Spontaneous Directional Transportation Surface of Water Droplet and Gas Bubble: A Review
Abstract
:1. Introduction
2. Basic Theories
2.1. Contact Angle, Contact Angle Hysteresis, Advancing Contact Angle, Receding Contact Angle, and Rolling Angle
2.2. Three Classical Wettability Models
- 1.
- Young Model
- 2.
- Wenzel Model
- 3.
- Cassie–Baxter Model
2.3. Surface Tension, Surface Energy, and Laplace Pressure
3. Spontaneous Directional Transportation of Water Droplet (SDWT): Methods and Applications
3.1. SDWT Based on Wettability Gradient
3.2. SDWT Based on Shape Gradient
3.2.1. Cone-like Shape
3.2.2. Repetitive Array Structure
3.3. SDWT Based on Cooperated Gradient
3.4. Applications of SDWT
4. Spontaneous Directional Transportation of Gas Bubble (SDBT): Methods and Applications
4.1. SDBT Based on Wettability Gradient
4.2. SDBT Based on Shape Gradient
4.2.1. The Structural Gradient between Two Neighboring Gas Bubbles
4.2.2. Cone-like Shape
4.3. SDBT Based on Cooperated Gradient
4.4. Applications of SDBT
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, X.; Verho, T.; Ras, R.H.A. Moving superhydrophobic surfaces toward real-world applications. Science 2016, 352, 142–143. [Google Scholar] [CrossRef]
- Zhao, W.; Jiang, Y.; Yu, W.; Yu, Z.; Liu, X. Wettability Controlled Surface for Energy Conversion. Small 2022, 18, 2202906. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, H.; Zhu, D.; Yuan, L.; Zhang, H.; Fan, P.; Zhong, M. A Review on Ultrafast Laser Enabled Excellent Superhydrophobic Anti-Icing Performances. Appl. Sci. 2023, 13, 5478. [Google Scholar] [CrossRef]
- Yang, X.; Zhuang, K.; Lu, Y.; Wang, X. Creation of Topological Ultraslippery Surfaces for Droplet Motion Control. ACS Nano 2021, 15, 2589–2599. [Google Scholar] [CrossRef]
- Pan, W.; Wang, Q.; Ma, J.; Xu, W.; Sun, J.; Liu, X.; Song, J. Solid-Like Slippery Coating with Highly Comprehensive Performance. Adv. Funct. Mater. 2023, 33, 2302311. [Google Scholar] [CrossRef]
- Zhang, L.; Rokshana, P.; Yu, Y.; Zhao, Y.; Ye, F. Near-Infrared Responsive Droplet for Digital PCR. Small 2022, 18, 2107858. [Google Scholar] [CrossRef]
- Yang, S.; Li, M.; Li, C.; Yan, L.; Li, Q.; Gong, Q.; Li, Y. Droplet-Driven Self-Propelled Devices Fabricated by a Femtosecond Laser. ACS Appl. Mater. Interface 2023, 15, 36899–36907. [Google Scholar] [CrossRef]
- Dorvee, J.R.; Derfus, A.M.; Bhatia, S.N.; Sailor, M.J. Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones. Nat. Mater. 2004, 3, 896–899. [Google Scholar] [CrossRef]
- Timonen, J.V.I.; Latikka, M.; Leibler, L.; Ras, R.H.A.; Ikkala, O. Switchable Static and Dynamic Self-Assembly of Magnetic Droplets on Superhydrophobic Surfaces. Science 2013, 341, 253–257. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, G.; Zhu, D.; Tian, Z.; Chen, C.; Hu, X.; Peng, R.; Li, D.; Zhang, H.; Zhao, H.; et al. Self-Driven Droplet Motions Below their Icing Points. Small 2023, 2302339. [Google Scholar] [CrossRef]
- Dai, H.; Gao, C.; Sun, J.; Li, C.; Li, N.; Wu, L.; Dong, Z.; Jiang, L. Controllable High-Speed Electrostatic Manipulation of Water Droplets on a Superhydrophobic Surface. Adv. Mater. 2019, 31, 1905449. [Google Scholar] [CrossRef]
- Zhang, Y.; Ming, P.; Xue, B.; Liu, H.; Yang, X.; Li, L.; Niu, S.; Yan, L.; Zheng, X.; Qin, G. Facilely fabricating large-area robust heterogeneous wettability surface by mask-patterned ultrafine anode scanning electrodeposition for efficient water collection. Surf. Interfaces 2023, 41, 103247. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, D.; Li, Y.; Zhang, J.; Ye, S.; Cui, J.; Chen, L.; Wang, Z.; Butt, H.-J.; Vollmer, D.; et al. Surface charge printing for programmed droplet transport. Nat. Mater. 2019, 18, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lu, C.; Yuan, Z.; Lv, C.; Liu, Y. Steerable drops on heated concentric microgroove arrays. Nat. Commun. 2022, 13, 3141. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, Z.; Wen, G.; Zhu, Y.; Chen, J.; Jing, X.; Sun, S.; Zhang, L.; Liu, X.; Chen, H. Fracture-Promoted Ultraslippery Ice Detachment Interface for Long-Lasting Anti-icing. ACS Nano 2023, 17, 13724–13733. [Google Scholar] [CrossRef]
- McGloin, D.; Burnham, D.R.; Summers, M.D.; Rudd, D.; Dewar, N.; Anand, S. Optical manipulation of airborne particles: Techniques and applications. Faraday Discuss. 2008, 137, 335–350. [Google Scholar] [CrossRef]
- Ichimura, K.; Oh, S.K.; Nakagawa, M. Light-driven motion of liquids on a photoresponsive surface. Science 2000, 288, 1624–1626. [Google Scholar] [CrossRef]
- Liu, G.L.; Kim, J.; Lu, Y.; Lee, L.P. Optofluidic control using photothermal nanoparticles. Nat. Mater. 2006, 5, 27–32. [Google Scholar] [CrossRef]
- Parker, A.R.; Lawrence, C.R. Water capture by a desert beetle. Nature 2001, 414, 33–34. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Liu, G. Rapid and Efficient Separation of Oil from Oil-in-Water Emulsions Using a Janus Cotton Fabric. Angew. Chem. Int. Ed. 2016, 55, 1291–1294. [Google Scholar] [CrossRef]
- Ju, J.; Bai, H.; Zheng, Y.; Fang, R.; Jiang, L. A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 2012, 3, 1247. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Lin, Y.; Zhang, M.; Shi, W.; Zheng, Y. High-Efficiency Fog Collector: Water Unidirectional Transport on Heterogeneous Rough Conical Wires. ACS Nano 2016, 10, 10681–10688. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhang, M.; Li, C.; Gao, C.; Zheng, Y. Excellent Fog-Droplets Collector via Integrative Janus Membrane and Conical Spine with Micro/Nanostructures. Small 2018, 14, 1801335. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.N.; Rab, M.F.; Islam, A.K.M.N.; Asmatulu, E.; Rahman, M.M.; Asmatulu, R. Nanostructured Hybrid Hydrogels for Solar-Driven Clean Water Harvesting from the Atmosphere. Materials 2022, 15, 7538. [Google Scholar] [CrossRef]
- Lin, F.; Wo, K.; Fan, X.; Wang, W.; Zou, J. Directional Transport of Underwater Bubbles on Solid Substrates: Principles and Applications. ACS Appl. Mater. Interfaces 2023, 15, 10325–10340. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, P.; Zhang, L.; Liu, H.; Jiang, Y.; Zhang, D.; Han, Z.; Jiang, L. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 2016, 532, 85–89. [Google Scholar] [CrossRef]
- Shang, L.; Yu, Y.; Gao, W.; Wang, Y.; Qu, L.; Zhao, Z.; Chai, R.; Zhao, Y. Bio-Inspired Anisotropic Wettability Surfaces from Dynamic Ferrofluid Assembled Templates. Adv. Funct. Mater. 2018, 28, 1705802. [Google Scholar] [CrossRef]
- Jiao, Y.; Lv, X.; Zhang, Y.; Li, C.; Li, J.; Wu, H.; Xiao, Y.; Wu, S.; Hu, Y.; Wu, D.; et al. Pitcher plant-bioinspired bubble slippery surface fabricated by femtosecond laser for buoyancy-driven bubble self-transport and efficient gas capture. Nanoscale 2019, 11, 1370–1378. [Google Scholar] [CrossRef]
- Yan, D.; Wang, Y.; Liu, J.; Zhao, D.; Ming, P.; Song, J. Electrochemical 3D printing of superhydrophobic pillars with conical, cylindrical, and inverted conical shapes. Colloids Surf. A Physicochem. Eng. Asp. 2021, 625, 126869. [Google Scholar] [CrossRef]
- Pan, W.; Wu, S.; Huang, L.; Song, J. Large-Area Fabrication of Superhydrophobic Micro-Conical Pillar Arrays on Various Metallic Substrates. Nanoscale 2021, 13, 14023–14034. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, S.; Lv, Z.; Fan, L.; Huang, Y.; Liu, X. A Facile Method to Prepare Superhydrophobic Coatings for Various Substrates. Appl. Sci. 2022, 12, 1240. [Google Scholar] [CrossRef]
- Bai, H.; Tian, X.; Zheng, Y.; Ju, J.; Zhao, Y.; Jiang, L. Direction Controlled Driving of Tiny Water Drops on Bioinspired Artificial Spider Silks. Adv. Mater. 2010, 22, 5521–5525. [Google Scholar] [CrossRef]
- Young, T. An Essay on the Cohesion of Fluids. Philos. Trans. R. Soc. 1805, 95, 65–87. [Google Scholar]
- Wenzel, R.N. RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, Y.; Xi, J.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L. Petal Effect: A Superhydrophobic State with High Adhesive Force. Langmuir 2008, 24, 4114–4119. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Wang, M.; Jiang, L. Effects of the distribution of micropapillae with nanofolds on the adhesive property of artificial red rose petals. Chem. J. Chin. U 2011, 32, 1807–1811. [Google Scholar]
- Shao, Y.; Zhao, J.; Fan, Y.; Wan, Z.; Lu, L.; Zhang, Z.; Ming, W.; Ren, L. Shape memory superhydrophobic surface with switchable transition between “Lotus Effect” to “Rose Petal Effect”. Chem. Eng. J. 2020, 382, 122989. [Google Scholar] [CrossRef]
- Greenspan, H.P. On the motion of a small viscous droplet that wets a surface. J. Fluid. Mech. 1978, 84, 125–143. [Google Scholar] [CrossRef]
- Chaudhury, M.K.; Whitesides, G.M. How to Make Water Run Uphill. Science 1992, 256, 1539–1541. [Google Scholar] [CrossRef] [PubMed]
- Daniel, S.; Chaudhury, M.K.; Chen, J.C. Fast drop movements resulting from the phase change on a gradient surface. Science 2001, 291, 633–636. [Google Scholar] [CrossRef]
- Feng, S.; Wang, S.; Gao, L.; Li, G.; Hou, Y.; Zheng, Y. Directional Water-Droplet Spreading on a High-Adhesion Surface. Angew. Chem. Int. Ed. 2014, 53, 6163–6167. [Google Scholar] [CrossRef]
- Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced amphiphilic surfaces. Nature 1997, 388, 431–432. [Google Scholar] [CrossRef]
- Ito, Y.; Heydari, M.; Hashimoto, A.; Konno, T.; Hirasawa, A.; Hori, S.; Kurita, K.; Nakajima, A. The Movement of a Water Droplet on a Gradient Surface Prepared by Photodegradation. Langmuir 2007, 23, 1845–1850. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.; Cho, W.K.; Kong, B.; Choi, I.S. Water-Collecting Capability of Radial-Wettability Gradient Surfaces Generated by Controlled Surface Reactions. Langmuir 2010, 26, 15080–15083. [Google Scholar] [CrossRef]
- Hernández, S.C.; Bennett, C.J.C.; Junkermeier, C.E.; Tsoi, S.D.; Bezares, F.J.; Stine, R.; Robinson, J.T.; Lock, E.H.; Boris, D.R.; Pate, B.D.; et al. Chemical Gradients on Graphene To Drive Droplet Motion. ACS Nano 2013, 7, 4746–4755. [Google Scholar] [CrossRef]
- He, B.; Lee, J. Dynamic wettability switching by surface roughness effect. In Proceedings of the The Sixteenth Annual International Conference On Micro Electro Mechanical Systems, Kyoto, Japan, 23 January 2003; Mems-03 Kyoto. IEEE: Kyoto, Japan, 2003; pp. 120–123. [Google Scholar]
- Zhu, L.; Feng, Y.; Ye, X.; Zhou, Z. Tuning wettability and getting superhydrophobic surface by controlling surface roughness with well-designed microstructures. Sens. Actuators A Phys. 2006, 130–131, 595–600. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, X.; Han, Y.; Gu, Z.-Z. Control of water droplet motion by alteration of roughness gradient on silicon wafer by laser surface treatment. Thin Solid Film. 2008, 516, 4059–4063. [Google Scholar] [CrossRef]
- Chu, K.; Xiao, R.; Wang, E.N. Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat. Mater. 2010, 9, 413–417. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Wei, X.; Li, K.; Tian, D.; Jiang, L. Curvature Adjustable Liquid Transport on Anisotropic Microstructured Elastic Film. ACS Nano 2023, 17, 6036–6044. [Google Scholar] [CrossRef]
- Bliznyuk, O.; Jansen, H.P.; Kooij, E.S.; Zandvliet, H.J.W.; Poelsema, B. Smart Design of Stripe-Patterned Gradient Surfaces to Control Droplet Motion. Langmuir 2011, 27, 11238–11245. [Google Scholar] [CrossRef]
- Liu, C.; Sun, J.; Li, J.; Xiang, C.; Che, L.; Wang, Z.; Zhou, X. Long-range spontaneous droplet self-propulsion on wettability gradient surfaces. Sci. Rep. 2017, 7, 7552. [Google Scholar] [CrossRef]
- Huang, D.; Leu, T. Fabrication of high wettability gradient on copper substrate. Appl. Surf. Sci. 2013, 280, 25–32. [Google Scholar] [CrossRef]
- Liao, Q.; Wang, H.; Zhu, X.; Gu, B. Experimental Study for Movement of Liquid Drop on the Surface with Gradient Surface Energy. In Proceedings of the 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, San Francisco, CA, USA, 5–8 June 2006; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2006. [Google Scholar]
- Hauksbee, F. An Account of an Experiment Touching the Ascent of Water between Two Glass Planes, in an Hyperbolick Figure. By Mr. Francis Hauksbee, F.R.S. Philos. Trans. (1683–1775) 1710, 27, 539–540. [Google Scholar]
- Prakash, M.; Quéré, D.; Bush, J.W.M. Surface Tension Transport of Prey by Feeding Shorebirds: The Capillary Ratchet. Science 2008, 320, 931–934. [Google Scholar] [CrossRef]
- Bush, J.W.M.; Peaudecerf, F.; Prakash, M.; Quéré, D. On a tweezer for droplets. Adv. Colloid. Interface 2010, 161, 10–14. [Google Scholar] [CrossRef]
- Carroll, B.J. Equilibrium conformations of liquid drops on thin cylinders under forces of capillarity. A theory for the roll-up process. Langmuir 1986, 2, 248–250. [Google Scholar] [CrossRef]
- Mchale, G.; Newton, M.I.; Carroll, B.J. The Shape and Stability of Small Liquid Drops on Fibers. Oil Gas Sci. Technol. 2001, 56, 47–54. [Google Scholar] [CrossRef]
- McHale, G.; Newton, M.I. Global geometry and the equilibrium shapes of liquid drops on fibers. Colloids Surf. A Physicochem. Eng. Asp. 2002, 206, 79–86. [Google Scholar] [CrossRef]
- LORENCEAU, E.; QUERE, D. Drops on a conical wire. J. Fluid. Mech. 2004, 510, 29–45. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, T.; Shi, W.; Sun, L.; Zheng, Y. Water collection abilities of green bristlegrass bristle. RSC Adv. 2014, 4, 40837–40840. [Google Scholar] [CrossRef]
- Chen, D.; Niu, S.; Zhang, J.; Mu, Z.; Chen, H.; Zhang, D.; Yao, Z.; Han, Z.; Ren, L. Superfast Liquid Transfer Strategy Through Sliding on a Liquid Membrane Inspired from Scorpion Setae. Adv. Mater. Interfaces 2018, 5, 1800802. [Google Scholar] [CrossRef]
- Zheng, Y.; Bai, H.; Huang, Z.; Tian, X.; Nie, F.-Q.; Zhao, Y.; Zhai, J.; Jiang, L. Directional water collection on wetted spider silk. Nature 2010, 463, 640–643. [Google Scholar] [CrossRef]
- Park, K.; Kim, P.; Grinthal, A.; He, N.; Fox, D.; Weaver, J.C.; Aizenberg, J. Condensation on slippery asymmetric bumps. Nature 2016, 531, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Wang, Q.; Xing, Y.; Hou, Y.; Zheng, Y. Continuous Directional Water Transport on Integrating Tapered Surfaces. Adv. Mater. Interfaces 2020, 7, 2000081. [Google Scholar] [CrossRef]
- Seo, J.; Lee, S.; Lee, J.; Lee, T. Guided transport of water droplets on superhydrophobic-hydrophilic patterned Si nanowires. ACS Appl. Mater. Interface 2011, 3, 4722–4729. [Google Scholar] [CrossRef]
- Schutzius, T.M.; Elsharkawy, M.; Tiwari, M.K.; Megaridis, C.M. Surface tension confined (STC) tracks for capillary-driven transport of low surface tension liquids. Lab Chip 2012, 12, 5237–5242. [Google Scholar] [CrossRef] [PubMed]
- Xing, S.; Harake, R.S.; Pan, T. Droplet-driven transports on superhydrophobic-patterned surface microfluidics. Lab Chip 2011, 11, 3642–3648. [Google Scholar] [CrossRef]
- Alheshibri, M.H.; Rogers, N.G.; Sommers, A.D.; Eid, K.F. Spontaneous movement of water droplets on patterned Cu and Al surfaces with wedge-shaped gradients. Appl. Phys. Lett. 2013, 102, 174103. [Google Scholar] [CrossRef]
- Ghosh, A.; Ganguly, R.; Schutzius, T.M.; Megaridis, C.M. Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms. Lab Chip 2014, 14, 1538–1550. [Google Scholar] [CrossRef]
- Liu, J.; Yan, D.; Zhou, Y.; Chen, Y.; Liu, X.; Zhao, D.; Liu, J.; Sun, J. Droplet motion on superhydrophobic/superhydrophilic wedge-shaped patterned surfaces with different micro-morphologies. Colloids Surf. A Physicochem. Eng. Asp. 2022, 647, 128999. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, H.; Li, W.; Song, J. Optimization of bioinspired surfaces with enhanced water transportation capacity. Chem. Eng. J. 2022, 433, 134568. [Google Scholar] [CrossRef]
- Xie, D.; Zhang, B.Y.; Wang, G.; Sun, Y.; Wu, C.; Ding, G. High-Performance Directional Water Transport Using a Two-Dimensional Periodic Janus Gradient Structure. Small Methods 2022, 6, 2200812. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, J.; Sun, P.; Wang, J.; Zhao, W.; Zhao, G.; Chen, N.; Yang, Y.; Li, L.; He, N.; et al. Achieving ultralong directional liquid transportation spontaneously with a high velocity. J. Mater. Chem. A 2023, 11, 10164–10173. [Google Scholar] [CrossRef]
- Yan, D.; Lu, Y.; Liu, J.; Chen, Y.; Sun, J.; Song, J. Enhanced water transportation on a superhydrophilic serial cycloid-shaped pattern. Nanoscale 2023, 15, 11473–11481. [Google Scholar] [CrossRef] [PubMed]
- Shah, I.; Kim, S.W.; Kim, K.; Doh, Y.H.; Choi, K.H. Experimental and numerical analysis of Y-shaped split and recombination micro-mixer with different mixing units. Chem. Eng. J. 2019, 358, 691–706. [Google Scholar] [CrossRef]
- Irfan, M.; Shah, I.; Niazi, U.M.; Ali, M.; Ali, S.; Jalalah, M.S.; Khan, M.K.A.; Almawgani, A.H.M.; Rahman, S. Numerical analysis of non-aligned inputs M-type micromixers with different shaped obstacles for biomedical applications. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021, 236, 870–880. [Google Scholar] [CrossRef]
- Sherbrooke, W.C. Rain-Harvesting in the Lizard, Phrynosoma cornutum: Behavior and Integumental Morphology. J. Herpetol. 1990, 24, 302–308. [Google Scholar] [CrossRef]
- Comanns, P.; Effertz, C.; Hischen, F.; Staudt, K.; Böhme, W.; Baumgartner, W. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards. Beilstein J. Nanotechnol. 2011, 2, 204–214. [Google Scholar] [CrossRef]
- Comanns, P.; Buchberger, G.; Buchsbaum, A.; Baumgartner, R.; Kogler, A.; Bauer, S.; Baumgartner, W. Directional, passive liquid transport: The Texas horned lizard as a model for a biomimetic ‘liquid diode’. J. R. Soc. Interface 2015, 12, 20150415. [Google Scholar] [CrossRef]
- Comanns, P.; Winands, K.; Arntz, K.; Klocke, F.; Baumgartner, W. Laser-Based biomimetic functionalization of surfaces: From moisture harvesting lizards to specific fluid transport systems. Int. J. Des. Nat. Ecodyn. 2014, 9, 206–215. [Google Scholar] [CrossRef]
- Buchberger, G.; Hischen, F.; Comanns, P.; Baumgartner, R.; Kogler, A.; Buchsbaum, A.; Bauer, S.; Baumgartner, W. Bio-inspired Microfluidic Devices for Passive, Directional Liquid Transport: Model-based Adaption for Different Materials. Procedia Eng. 2015, 120, 106–111. [Google Scholar] [CrossRef]
- Bohn, H.F.; Federle, W. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc Natl. Acad. Sci. USA 2004, 101, 14138–14143. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, L.; Zhang, P.; Zhang, D.; Han, Z.; Jiang, L. A Novel Bioinspired Continuous Unidirectional Liquid Spreading Surface Structure from the Peristome Surface of Nepenthes alata. Small 2017, 13, 1601676. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L.; Chen, H.; Dong, Z.; Zhang, D. Surfaces Inspired by the Nepenthes Peristome for Unidirectional Liquid Transport. Adv. Mater. 2017, 29, 1702995. [Google Scholar] [CrossRef]
- Li, C.; Li, N.; Zhang, X.; Dong, Z.; Chen, H.; Jiang, L. Uni-Directional Transportation on Peristome-Mimetic Surfaces for Completely Wetting Liquids. Angew. Chem. Int. Ed. 2016, 55, 14988–14992. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, X.; Li, J.; Che, L.; Yao, J.; McHale, G.; Chaudhury, M.K.; Wang, Z. Topological liquid diode. Sci. Adv. 2017, 3, eaao3530. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zheng, H.; Zhou, X.; Zhang, C.; Liu, M.; Wang, Z. Flexible topological liquid diode catheter. Mater. Today Phys. 2020, 12, 100170. [Google Scholar] [CrossRef]
- Geng, H.; Bai, H.; Fan, Y.; Wang, S.; Ba, T.; Yu, C.; Cao, M.; Jiang, L. Unidirectional water delivery on a superhydrophilic surface with two-dimensional asymmetrical wettability barriers. Mater. Horiz. 2018, 5, 303–308. [Google Scholar] [CrossRef]
- Feng, S.; Zhu, P.; Zheng, H.; Zhan, H.; Chen, C.; Li, J.; Wang, L.; Yao, X.; Liu, Y.; Wang, Z. Three-dimensional capillary ratchet-induced liquid directional steering. Science 2021, 373, 1344–1348. [Google Scholar] [CrossRef]
- Feng, S.; Delannoy, J.; Malod, A.; Zheng, H.; Quéré, D.; Wang, Z. Tip-induced flipping of droplets on Janus pillars: From local reconfiguration to global transport. Sci. Adv. 2020, 6, eabb4540. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Mendel, N.; van der Ham, S.; Shui, L.; Zhou, G.; Mugele, F. Charge Trapping-Based Electricity Generator (CTEG): An Ultrarobust and High Efficiency Nanogenerator for Energy Harvesting from Water Droplets. Adv. Mater. 2020, 32, 2001699. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xiang, Y.; Kong, X.; Wen, L. Polymer-based membranes for promoting osmotic energy conversion. Giant 2022, 10, 100094. [Google Scholar] [CrossRef]
- Mai, V.; Lee, T.; Yang, R. Enhanced-performance droplet-triboelectric nanogenerators with composite polymer films and electrowetting-assisted charge injection. Energy 2022, 260, 125173. [Google Scholar] [CrossRef]
- Chen, Y.; He, J.; Wang, L.; Xue, Y.; Zheng, Y.; Jiang, L. Excellent bead-on-string silkworm silk with drop capturing abilities. J. Mater. Chem. 2014, 2, 1230–1234. [Google Scholar] [CrossRef]
- Deng, S.; Shang, W.; Feng, S.; Zhu, S.; Xing, Y.; Li, D.; Hou, Y.; Zheng, Y. Controlled droplet transport to target on a high adhesion surface with multi-gradients. Sci. Rep. 2017, 7, 45687. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ran, T.; Gan, Y.; Zhou, J.; Zhang, Y.; Zhang, L.; Zhang, D.; Jiang, L. Ultrafast water harvesting and transport in hierarchical microchannels. Nat. Mater. 2018, 17, 935–942. [Google Scholar] [CrossRef]
- Xu, C.; Feng, R.; Song, F.; Wang, X.-L.; Wang, Y.-Z. Desert Beetle-Inspired Superhydrophilic/Superhydrophobic Patterned Cellulose Film with Efficient Water Collection and Antibacterial Performance. ACS Sustain. Chem. Eng. 2018, 6, 14679–14684. [Google Scholar] [CrossRef]
- Ju, J.; Xiao, K.; Yao, X.; Bai, H.; Jiang, L. Bioinspired Conical Copper Wire with Gradient Wettability for Continuous and Efficient Fog Collection. Adv. Mater. 2013, 25, 5937–5942. [Google Scholar] [CrossRef]
- Bai, H.; Wang, L.; Ju, J.; Sun, R.; Zheng, Y.; Jiang, L. Efficient Water Collection on Integrative Bioinspired Surfaces with Star-Shaped Wettability Patterns. Adv. Mater. 2014, 26, 5025–5030. [Google Scholar] [CrossRef]
- Wu, W.; Haoyu, B.; Yang, Y.; Li, G.; Chen, Z.; Tang, C.; Yin, H.; Lai, L.; Liu, J.; Xuan, S.; et al. Sequence liquid manipulation on a multifunctional snowflake-patterned interface with dual unidirectional wettability. J. Mater. Chem. A 2023, 11, 873–8885. [Google Scholar] [CrossRef]
- Yan, D.; Chen, Y.; Liu, J.; Song, J. Super-Fast Fog Collector Based on Self-Driven Jet of Mini Fog Droplets. Small 2023, 2301745. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Zhang, Z.; Mai, Z.; Ma, Y.; Liu, B.; Jiang, L.; Zhu, D. A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water. Angew. Chem. Int. Ed. 2004, 43, 2012–2014. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wu, L.; Yu, C.; Dong, Z.; Jiang, L. Peristome-Mimetic Curved Surface for Spontaneous and Directional Separation of Micro Water-in-Oil Drops. Angew. Chem. Int. Ed. 2017, 56, 13623–13628. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Song, J.; Zheng, H.; Deng, X.; Liu, X.; Lu, X.; Sun, J.; Zhao, D. Anisotropic sliding on dual-rail hydrophilic tracks. Lab Chip 2017, 17, 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Koukoravas, T.P.; Ghosh, A.; Mahapatra, P.S.; Ganguly, R.; Megaridis, C.M. Spatially-selective cooling by liquid jet impinging orthogonally on a wettability-patterned surface. Int. J. Heat. Mass. Transf. 2016, 95, 142–152. [Google Scholar] [CrossRef]
- Koukoravas, T.P.; Sinha Mahapatra, P.; Ganguly, R.; Megaridis, C.M. Wettability-confined liquid-film convective cooling: Parameter study. Int. J. Heat. Mass. Transf. 2018, 126, 667–676. [Google Scholar] [CrossRef]
- Yan, S.; Ren, F.; Li, C.; Jiao, Y.; Wang, C.; Wu, S.; Wei, S.; Hu, Y.; Li, J.; Xiao, Y.; et al. Unidirectional self-transport of air bubble via a Janus membrane in aqueous environment. Appl. Phys. Lett. 2018, 113, 261602. [Google Scholar] [CrossRef]
- Huo, J.; Yang, Q.; Yong, J.; Fan, P.; Lu, Y.F.; Hou, X.; Chen, F. Underwater Superaerophobicity/Superaerophilicity and Unidirectional Bubble Passage Based on the Femtosecond Laser-Structured Stainless Steel Mesh. Adv. Mater. Interfaces 2020, 7, 1902128. [Google Scholar] [CrossRef]
- Dai, X.; Guo, Z.; Liu, W. Ultraviolet-Driven Janus Foams with Wetting Gradients: Unidirectional Penetration Control for Underwater Bubbles. ACS Appl. Mater. Interface 2022, 14, 42734–42743. [Google Scholar] [CrossRef]
- Yong, J.; Chen, F.; Huo, J.; Fang, Y.; Yang, Q.; Zhang, J.; Hou, X. Femtosecond laser induced underwater superaerophilic and superaerophobic PDMS sheets with through microholes for selective passage of air bubbles and further collection of underwater gas. Nanoscale 2018, 10, 3688–3696. [Google Scholar] [CrossRef]
- Yong, J.; Chen, F.; Fang, Y.; Huo, J.; Yang, Q.; Zhang, J.; Bian, H.; Hou, X. Bioinspired Design of Underwater Superaerophobic and Superaerophilic Surfaces by Femtosecond Laser Ablation for Anti- or Capturing Bubbles. ACS Appl. Mater. Interface 2017, 9, 39863–39871. [Google Scholar] [CrossRef]
- Tahzibi, H.; Azizian, S.; Szunerits, S.; Boukherroub, R. Fast Capture, Collection, and Targeted Transfer of Underwater Gas Bubbles Using Janus-Faced Carbon Cloth Prepared by a Novel and Simple Strategy. ACS Appl. Mater. Interface 2022, 14, 45013–45024. [Google Scholar] [CrossRef]
- Yin, K.; Yang, S.; Dong, X.; Chu, D.; Duan, J.-A.; He, J. Robust laser-structured asymmetrical PTFE mesh for underwater directional transportation and continuous collection of gas bubbles. Appl. Phys. Lett. 2018, 112, 243701. [Google Scholar] [CrossRef]
- Yong, J.; Yang, Q.; Huo, J.; Hou, X.; Chen, F. Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (<100 µm) for bubble/gas manipulation. Int. J. Extrem. Manuf. 2022, 4, 15002. [Google Scholar] [CrossRef]
- Xie, D.; Sun, Y.; Wu, Y.; Wang, K.; Wang, G.; Zang, F.; Ding, G. Engineered Switchable-Wettability Surfaces for Multi-Path Directional Transportation of Droplets and Subaqueous Bubbles. Adv. Mater. 2023, 35, 2208645. [Google Scholar] [CrossRef]
- Yu, C.; Cao, M.; Dong, Z.; Wang, J.; Li, K.; Jiang, L. Spontaneous and Directional Transportation of Gas Bubbles on Superhydrophobic Cones. Adv. Funct. Mater. 2016, 26, 3236–3243. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, C.; Ma, H.; Zhang, Y.; Liu, G.; Cao, M.; Yu, C.; Jiang, L. Bioinspired Slippery Cone for Controllable Manipulation of Gas Bubbles in Low-Surface-Tension Environment. ACS Nano 2019, 13, 4083–4090. [Google Scholar] [CrossRef]
- Xue, X.; Yu, C.; Wang, J.; Jiang, L. Superhydrophobic Cones for Continuous Collection and Directional Transportation of CO2 Microbubbles in CO2 Supersaturated Solutions. ACS Nano 2016, 10, 10887–10893. [Google Scholar] [CrossRef]
- Yu, C.; Zhu, X.; Cao, M.; Yu, C.; Li, K.; Jiang, L. Superhydrophobic helix: Controllable and directional bubble transport in an aqueous environment. J. Mater. Chem. A 2016, 4, 16865–16870. [Google Scholar] [CrossRef]
- Shi, D.; Chen, Y.; Yao, Y.; Hou, M.; Chen, X.; Gao, J.; He, Y.; Zhang, G.; Wong, C.-P. Ladderlike Conical Micropillars Facilitating Underwater Gas-Bubble Manipulation in an Aqueous Environment. ACS Appl. Mater. Interface 2020, 12, 42437–42445. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Cao, M.; Zhang, C.; Bei, Z.; Li, K.; Yu, C.; Jiang, L. Directional and Continuous Transport of Gas Bubbles on Superaerophilic Geometry-Gradient Surfaces in Aqueous Environments. Adv. Funct. Mater. 2018, 28, 1705091. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, H.; Han, Y.; Huang, L.; Chen, Y.; Liu, J.; Wang, X.; Liu, X.; Ling, S. Superaerophilic Wedge-Shaped Channels with Precovered Air Film for Efficient Subaqueous Bubbles/Jet Transportation and Continuous Oxygen Supplementation. ACS Appl. Mater. Interface 2019, 11, 23808–23814. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Liu, Z.; Wang, X.; Liu, H.; Lu, Y.; Deng, X.; Carmalt, C.J.; Parkin, I.P. High-efficiency bubble transportation in an aqueous environment on a serial wedge-shaped wettability pattern. J. Mater. Chem. A 2019, 7, 13567–13576. [Google Scholar] [CrossRef]
- Long, Z.; Zhao, Y.; Zhang, C.; Zhang, Y.; Yu, C.; Wu, Y.; Ma, J.; Cao, M.; Jiang, L. A Multi-Bioinspired Dual-Gradient Electrode for Microbubble Manipulation toward Controllable Water Splitting. Adv. Mater. 2020, 32, 1908099. [Google Scholar] [CrossRef]
- Xiao, X.; Li, S.; Zhu, X.; Zhang, C.; Jiang, F.; Yu, C.; Jiang, L. Bioinspired Two-Dimensional Structure with Asymmetric Wettability Barriers for Unidirectional and Long-Distance Gas Bubble Delivery Underwater. Nano Lett. 2021, 21, 2117–2123. [Google Scholar] [CrossRef]
- Ning, Y.; Zhang, D.; Ben, S.; Zhao, Z.; Zha, J.; Tian, D.; Liu, K.; Jiang, L. An Innovative Design by Single-Layer Superaerophobic Mesh: Continuous Underwater Bubble Antibuoyancy Collection and Transportation. Adv. Funct. Mater. 2020, 30, 1907027. [Google Scholar] [CrossRef]
- Yu, C.; Cao, M.; Dong, Z.; Li, K.; Yu, C.; Wang, J.; Jiang, L. Aerophilic Electrode with Cone Shape for Continuous Generation and Efficient Collection of H2 Bubbles. Adv. Funct. Mater. 2016, 26, 6830–6835. [Google Scholar] [CrossRef]
- Xue, X.; Wang, R.; Lan, L.; Wang, J.; Xue, Z.; Jiang, L. Reliable Manipulation of Gas Bubble Size on Superaerophilic Cones in Aqueous Media. ACS Appl. Mater. Interface 2018, 10, 5099–5106. [Google Scholar] [CrossRef]
- Han, K.; Yong, K. Overcoming Limitations in Surface Geometry-Driven Bubble Transport: Bidirectional and Unrestricted Movement of an Underwater Gas Bubble Using a Magnetocontrollable Nonwetting Surface. Adv. Funct. Mater. 2021, 31, 2101970. [Google Scholar] [CrossRef]
Classification | Mechanism | Transport Speed | Transport Distance | Fabrication | Robustness | |
---|---|---|---|---|---|---|
Wettability gradient | Wettability gradient caused by surface composition | Different contact angle, advancing angle, and receding angle | 0.5 mm/s–6 mm/s [44] 0.7 mm/s [45] 40 μm/s [46] | 7 mm [45] 2.5 mm [46] | Normal | Unstable |
Wettability gradient caused by surface roughness | Different contact angle, advancing angle, and receding angle | 5 mm/s–14.6 mm/s [52] 46 mm/s–75 mm/s [53] | 3.2 mm–5.2 mm [53] | Complex | Stable | |
Shape gradient | Cone-like shape | Unbalanced Laplace force | 100 mm/s [64] 400 mm/s [72] 289 mm/s [77] | 20 mm [72] 50 mm [77] | Simple | Normal |
Repetitive array structure | Unbalanced Laplace force; Principle of minimum surface energy | 78 ± 12 mm/s [26] 0.1 mm/s–10 mm/s [82] 1 mm/s–100 mm/s [89] | 10–20 mm [26] 20 mm [82] | Complex | Stable | |
Cooperated gradient | Cooperated gradient | Unbalanced Laplace force; Principle of minimum surface energy; Different contact angle, advancing angle, and receding angle | 116.7 mm/s [22] 11.738 mm/s [99] 92 mm/s [76] | 5 mm–20 mm [99] 103 mm [76] | Complex | Stable |
Classification | Mechanism | Transport Speed/ Passing Rate | Transport Distance | Fabrication | Robustness | |
---|---|---|---|---|---|---|
Wettability gradient | Janus membrane | Different Laplace pressure | 0.0259 mL·s–1 cm−2 [110] 22.2 mL·s–1 cm−2 [113] | N/A | Normal | Stable |
Shape gradient | The structural gradient between two neighboring gas bubbles | Unbalanced Laplace force; Principle of minimum surface energy | 350 mm/s–520 mm/s [118] | 10 mm [117] 40 mm [118] | Simple | Stable |
Cone-like shape | Unbalanced Laplace force | 79.8 ± 4.8 cm/s [119] 327 mm/s [124] 400 mm/s [126] | 10 mm–20 mm [119] 80 mm [126] | Simple | Normal | |
Cooperated gradient | Cooperated gradient | Unbalanced Laplace force; Principle of minimum surface energy | N/A (Too little relevant research) | N/A (Too little relevant research) | Complex | Stable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Yan, D.; Lin, J.; Zhang, S.; Song, J. Spontaneous Directional Transportation Surface of Water Droplet and Gas Bubble: A Review. Appl. Sci. 2023, 13, 9961. https://doi.org/10.3390/app13179961
Lu Y, Yan D, Lin J, Zhang S, Song J. Spontaneous Directional Transportation Surface of Water Droplet and Gas Bubble: A Review. Applied Sciences. 2023; 13(17):9961. https://doi.org/10.3390/app13179961
Chicago/Turabian StyleLu, Yi, Defeng Yan, Junyi Lin, Song Zhang, and Jinlong Song. 2023. "Spontaneous Directional Transportation Surface of Water Droplet and Gas Bubble: A Review" Applied Sciences 13, no. 17: 9961. https://doi.org/10.3390/app13179961