Accurate Suspension Force Modeling and Its Control System Design Based on the Consideration of Degree-of-Freedom Interaction
Abstract
:1. Introduction
2. The Effect of DOF Interaction and Fundamental Model of Magnetic Bearings
2.1. Variation in Suspension Forces Due to DOF Interaction
2.2. Fundamental Modeling of Radial and Axial Suspension Forces
3. Modeling of Radial and Axial Suspension Forces Considering the Torsion DOF Interaction
3.1. Characteristics of the Variation in the Magnetic Flux Density in the Torsion DOF Interaction
3.2. Radial Biased Flux Correction Under the DOF Interaction
3.3. Radial Control of Flux Variation and Radial Accurate Suspension Forces Considering Torsional DOF Interaction
3.4. Axial Accurate Suspension Forces Considering Torsional DOF Interaction
4. Establishment of FA-BPNN-Based Control Parameter Adjustment Model for Flywheel Battery System
4.1. Firefly Algorithm
4.2. Firefly-Optimized BP Neural Network for Control Parameter Adjustment
5. Experiments
5.1. Platform and Control System
5.2. Performance Tests
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ershad, N.F.; Mehrjardi, R.T.; Ehsani, M. Efficient flywheel-based all-wheel-drive electric powertrain. IEEE Trans. Ind. Electron. 2021, 68, 5661–5671. [Google Scholar] [CrossRef]
- Mehraban, A.; Farjah, E.; Ghanbari, T.; Garbuio, L. Integrated optimal energy management and sizing of hybrid battery/flywheel energy storage for electric vehicles. IEEE Trans. Ind. Informat. 2023, 19, 10967–10976. [Google Scholar] [CrossRef]
- Bianchini, C.; Torreggiani, A.; David, D.; Bellini, A. Design of motor/generator for flywheel batteries. IEEE Trans. Ind. Electron. 2021, 68, 9675–9684. [Google Scholar] [CrossRef]
- Li, X.; Dietz, D.; An, J.; Erd, N.; Gemeinder, Y. Manufacture and testing of a magnetically suspended 0.5-kwh flywheel energy storage system. IEEE Trans Ind. Appl. 2022, 58, 6152–6162. [Google Scholar] [CrossRef]
- Mehrjardi, R.T.; Ershad, N.F.; Ehsani, M. Transmotor-flywheel powertrain assisted by ultracapacitor. IEEE Trans. Transp. Electrific. 2022, 8, 3686–3695. [Google Scholar] [CrossRef]
- Yang, J.; Li, Q.; Huang, S.; Ye, C.; Liu, P.; Ma, B.; Wang, L. Design and analysis of a novel permanent magnet homopolar inductor machine with mechanical flux modulator for flywheel energy storage system. IEEE Trans. Ind. Electron. 2022, 69, 7744–7755. [Google Scholar] [CrossRef]
- Zhang, W.Y. A novel magnetic suspension flywheel battery with a multi-function air gap. Energies 2023, 16, 6795. [Google Scholar] [CrossRef]
- Li, X.J.; Palazzolo, A.; Wang, Z.Y. A combination 5-dof active magnetic bearing for energy storage flywheels. IEEE Trans. Transp. Electrific. 2021, 7, 2344–2355. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Wang, J.P.; Zhu, P.F.; Yu, J.X. A novel vehicle-mounted magnetic suspension flywheel battery with a virtual inertia spindle. IEEE Trans. Ind. Electron. 2022, 69, 5973–5983. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Wang, J.W.; Li, A.; Xiang, Q.W. Multiphysics fields analysis and optimization design of a novel saucer-shaped magnetic suspension flywheel battery. IEEE Trans. Transp. Electrific. 2024, 10, 5473–5483. [Google Scholar] [CrossRef]
- Wang, C.; Le, Y.; Zheng, S.Q.; Han, B.C.; Dong, B.T.; Chen, Q. Suppression of gyroscopic torque disturbance in high speed magnetically levitated rigid rotor systems based on extended state observer. IEEE/ASME Trans. Mechatron. 2023, 28, 1582–1592. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Zhu, P.F.; Wang, J.P.; Zhu, H.Q. Stability control for a centripetal force type-magnetic bearing-rotor system based on golden frequency section point. IEEE Trans. Ind. Electron. 2021, 68, 12482–12492. [Google Scholar] [CrossRef]
- Han, B.C.; Chen, Y.L.; Zheng, S.Q.; Li, M.X.; Xie, J.J. Whirl mode suppression for amb-rotor systems in control moment gyros considering significant gyroscopic effects. IEEE Trans. Ind. Electron. 2021, 68, 4249–4258. [Google Scholar] [CrossRef]
- Le, Q.; Zhu, W. Design and analysis of a new five-degree-of-freedom dc hybrid magnetic bearing. IEEE Trans. Appl. Supercond. 2021, 31, 3602804. [Google Scholar] [CrossRef]
- Zhang, T.; Bao, P. Design of the six-pole hybrid magnetic bearing with separated magnetic circuit to generate symmetrical suspension force. IEEE Trans. Appl. Supercond. 2021, 31, 1–4. [Google Scholar]
- Hemenway, N.R.; Gjemdal, H. New three-pole combined radial–axial magnetic bearing for industrial bearingless motor systems. IEEE Trans. Ind. Appl. 2021, 57, 6754–6764. [Google Scholar] [CrossRef]
- Li, Y.L.; Zhu, H.Q. Decoupling control of six-pole hybrid magnetic bearing based on lm neural network inverse system optimized by improved differential evolution algorithm. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 3011–3019. [Google Scholar] [CrossRef]
- Wang, S.Y.; Chen, F.; Tian, Z.Z.; Wu, X.F.; Li, A.M. An enhanced magnetic equivalent circuit model for a magnetorheological clutch including nonlinear permeability, flux fringing, and leakage effects. IEEE Trans. Transp. Electrific. 2023, 9, 488–500. [Google Scholar] [CrossRef]
- Ceylan, D.; Zeinali, R.; Daniels, B.; Boynov, K.O.; Lomonova, E.A. A novel modeling technique via coupled magnetic equivalent circuit with vector hysteresis characteristics of laminated steels. IEEE Trans. Ind. Appl. 2023, 59, 1481–1491. [Google Scholar] [CrossRef]
- Liu, H.S.; Zhao, X.J.; Yu, Y.B.; Zhang, Y.; Ji, Y.J. Magnetic equivalent circuit model surveys of superparamagnetic effect in time-domain electromagnetic method. IEEE Trans. Ind. Electron. 2024, 71, 16761–16771. [Google Scholar] [CrossRef]
- Zhong, Y.; Wu, L.; Huang, X.; Fang, Y.; Zhang, J. An improved magnetic circuit model of a 3-DOF magnetic bearing considering leakage and cross-coupling effects. IEEE Trans. Magn. 2017, 53, 8002506. [Google Scholar] [CrossRef]
- Wang, Z.X.; Zhang, T.; Wu, S.S. Suspension force analysis of four-pole hybrid magnetic bearing with large radial bearing capacity. IEEE Trans. Magn. 2020, 56, 6703104. [Google Scholar] [CrossRef]
- Wang, H.Z.; Liu, K.; Wei, J.; Hu, H.J. Analytical modeling of air gap magnetic fields and bearing force of a novel hybrid magnetic thrust bearing. IEEE Trans. Magn. 2021, 57, 4900107. [Google Scholar] [CrossRef]
- Zhu, Y.S.; Yang, D.S.; Gao, X.T.; Ma, Z.C. Fractional modeling and identification of active magnetic bearings with laminated and nonlaminated structures including eddy currents. IEEE Trans. Transp. Electrific. 2024, 10, 2423–2433. [Google Scholar] [CrossRef]
- Pan, F.; Wen, H.; Gao, X.S.; Pu, H.B.; Pang, Z.B. Clone detection based on BPNN and physical layer reputation for industrial wireless cps. IEEE Trans. Ind. Inf. 2021, 17, 3693–3702. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, X.; Li, M.; Li, N.; Wang, F.; Wang, L.; Sun, Q. Demand response potential day-ahead forecasting approach based on LSSA-BPNN considering the electricity-carbon coupling incentive effects. IEEE Trans. Ind. Appl. 2024, 60, 4505–4516. [Google Scholar] [CrossRef]
- Li, H.; Guo, S.X.; Wang, H.Z.; Bu, D.D. Subject-independent continuous estimation of semg-based joint angles using both multisource domain adaptation and bp neural network. IEEE Trans. Instrum. Meas. 2023, 72, 4000910. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Ji, H.T. High stability control of a magnetic suspension flywheel based on SA-BPNN and CNN+LSTM+ATTENTION. Machines 2024, 12, 710. [Google Scholar] [CrossRef]
Working Conditions | Acceleration | Deceleration | Turning | ||||||
Characteristic parameters | x1 /x2 | y1 /y2 | z | x1 /x2 | y1 /y2 | z | x1 /x2 | y1 /y2 | z |
Proportionality coefficient Kp | 32.5 /5 | 32.5 /5 | 8 | 35.5 /2.3 | 35.5 /2.3 | 12 | 7.8 /1.45 | 29.2 /1.75 | 0 |
Integral coefficient Ki | 0 /0 | 0 /0 | 0 | 0 /0 | 0 /0 | 0 | 0.074 /0.02 | 0.273 /0.03 | 0 |
Differentiation coefficient Kd | 0.1 /0.02 | 0.1 /0.02 | 0.03 | 0.08 /0.01 | 0.08 /0.01 | 0.06 | 0.102 /0.03 | 0.122 /0.03 | 0 |
Working conditions | Uphill | Downhill | General situation | ||||||
Characteristic parameters | x1 /x2 | y1 /y2 | z | x1 /x2 | y1 /y2 | z | x1 /x2 | y1 /y2 | z |
Proportionality coefficient Kp | 3.72 /1.12 | 1.37 /0.85 | 12.6 | 14.6 /5.72 | 14.6 /5.72 | 40 | 1.6 /0.85 | 1.6 /0.85 | 9.6 |
Integral coefficient Ki | 0.024 /0.01 | 0.015 /0.01 | 0.02 | 0.009 /0.07 | 0.009 /0.07 | 0.28 | 0 /0 | 0 /0 | 0 |
Differentiation coefficient Kd | 0.047 /0.02 | 0.03 /0.02 | 0.09 | 0.073 /0.02 | 0.073 /0.02 | 0.142 | 0.15 /0.1 | 0.15 /0.1 | 0.053 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Xu, A. Accurate Suspension Force Modeling and Its Control System Design Based on the Consideration of Degree-of-Freedom Interaction. Actuators 2025, 14, 61. https://doi.org/10.3390/act14020061
Zhang W, Xu A. Accurate Suspension Force Modeling and Its Control System Design Based on the Consideration of Degree-of-Freedom Interaction. Actuators. 2025; 14(2):61. https://doi.org/10.3390/act14020061
Chicago/Turabian StyleZhang, Weiyu, and Aojie Xu. 2025. "Accurate Suspension Force Modeling and Its Control System Design Based on the Consideration of Degree-of-Freedom Interaction" Actuators 14, no. 2: 61. https://doi.org/10.3390/act14020061
APA StyleZhang, W., & Xu, A. (2025). Accurate Suspension Force Modeling and Its Control System Design Based on the Consideration of Degree-of-Freedom Interaction. Actuators, 14(2), 61. https://doi.org/10.3390/act14020061