Study on the Propagation Law and Waveform Characteristics of a Blasting Shock Wave in a Highway Tunnel with the Bench Method
Abstract
:1. Introduction and Background
2. Engineering Background
3. Establishment of Numerical Calculation Model
4. Calculation Results Analysis
4.1. Measuring Point Arrangement
4.2. Shock Wave Flow Field Changes
4.3. Cross-Section Overpressure Analysis
4.4. Analysis of Shock Wave Overpressure Attenuation
5. Blasting Shock Wave Field Test and Overpressure Prediction
5.1. Test Instruments
5.2. Analysis Results
- (1)
- Attenuation formula fitting
- (2)
- Applicability analysis
6. Discussion
7. Conclusions
- (1)
- Initially, the shock wave propagated spherically, but it was subsequently affected by the enclosed structure of the tunnel. This interaction caused multiple reflections of the shock wave with the tunnel walls, resulting in a significant increase in overpressure values at the vault, side wall, and arch foot positions. At a distance of 6 times the equivalent diameter from the explosion center (48.5 m from the tunnel face), the spherical shock wave transitioned into a plane wave and continued to propagate forward.
- (2)
- As the shock wave reached a specific position, its overpressure instantaneously peaked before undergoing multiple-peak oscillation, zigzag attenuation, and gradual restoration to initial atmospheric pressure. Within 0~20 m from the tunnel face, repeated reflection between the shock wave and tunnel wall caused an increase in the overpressure value at 20 m, while exhibiting significant fluctuations in the attenuation coefficient. Beyond 50 m, propagation occurred as a stable plane wave, with an overpressure attenuation coefficient ranging from 1.17 to 1.03. The minimum safe distance between personnel and the explosion source in the tunnel was 236.8 m.
- (3)
- Through on-site testing of shock wave overpressure values, Pokrovsky’s empirical formula for shock wave overpressure has been refined based on parameters derived using the least-squares method. This paper proposed an empirical attenuation formula for shock wave overpressure with a good fitting degree (R2 = 0.993). When excavating tunnels using drilling and blasting methods, this formula can be utilized to predict plane shock wave overpressures in the upper bench of the tunnel.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, Z.; Zhang, D.; Fang, Q. Technologies for Large Cross-Section Subsea Tunnel Construction Using Drilling and Blasting Method. Tunn. Undergr. Space Technol. 2023, 141, 105161. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Y.; Geng, F.; Zhang, Z. Study on Dust Distribution in a Highway Tunnel during the Full-Face Excavation with Drilling-Blasting Method. Tunn. Undergr. Space Technol. 2023, 139, 105229. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, S.; Tong, J.; Wang, Z.; Yao, M.; Li, J.; Yi, W. Intelligent Classification Model of Surrounding Rock of Tunnel Using Drilling and Blasting Method. Undergr. Space 2021, 6, 539–550. [Google Scholar] [CrossRef]
- Zhang, G.-H.; Chen, W.; Jiao, Y.-Y.; Wang, H.; Wang, C.-T. A Failure Probability Evaluation Method for Collapse of Drill-and-Blast Tunnels Based on Multistate Fuzzy Bayesian Network. Eng. Geol. 2020, 276, 105752. [Google Scholar] [CrossRef]
- Trivedi, R.; Singh, T.N.; Raina, A.K. Prediction of Blast-Induced Flyrock in Indian Limestone Mines Using Neural Networks. J. Rock Mech. Geotech. Eng. 2014, 6, 447–454. [Google Scholar] [CrossRef]
- Brode, H.L. Blast Wave from a Spherical Charge. Phys. Fluids 1959, 2, 217–229. [Google Scholar] [CrossRef]
- Henrych, J.; Abrahamson, G.R. The Dynamics of Explosion and Its Use. J. Appl. Mech. 1980, 47, 218. [Google Scholar] [CrossRef]
- Baker, W.E.; Cox, P.A.; Kulesz, J.J.; Strehlow, R.A.; Westine, P.S. Explosion Hazards and Evaluation; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 978-0-444-59988-9. [Google Scholar]
- Fang, Y.; Yao, Z.; Lei, S. Air Flow and Gas Dispersion in the Forced Ventilation of a Road Tunnel during Construction. Undergr. Space 2019, 4, 168–179. [Google Scholar] [CrossRef]
- Fang, Y.; Fan, J.; Kenneally, B.; Mooney, M. Air Flow Behavior and Gas Dispersion in the Recirculation Ventilation System of a Twin-Tunnel Construction. Tunn. Undergr. Space Technol. 2016, 58, 30–39. [Google Scholar] [CrossRef]
- Chapman, T.C.; Rose, T.A.; Smith, P.D. Blast Wave Simulation Using AUTODYN2D: A Parametric Study. Int. J. Impact Eng. 1995, 16, 777–787. [Google Scholar] [CrossRef]
- Zukas, J.A.; Scheffler, D.R. Practical Aspects of Numerical Simulations of Dynamic Events: Effects of Meshing. Int. J. Impact Eng. 2000, 24, 925–945. [Google Scholar] [CrossRef]
- Luccioni, B.; Ambrosini, D.; Danesi, R. Blast Load Assessment Using Hydrocodes. Eng. Struct. 2006, 28, 1736–1744. [Google Scholar] [CrossRef]
- Genova, B.; Silvestrini, M.; Leon Trujillo, F.J. Evaluation of the Blast-Wave Overpressure and Fragments Initial Velocity for a BLEVE Event via Empirical Correlations Derived by a Simplified Model of Released Energy. J. Loss Prev. Process Ind. 2008, 21, 110–117. [Google Scholar] [CrossRef]
- Wu, C.; Hao, H. Numerical Simulation of Structural Response and Damage to Simultaneous Ground Shock and Airblast Loads. Int. J. Impact Eng. 2007, 34, 556–572. [Google Scholar] [CrossRef]
- Ishikawa, N.; Beppu, M. Lessons from Past Explosive Tests on Protective Structures in Japan. Int. J. Impact Eng. 2007, 34, 1535–1545. [Google Scholar] [CrossRef]
- Smith, P.D.; Vismeg, P.; Teo, L.C.; Tingey, L. Blast Wave Transmission along Rough-Walled Tunnels. Int. J. Impact Eng. 1998, 21, 419–432. [Google Scholar] [CrossRef]
- Rodríguez, R.; Toraño, J.; Menéndez, M. Prediction of the Airblast Wave Effects near a Tunnel Advanced by Drilling and Blasting. Tunn. Undergr. Space Technol. 2007, 22, 241–251. [Google Scholar] [CrossRef]
- Benselama, A.M.; William-Louis, M.J.-P.; Monnoyer, F.; Proust, C. A Numerical Study of the Evolution of the Blast Wave Shape in Tunnels. J. Hazard. Mater. 2010, 181, 609–616. [Google Scholar] [CrossRef]
- Uystepruyst, D.; Monnoyer, F. A Numerical Study of the Evolution of the Blast Wave Shape in Rectangular Tunnels. J. Loss Prev. Process Ind. 2015, 34, 225–231. [Google Scholar] [CrossRef]
- Pennetier, O.; William-Louis, M.; Langlet, A. Numerical and Reduced-Scale Experimental Investigation of Blast Wave Shape in Underground Transportation Infrastructure. Process Saf. Environ. Prot. 2015, 94, 96–104. [Google Scholar] [CrossRef]
- Wu, M.; Wang, B.; Ba, Z.; Dai, K.; Liang, J. Propagation Attenuation of Elastic Waves in Multi-Row Infinitely Periodic Pile Barriers: A Closed-Form Analytical Solution. Eng. Struct. 2024, 315, 118480. [Google Scholar] [CrossRef]
- Figuli, L.; Cekerevac, D.; Bedon, C.; Leitner, B. Numerical Analysis of the Blast Wave Propagation Due to Various Explosive Charges. Adv. Civ. Eng. 2020, 2020, 8871412. [Google Scholar] [CrossRef]
- Fang, Y.; Zou, Y.-L.; Zhou, J.; Yao, Z.; Lei, S.; Yang, W. Field Tests on the Attenuation Characteristics of the Blast Air Waves in a Long Road Tunnel: A Case Study. Shock Vib. 2019, 2019, 9693524. [Google Scholar] [CrossRef]
- Deng, X.F.; Zhu, J.B.; Chen, S.G.; Zhao, Z.Y.; Zhou, Y.X.; Zhao, J. Numerical Study on Tunnel Damage Subject to Blast-Induced Shock Wave in Jointed Rock Masses. Tunn. Undergr. Space Technol. 2014, 43, 88–100. [Google Scholar] [CrossRef]
- Kumar, R.; Choudhury, D.; Bhargava, K. Prediction of Blast-Induced Vibration Parameters for Soil Sites. Int. J. Geomech. 2014, 14, 04014007. [Google Scholar] [CrossRef]
- Yao, Z.; Tian, Q.; Fang, Y.; Ye, L.; Pu, S.; Fang, X. Propagation and Attenuation of Blast Vibration Waves in Closely Spaced Tunnels: A Case Study. Arab. J. Sci. Eng. 2022, 47, 4239–4252. [Google Scholar] [CrossRef]
- Li, H.; Wu, H.; Wang, Z.; Zhang, G.; Li, J.; Zhou, H.; Wang, M.; He, Y. Experimental and Numerical Simulation of the Propagation Law of Shock Waves in Corrugated Steel-Lined Tunnels. Process Saf. Environ. Prot. 2022, 168, 1019–1030. [Google Scholar] [CrossRef]
- Yi, C.P.; Nordlund, E.; Zhang, P.; Warema, S.; Shirzadegan, S. Numerical Modeling for a Simulated Rockburst Experiment Using LS-DYNA. Undergr. Space 2021, 6, 153–162. [Google Scholar] [CrossRef]
- Xiao, W.; Andrae, M.; Gebbeken, N. Air Blast TNT Equivalence Factors of High Explosive Material PETN for Bare Charges. J. Hazard. Mater. 2019, 377, 152–162. [Google Scholar] [CrossRef]
Hole Classification | Segment/# | Hole Number | Hole Depth/m | Single-Hole Cartridge Number | Single-Hole Charge/kg | Delay Time/(ms) | Segment Charge/kg |
---|---|---|---|---|---|---|---|
Cut hole | 1 | 12 | 4.05 | 8 | 2.4 | 0 | 28.8 |
Stope hole | 3 | 12 | 3.6 | 7 | 2.1 | 50 | 25.2 |
Stope hole | 5 | 10 | 3.5 | 6/7 | 1.8/2.1 | 110 | 19.8 |
Stope hole | 7 | 4 | 3.5 | 5 | 1.5 | 200 | 6 |
Stope hole | 9 | 19 | 3.5 | 4 | 1.2 | 310 | 22.8 |
Stope hole | 11 | 25 | 3.5 | 3/4 | 0.9/1.2 | 460 | 26.1 |
Bottom hole | 13 | 14 | 3.7 | 5 | 1.5 | 650 | 21 |
Contour hole | 15 | 45 | 3.5 | 3/4 | 0.6/0.8 | 880 | 31.4 |
Total | 141 | 181.1 |
Parameters | ρ/(kg/m3) | D/(m/s) | PCJ/(MPa) |
---|---|---|---|
Value | 1.63 × 103 | 6.93 × 103 | 2.55 × 104 |
Parameters | /(kg/m3) | C0 | C1 | C2 | C3 | C4 | C5 | C6 | E/(J/m3) |
---|---|---|---|---|---|---|---|---|---|
Value | 1.29 | 0 | 0 | 0 | 0 | 0.4 | 0.4 | 0 | 2.5 × 105 |
Parameters | /(kg/m3) | C0 | C1 | C2 | C3 | C4 | C5 | C6 | E/(J/m3) |
---|---|---|---|---|---|---|---|---|---|
Value | 1.29 | 0 | 0 | 0 | 0 | 0.4 | 0.4 | 0 | 2.5 × 105 |
Distance/(m) | Point a/(kPa) | Point b/(kPa) | Point c/(kPa) | Point d/(kPa) | |
---|---|---|---|---|---|
30 | 49.26 | 49.24 | 55.97 | 76.96 | 1.563 |
40 | 44.32 | 44.79 | 51.02 | 63.31 | 1.428 |
50 | 37.73 | 37.79 | 40.05 | 52.48 | 1.391 |
60 | 35.71 | 35.68 | 36.53 | 49.70 | 1.393 |
Distance/(m) | |||||
---|---|---|---|---|---|
30 | 4080.70 | 4075.15 | 4072.64 | 5510.93 | 1.353 |
40 | 4054.98 | 4036.54 | 4041.83 | 4643.83 | 1.150 |
50 | 4008.58 | 4005.20 | 4006.37 | 4137.37 | 1.033 |
60 | 3955.87 | 3954.16 | 3953.47 | 4008.819 | 1.014 |
Test instrument | Parameter | Technical Index |
---|---|---|
Shock wave overpressure sensor | Sensitivity | 14.5 mV/kPa |
Resolution | 0.07 kPa | |
Measuring range | 344.7 kPa output in | |
689.4 kPa output in | ||
Shock wave test instrument | Channel number | 2 |
Sampling rates | 500 k~4 MHz | |
A/D precision | 24-bit | |
Bandwidth | >700 Hz |
Number | Q (kg) | R (m) | S (m2) | V (m3) | d (m) | ΔP (kPa) |
---|---|---|---|---|---|---|
1 | 174 | 74 | 62.8 | 4647.2 | 7.87 | |
2 | 180 | 74.5 | 62.8 | 4678.6 | 7.87 | 39.17 |
3 | 174 | 76 | 62.8 | 4772.8 | 7.87 | 36.49 |
4 | 180 | 80 | 62.8 | 5024 | 7.87 | 31.56 |
5 | 168 | 83 | 62.8 | 5024 | 7.87 | 26.57 |
6 | 168 | 87.6 | 62.8 | 5501.3 | 7.87 | 24.72 |
7 | 174 | 90 | 62.8 | 5652 | 7.87 | 23.80 |
8 | 168 | 96 | 62.8 | 6028.8 | 7.87 | 23.16 |
9 | 186 | 99 | 62.8 | 6217.2 | 7.87 | 21.77 |
10 | 168 | 100 | 62.8 | 6280 | 7.87 | 20.60 |
11 | 186 | 104.5 | 62.8 | 6374.2 | 7.87 | 19.28 |
12 | 180 | 110 | 62.8 | 6908 | 7.87 | 18.03 |
13 | 174 | 124 | 62.8 | 7787.2 | 7.87 | 17.46 |
14 | 180 | 130 | 62.8 | 8164 | 7.87 | 16.33 |
15 | 180 | 142.5 | 62.8 | 8949 | 7.87 | 14.82 |
Level | Overpressure Peak Value (kPa) | Extent of Damage to the Body |
---|---|---|
I | <2 | None |
II | 20~30 | Minor bruises |
III | 30~50 | Hearing and organ damage; fractures |
IV | 50~100 | Internal organs have suffered severe damage; possibly death |
V | >100 | Most individuals die |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, T.; Sun, J.; Wang, J.; Feng, J.; Chen, L.; Su, G.; Man, J.; Wu, Z. Study on the Propagation Law and Waveform Characteristics of a Blasting Shock Wave in a Highway Tunnel with the Bench Method. Buildings 2024, 14, 2802. https://doi.org/10.3390/buildings14092802
Yu T, Sun J, Wang J, Feng J, Chen L, Su G, Man J, Wu Z. Study on the Propagation Law and Waveform Characteristics of a Blasting Shock Wave in a Highway Tunnel with the Bench Method. Buildings. 2024; 14(9):2802. https://doi.org/10.3390/buildings14092802
Chicago/Turabian StyleYu, Tao, Junfeng Sun, Jianfeng Wang, Jianping Feng, Liangjun Chen, Guofeng Su, Jun Man, and Zhen Wu. 2024. "Study on the Propagation Law and Waveform Characteristics of a Blasting Shock Wave in a Highway Tunnel with the Bench Method" Buildings 14, no. 9: 2802. https://doi.org/10.3390/buildings14092802