Mechanical and Freeze-Thaw Characterization of Lignin-BFS (GGBS)-Modified Silty Clays
Abstract
:1. Introduction
2. Test Program
2.1. Test Materials
2.2. Experimental Design and Experimental Methods
3. Test Results and Analysis
3.1. Analysis of Curing Unconfined Compressive Strength
3.2. Analysis of CBR and Modulus of Resilience
3.3. Freeze-Thaw Cycles
3.4. Correlation Analysis
3.5. Microscopic Analysis
3.5.1. SEM Analysis
3.5.2. X-Ray Diffraction
3.6. Modification Mechanism
(1) protonation |
(2) hydration reaction |
2(3CaO·SiO2) + 6H2O → 3(CaO·SiO2·3H2O) + 3Ca(OH)2 |
3(CaO·SiO2) + 4 H2O → 3(CaO·2SiO2·3H2O) + Ca(OH)2 |
3CaO·Al2O3 + 6 H2O → 3 CaO·Al2O3·6 H2O |
(3) ionic reaction |
Si2− + Ca2+ + 2OH− + H2O → CaO·SiO2·H2O(C-S-H) |
4. Conclusions
- (1)
- The mechanical properties of modified soil significantly improved. The CBR and rebound modulus of the modified soil meet the standard requirements of the roadbed and pavement. As the curing age increases, the UCS of modified soil gradually increases, the failure strain gradually decreases, and the stress-strain curve transitions from strain-softening to strain-hardening. The UCS, CBR, and rebound modulus all show a trend of first increasing and then stabilizing with the decrease in lignin content and the increase in BFS content.
- (2)
- As the number of freeze-thaw cycles increases, the number of fine micro-cracks and large pores in the soil increases, the density between soil particles decreases, and the phenomenon of soil particle detachment appears on the surface, the mass loss rate and volume expansion rate of soil samples gradually increases and the strength decreases. The addition of lignin and BFS can effectively limit the generation of large pores and the expansion of cracks, resist mass loss and volume increase caused by freeze-thaw cycles, effectively alleviate the damage of freeze-thaw cycles to soil strength, and improve soil strength.
- (3)
- Based on indoor experiments and linear regression analysis, there is an optimal ratio between lignin and BFS. When the ratio of the two is 4%: 8%, the growth rate of UCS, the CBR value, and the rebound modulus of modified soil are the highest, and the volume and mass changes and compressive strength loss under freeze-thaw cycles are the smallest. The soil improvement effect is the most significant.
- (4)
- According to the SEM test results and XRD analysis, the addition of lignin and BFS in the silty clay mainly produces a protonation reaction, a hydration reaction, and an ion reaction. The generated products and structures work together to improve the strength of the soil skeleton, reduce porosity, and enhance the bonding and cohesion between particles.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qiu, E.; He, Q.; Chen, Q.; Sun, X.; Zhang, R.; Qu, M.; Wan, X. Influence of freeze-thaw cycles on mechanical properties of moraine soils. Transp. Geotech. 2023, 42, 101097. [Google Scholar] [CrossRef]
- Lu, Z.; Xian, S.; Yao, H.; Fang, R.; She, J. Influence of freeze-thaw cycles in the presence of a supplementary water supply on mechanical properties of compacted soil. Cold Reg. Sci. Technol. 2019, 157, 42–52. [Google Scholar] [CrossRef]
- Chen, H.; Gao, X.; Wang, Q. Research progress and prospect of frozen soil engineering disasters. Cold Reg. Sci. Technol. 2023, 212, 103901. [Google Scholar] [CrossRef]
- Li, H. Several harmful geological phenomena of weak rock slope in subgrade engineering and prevention measures. Chin. J. Rock Mech. Eng. 2002, 21, 1404–1407. [Google Scholar]
- Yuan, B.; Li, Z.; Chen, Y.; Ni, H.; Zhao, Z.; Chen, W.; Zhao, J. Mechanical and microstructural properties of recycling granite residual soil reinforced with glass fiber and liquid-modified polyvinyl alcohol polymer. Chemosphere 2022, 286, 131652. [Google Scholar] [CrossRef]
- Zornberg, J.G. Functions and Applications of Geosynthetics in Roadways. Procedia Eng. 2017, 189, 298–306. [Google Scholar] [CrossRef]
- Liu, Z.; Cai, C.S.; Liu, F.; Fan, F. Feasibility Study of Loess Stabilization with Fly Ash–Based Geopolymer. J. Mater. Civ. Eng. 2016, 28, 4016003. [Google Scholar] [CrossRef]
- Ullah, A.; Boumezerane, D.; Ahmad, F. Subgrade improvement with mixed lime and cement as additives. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Jia, L.; Guo, J.; Wei, Z.; Wu, R. Mix optimization and mechanical properties evaluation of lime-fly ash-stabilized loess in various engineering applications. Case Stud. Constr. Mater. 2024, 20, e03208. [Google Scholar] [CrossRef]
- Eyo, E.U.; Ng’Ambi, S.; Abbey, S.J. Incorporation of a nanotechnology-based additive in cementitious products for clay stabilization. J. Rock Mech. Geotech. Eng. 2020, 12, 1056–1069. [Google Scholar] [CrossRef]
- Abbey, S.J.; Ngambi, S.; Ganjian, E. Development of Strength Models for Prediction of Unconfined Compressive Strength of Cement/Byproduct Material Improved Soils. Geotech. Test. J. 2017, 40, 928–935. [Google Scholar] [CrossRef]
- Zhang, B.; Jiang, W.; Xu, Q.; Yuan, D.; Shan, J.; Lu, R. Experimental feasibility study of ethylene-vinyl acetate copolymer (EVA) as cement stabilized soil curing agent. Road Mater. Pavement Des. 2022, 23, 617–638. [Google Scholar] [CrossRef]
- Onyelowe, K.C. Review on the role of solid waste materials in soft soils reengineering. Mater. Sci. Energy Technol. 2019, 2, 46–51. [Google Scholar] [CrossRef]
- Amakye, S.Y.; Abbey, S.J.; Booth, C.A.; Mahamadu, A.-M. Enhancing the Engineering Properties of Subgrade Materials Using Processed Waste: A Review. Geotechnics 2021, 1, 15. [Google Scholar] [CrossRef]
- Yu, J.; Vaidya, M.; Su, G.; Adhikari, S.; Korolev, E.; Shekhovtsova, S. Experimental study of soda lignin powder as an asphalt modifier for a sustainable pavement material. Constr. Build. Mater. 2021, 298, 123884. [Google Scholar] [CrossRef]
- Moretti, C.; Corona, B.; Hoefnagels, R.; Vural-Gürsel, I.; Gosselink, R.; Junginger, M. Review of life cycle assessments of lignin and derived products: Lessons learned. Sci. Total Environ. 2021, 770, 144656. [Google Scholar] [CrossRef]
- Chio, C.; Sain, M.; Qin, W. Lignin utilization: A review of lignin depolymerization from various aspects. Renew. Sustain. Energy Rev. 2019, 107, 232–249. [Google Scholar] [CrossRef]
- Matcha, B.; Sudhir, M.R.; Chen, S.; Rai, S.; Jain, D. An Empirical Model for Geopolymer Reactions Involving Fly Ash and GGBS. Adv. Mater. Sci. Eng. 2022, 2022, 8801294. [Google Scholar]
- Torres, L.A.Z.; Woiciechowski, A.L.; de Andrade Tanobe, V.O.; Karp, S.G.; Lorenci, L.C.G.; Faulds, C.; Soccol, C.R. Lignin as a potential source of high-added value compounds: A review. J. Clean. Prod. 2020, 263, 121499. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Pourhashem, G.; Ullah, A.H.; Bajwa, S.G. A concise review of current lignin production, applications, products and their environmental impact. Ind. Crops Prod. 2019, 139, 111526. [Google Scholar] [CrossRef]
- Sargent, P.; Hughes, P.N.; Rouainia, M. A new low carbon cementitious binder for stabilising weak ground conditions through deep soil mixing. Soils Found. 2016, 56, 1021–1034. [Google Scholar] [CrossRef]
- Hou, X.; Ma, W.; Li, G.; Mu, Y.; Zhou, Z.; Wang, F. Influence of lignosulfonate on mechanical properties of Lanzhou loess. Rock Soil Mech. 2017, 38 (Suppl. S2), 18–26. [Google Scholar] [CrossRef]
- Zhang, J.; Qian, S.; Wang, X.; Bian, H.; Han, Z.; Shi, L. Experimental study on resistance of EICP and lignin joint⁃modified silt slope to rain erosion. J. Hohai Univ. (Nat. Sci.) 2024, 52, 70–76. [Google Scholar]
- Dong, C.; Huang, Y.; Zhang, W.; Tang, X.; Gu, Y.; Feng, Y. Behavioral evaluation on the engineering properties of lignin-stabilized loess: Reuse of renewable materials. Constr. Build. Mater. 2023, 369, 130599. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, C.; Sheng, Y. Experimental study of engineering properties of loess reinforced by consolid system. Yanshilixue Yu Gongcheng Xuebao/Chin. J. Rock Mech. Eng. 2015, 34, 3574–3580. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, S.; Zhan, H.; Ma, C.; Cai, G. Durability of silty soil stabilized with recycled lignin for sustainable engineering materials. J. Clean. Prod. 2020, 248, 119293. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, C.; Wang, Q.; Zheng, W.; Shen, J.; Chen, Y.; Gu, F.; Han, M.; Rocchi, I. Utilization of bioethanol industry recycled waste for sustainable soil improvement: A win-win application. Eng. Geol. 2021, 289, 106192. [Google Scholar] [CrossRef]
- Zhu, F.; Li, J.; Jiang, W.; Zhang, S.; Dong, W. Freeze-Thaw Performance of Silt Sand Treated with Lignin. Adv. Civ. Eng. 2021, 2021, 6639268. [Google Scholar] [CrossRef]
- Alazigha, D.P.; Indraratna, B.; Vinod, J.S.; Heitor, A. Mechanisms of stabilization of expansive soil with lignosulfonate admixture. Transp. Geotech. 2018, 14, 81–92. [Google Scholar] [CrossRef]
- Preetham, H.K.; Nayak, S. Geotechnical Investigations on Marine Clay Stabilized Using Granulated BFS and Cement. Int. J. Geosynth. Ground Eng. 2019, 5, 28. [Google Scholar] [CrossRef]
- Li, L.H.; Li, X.; Li, W.T.; Zhou, X.L. Mechanical and leaching characteristics of copper-contaminated soil solidified by soda residue-sla. China Sci. 2023, 18, 687–693. [Google Scholar]
- Li, L.; Li, Z.; Xiao, H.; Huang, S.; Liu, Y. Engineering characteristics and mechanism of rice husk ash-ground granulated blast slag cured expansive soil. J. Zhejiang Univ. (Eng. Sci.) 2023, 57, 1736–1745. [Google Scholar] [CrossRef]
- Zhu, M.; Xie, G.; Liu, L.; Wang, R.; Ruan, S.; Yang, P.; Fang, Z. Strengthening mechanism of granulated blast-furnace slag on the uniaxial compressive strength of modified magnesium slag-based cemented backfilling material. Process Saf. Environ. Prot. 2023, 174, 722–733. [Google Scholar] [CrossRef]
- Mujtaba, H.; Aziz, T.; Farooq, K.; Sivakugan, N.; Das, B.M. Improvement in Engineering Properties of Expansive Soils using Ground Granulated BFS. J. Geol. Soc. India 2018, 92, 357–362. [Google Scholar] [CrossRef]
- Devarangadi, M.; Vuppala, S.; Shankar, M.U.; Raghunandan, M.E. Effect of collated fly ash, GGBS and silica fume on index and engineering properties of expansive clays as a sustainable landfill liner. Clean. Mater. 2024, 11, 100219. [Google Scholar] [CrossRef]
- Corrêa-Silva, M.; Miranda, T.; Rouainia, M.; Araújo, N.; Glendinning, S.; Cristelo, N. Geomechanical behaviour of a soft soil stabilised with alkali-activated blast-furnace slags. J. Clean. Prod. 2020, 267, 122017. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, S. Mechanical and microstructural analysis of soft kaolin clay stabilized by GGBS and dolomite-based geopolymer. Constr. Build. Mater. 2024, 421, 135702. [Google Scholar] [CrossRef]
- Parhizkar, A.; Nazarpour, A.; Khayat, N. Investigation of geotechnical and microstructure characteristics of gypsum soil using ground granulated blast-furnace slag (GGBS), fly ash, and lime. Constr. Build. Mater. 2024, 418, 135358. [Google Scholar] [CrossRef]
- Chai, S.; Zhang, L. Study on damage mechanism of alkali activated fly ash mineral powder modified expansive soil under drying wetting freezing thawing cycles. Eng. Mech. 2024, 41, 157–167. [Google Scholar] [CrossRef]
- Zhu, X.; Niu, F.; Ren, L. Novel selection of environment-friendly curing agents for thawing permafrost: Alkali-activated ground granulated blast-furnace slag. Cold Reg. Sci. Technol. 2023, 211, 103863. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, W.; Liu, M. Setting time and mechanical properties of chemical admixtures modified FA/GGBS-based engineered geopolymer composites. Constr. Build. Mater. 2024, 431, 136473. [Google Scholar] [CrossRef]
- Qi, W.; Duan, G.; Han, Y.; Zhao, Q.; Huang, Y.; Zhu, W.; Pang, H.; Zhang, J. Comparison of mechanical properties and microstructure of GGBS-based cementitious materials activated by different combined alkaline wastes. Constr. Build. Mater. 2024, 422, 135784. [Google Scholar] [CrossRef]
- Kim, M.J.; Ishida, T.; Cho, W.J. Characteristics of micro structure and strength development of alkali activated GGBS-FNS hybrid cement. Constr. Build. Mater. 2023, 408, 133773. [Google Scholar] [CrossRef]
- Li, H.; Wang, R.; Wei, M.; Lei, N.; Wei, T.; Liu, F. Characteristics of carbide-slag-activated GGBS–fly ash materials: Strength, hydration mechanism, microstructure, and sustainability. Constr. Build. Mater. 2024, 422, 135796. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Q.; Zhong, X.; Liu, F. Water holding capacity and water stability of lignin-modified loess. Chin. J. Rock Mech. Eng. 2020, 39, 2582–2592. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Li, B.; Han, Y.; Bian, H. Experimental study on silt reinforced by EICP-lignin technology. J. Civ. Environ. Eng. 2021, 43, 201–202. [Google Scholar]
- JTG 3430-2020; Test Methods of Soils for Highway Engineering. Ministry of Transport: Beijing, China, 2020.
- Yang, X.; Fang, Y.; Liu, J.; Zhang, X.; Yue, Y. Mechanical Properties and Microscopic Mechanism of Rice Husk Ash-Cement Improved Mucky Soft Soils. Soil Eng. Found. 2022, 36, 977–979. Available online: http://tgjc.whrsm.ac.cn/EN/Y2022/V36/I6/977 (accessed on 23 December 2024).
- Nagaraj, H.B.; Suresh, M.R. Influence of clay mineralogy on the relationship of CBR of fine-grained soils with their index and engineering properties. Transp. Geotech. 2018, 15, 29–38. [Google Scholar] [CrossRef]
- JTG D50-2017; Specifications for Design of Highway Asphalt Pavement. Ministry of Transport: Beijing, China, 2017.
- Zhao, X.; Shen, Z.; Deng, Y.; Li, J.; Yue, Z.; Liang, T. Freeze-thaw Resistance and Deterioration Mechanism of Cement-treated Mixture of Soda Residue and Clay. China J. Highw. Transp 2024, 37, 55–65. [Google Scholar] [CrossRef]
- Zhang, Q.-Q.; Lu, Y.; Li, Z.-B.; Cui, W.; Lei, M.-Q.; Wang, S.-J. Study on performance and application of O-QGS soil curing agent for waste clay with low liquid limit. Constr. Build. Mater. 2024, 436, 136986. [Google Scholar] [CrossRef]
- Jiang, M.; Wu, D.; Cao, P.; Ding, Z. Connected inner pore analysis of calcareous sands using SEM. Chin. J. Geotech. Eng. 2017, 39 (Suppl. S1), 1–5. [Google Scholar] [CrossRef]
Density | Water Content/% | Liquid Limit/% | Plastic Limit/% | Plasticity Index | Relative Density | Maximum Dry Density | Optimum Water Content/% |
---|---|---|---|---|---|---|---|
1.44 | 43.41 | 41.18 | 19.86 | 21.32 | 2.7 | 1.61 | 20.63 |
Specific Surface Area (m2/kg) | Turnover Ratio (%) | Density (g/cm3) | Heat Loss (%) | CaO (%) | SiO2 (%) | Al2O3 (%) | SO3 (%) | Fe2O3 (%) | MgO (%) |
---|---|---|---|---|---|---|---|---|---|
429.00 | 98.00 | 3.10 | 0.84 | 34.00 | 34.50 | 17.70 | 1.64 | 1.03 | 6.01 |
Sample No. | The Proportion of Silt Soil (%) | Lignin: GGBS | Optimum Moisture Content (%) | Maximum Dry Density (g/cm3) | Curing Age |
---|---|---|---|---|---|
S1 | 100% | 0 | 20.63 | 1.59 | 7D, 14D, 28D |
S2 | 88% | 12%:0% | 21.98 | 1.65 | 7D, 14D, 28D |
S3 | 88% | 8%:4% | 21.78 | 1.64 | 7D, 14D, 28D |
S4 | 88% | 4%:8% | 19.73 | 1.62 | 7D, 14D, 28D |
S5 | 88% | 0%:12% | 19.1 | 1.61 | 7D, 14D, 28D |
Volume Change Rate (%) | Mass Change Rate (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Number of Freeze-Thaw Cycles (Time) | S1 | S2 | S3 | S4 | S5 | S1 | S2 | S3 | S4 | S5 |
1 | 0.1 | 0.06 | 0.04 | 0.01 | 0.08 | 0.02 | 0.01 | 0.01 | 0.01 | 0.02 |
3 | 0.12 | 0.07 | 0.08 | 0.05 | 0.12 | −0.09 | −0.02 | −0.04 | −0.01 | −0.02 |
5 | 0.2 | 0.17 | 0.14 | 0.13 | 0.17 | −0.09 | −0.03 | −0.04 | −0.02 | −0.03 |
10 | 0.28 | 0.22 | 0.19 | 0.18 | 0.26 | −0.20 | −0.13 | −0.12 | −0.11 | −0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Yu, F.; Yang, Y.; Li, C.; Xue, S.; Huang, J. Mechanical and Freeze-Thaw Characterization of Lignin-BFS (GGBS)-Modified Silty Clays. Buildings 2025, 15, 38. https://doi.org/10.3390/buildings15010038
Sun Y, Yu F, Yang Y, Li C, Xue S, Huang J. Mechanical and Freeze-Thaw Characterization of Lignin-BFS (GGBS)-Modified Silty Clays. Buildings. 2025; 15(1):38. https://doi.org/10.3390/buildings15010038
Chicago/Turabian StyleSun, Yidan, Fujun Yu, Yu Yang, Chao Li, Songling Xue, and Jiankun Huang. 2025. "Mechanical and Freeze-Thaw Characterization of Lignin-BFS (GGBS)-Modified Silty Clays" Buildings 15, no. 1: 38. https://doi.org/10.3390/buildings15010038
APA StyleSun, Y., Yu, F., Yang, Y., Li, C., Xue, S., & Huang, J. (2025). Mechanical and Freeze-Thaw Characterization of Lignin-BFS (GGBS)-Modified Silty Clays. Buildings, 15(1), 38. https://doi.org/10.3390/buildings15010038