Y.; Shi, Q. An alternative frictional boundary condition for computational fluid dynamics simulation of friction stir welding. J. Mater. Eng. Perform. 2016, 25, 4016–4023. [Google Scholar] [CrossRef]
- Shi, L.; Wu, C.S.; Liu, H.J. The effect of the welding parameters and tool size on the thermal process and tool torque in reverse dual-rotation friction stir welding. Int. J. Mach. Tools Manuf. 2015, 91, 1–11. [Google Scholar] [CrossRef]
- Chen, G.; Li, H.; Wang, G.; Guo, Z.; Zhang, S.; Dai, Q.; Wang, X.; Zhang, G.; Shi, Q. Effects of pin thread on the in-process material flow behavior during friction stir welding: A computational fluid dynamics study. Int. J. Mach. Tools Manuf. 2018, 124, 12–21. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, C. Influence of tool thread pitch on material flow and thermal process in friction stir welding. J. Mater. Process. Technol. 2020, 275, 116281. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, Q.; Liu, Q.; Xie, R.; Zhang, G.; Chen, G. Effects of tool tilt angle on the in-process heat transfer and mass transfer during friction stir welding. Int. J. Heat Mass Transf. 2018, 125, 32–42. [Google Scholar] [CrossRef]
- Yang, C.; Wu, C.; Lv, X. Numerical analysis of mass transfer and material mixing in friction stir welding of aluminum/magnesium alloys. J. Manuf. Process. 2018, 32, 380–394. [Google Scholar] [CrossRef]
- Yang, C.-Y. Inverse determination of heat input during the friction stir welding process. Int. J. Heat Mass Transf. 2014, 76, 411–418. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhan, H.; Gu, Y.; Li, Q. Modeling heat transfer during friction stir welding using a meshless particle method. Int. J. Heat Mass Transf. 2017, 104, 288–300. [Google Scholar] [CrossRef]
- Wang, X.; Gao, Y.; Liu, X.; McDonnell, M.; Feng, Z. Tool-workpiece stick-slip conditions and their effects on torque and heat generation rate in the friction stir welding. Acta Mater. 2021, 213, 116969. [Google Scholar] [CrossRef]
- Ahmed, M.M.Z.; Habba, M.I.A.; Jouini, N.; Alzahrani, B.; Seleman, M.M.E.-S.; El-Nikhaily, A. Bobbin tool friction stir welding of aluminum using different tool pin geometries: Mathematical models for the heat generation. Metals 2021, 11, 438. [Google Scholar] [CrossRef]
- Zhao, W.; Wu, C.; Su, H. Numerical investigation of heat generation and plastic deformation in ultrasonic assisted friction stir welding. J. Manuf. Process. 2020, 56, 967–980. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, S.; Kumar, V.; Maheshwari, K.; Singhal, P. A Review on Heat Generation and Temperature Distribution Models in Friction stir Welding (FSW). In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; p. 012080. [Google Scholar]
- Kim, D.; Badarinarayan, H.; Kim, J.H.; Kim, C.; Okamoto, K.; Wagoner, R.; Chung, K. Numerical simulation of friction stir butt welding process for AA5083-H18 sheets. Eur. J. Mech. A/Solids 2010, 29, 204–215. [Google Scholar] [CrossRef]
- Li, S.; Sui, J.; Ding, F.; Wu, S.; Chen, W.; Wang, C. Optimization of Milling Aluminum Alloy 6061-T6 using Modified Johnson-Cook Model. Simul. Model. Pract. Theory 2021, 111, 102330. [Google Scholar] [CrossRef]
- Abdulhamid, H.; Kolopp, A.; Bouvet, C.; Rivallant, S. Experimental and numerical study of AA5086-H111 aluminum plates subjected to impact. Int. J. Impact Eng. 2013, 51, 1–12. [Google Scholar] [CrossRef]
- Sirigiri, V.K.R.; Gudiga, V.Y.; Gattu, U.S.; Suneesh, G.; Buddaraju, K.M. A review on Johnson Cook material model. Mater. Today Proc. 2022, 62, 3450–3456. [Google Scholar] [CrossRef]
- Bal, B.; Karaveli, K.K.; Cetin, B.; Gumus, B. The precise determination of the johnson–cook material and damage model parameters and mechanical properties of an aluminum 7068-t651 alloy. J. Eng. Mater. Technol. 2019, 141, 041001. [Google Scholar] [CrossRef]
- Prasad, Y.; Rao, K.; Sasidhar, S. Hot Working Guide: A Compendium of Processing Maps; ASM International: Materials Park, OH, USA, 2015. [Google Scholar]
- Yu, P.; Wu, C.; Shi, L. Analysis and characterization of dynamic recrystallization and grain structure evolution in friction stir welding of aluminum plates. Acta Mater. 2021, 207, 116692. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, D.; Luo, X.; Zhang, W.; Zhang, W.; Qiu, C. EBSD study of underwater friction stir welded AA7003-T4 and AA6060-T4 dissimilar joint. J. Mater. Res. Technol. 2020, 9, 4309–4318. [Google Scholar] [CrossRef]
- Xie, J.; Chen, X.; Cao, Y.; Sun, Y.; Huang, G.; Liu, Q. The heterogeneity of dynamic recrystallization and texture evolution in stirring zone of Al-Mg-Sc alloy. Mater. Charact. 2022, 191, 112092. [Google Scholar] [CrossRef]
- Humphreys, F.; Hatherly, M. Recrystallization and Related Annealing Phenomena; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
Alloy | Mg | Mn | Cu | Cr | Si | Fe | Al |
---|---|---|---|---|---|---|---|
AA5086 | 3.98 | 0.51 | 0.016 | 0.15 | 0.26 | 0.28 | Bal. |
AA6061 | 0.97 | 0.045 | 0.328 | 0.08 | 0.52 | 0.41 | Bal. |
Alloy | Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Elongation (%) |
---|---|---|---|
AA5086 | 112 ± 5 | 253 ± 10 | 26 ± 3 |
AA6061 | 278 ± 7 | 315 ± 15 | 10 ± 2 |
Sample | Rotational Speed (rpm) | Traverse Speed (cm/min) | Advancing Side | Retreating Side |
---|---|---|---|---|
S1 | 1000 | 10 | AA5086 | AA6061 |
S2 | 1000 | 20 | AA5086 | AA6061 |
S3 | 1000 | 10 | AA6061 | AA5086 |
S4 | 1000 | 20 | AA6061 | AA5086 |
Sample | AA6061 Side | AA5086 Side | ||
---|---|---|---|---|
Grain Size (μm) | Maximum Predicted Temperature (°C) | Grain Size (μm) | Maximum Predicted Temperature (°C) | |
S1 | 9.1 | 473 | 10.8 | 485 |
S2 | 6.4 | 441 | 7.9 | 456 |
S3 | 8.3 | 460 | 10 | 452 |
S4 | 5.9 | 435 | 7 | 423 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamshidi Aval, H. Smoothed-Particle Hydrodynamics (SPH) Simulation of AA6061-AA5086 Dissimilar Friction Stir Welding. Metals 2023, 13, 906. https://doi.org/10.3390/met13050906
Jamshidi Aval H. Smoothed-Particle Hydrodynamics (SPH) Simulation of AA6061-AA5086 Dissimilar Friction Stir Welding. Metals. 2023; 13(5):906. https://doi.org/10.3390/met13050906
Chicago/Turabian StyleJamshidi Aval, Hamed. 2023. "Smoothed-Particle Hydrodynamics (SPH) Simulation of AA6061-AA5086 Dissimilar Friction Stir Welding" Metals 13, no. 5: 906. https://doi.org/10.3390/met13050906