Right Hemisphere Dominance for Unconscious Emotionally Salient Stimuli
Abstract
:1. Introduction
2. Processing of Fearful Signals in the Absence of Awareness in Patients with Visual Field Defects
3. Implicit Fear-Related Processing in Hemianopics Is Mediated by a Subcortical Defensive Circuit
4. Amygdala as the Key Component of a Vigilance System
5. The Contribution of the Right Hemisphere to Implicit Fear Processing
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Öhman, A.; Flykt, A.; Esteves, F. Emotion drives attention: Detecting the snake in the grass. J. Exp. Psychol. Gen. 2001, 130, 466. [Google Scholar] [CrossRef]
- Vuilleumier, P. How brains beware: Neural mechanisms of emotional attention. Trends Cogn. Sci. 2005, 9, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Stoyanova, R.S.; Pratt, J.; Anderson, A.K. Inhibition of return to social signals of fear. Emotion 2007, 7, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Valk JM de Wijnen, J.G.; Kret, M.E. Anger fosters action. Fast Responses A Mot. Task Involv. Approach Mov. Towar. Angry Faces Bodies. Front. Psychol. 2015, 6, 1240. [Google Scholar] [CrossRef] [Green Version]
- Bertini, C.; Làdavas, E. Fear-related signals are prioritised in visual, somatosensory and spatial systems. Neuropsychologia 2021, 150, 107698. [Google Scholar] [CrossRef]
- Bocanegra, B.R.; Zeelenberg, R. Emotion improves and impairs early vision. Psychol. Sci. 2009, 20, 707–713. [Google Scholar] [CrossRef]
- Bocanegra, B.R.; Zeelenberg, R. Emotion-induced trade-offs in spatiotemporal vision. J. Exp. Psychol. Gen. 2011, 140, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phelps, E.A.; Ling, S.; Carrasco, M. Emotion facilitates perception and potentiates the perceptual benefits of attention. Psychol. Sci. 2006, 17, 292–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phelps, E.A.; LeDoux, J.E. Contributions of the Amygdala to Emotion Processing: From Animal Models to Human Behavior. Neuron 2005, 48, 175–187. [Google Scholar] [CrossRef] [Green Version]
- LeDoux, J. Rethinking the Emotional Brain. Neuron 2012, 73, 653–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeDoux, J.E. Coming to terms with fear. Proc. Natl. Acad. Sci. USA 2014, 111, 2871–2878. [Google Scholar] [CrossRef] [Green Version]
- Öhman, A. The role of the amygdala in human fear: Automatic detection of threat. Psychoneuroendocrinology 2005, 30, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.K. Affective influences on the attentional dynamics supporting awareness. J. Exp. Psychol. Gen. 2005, 134, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zald, D.H. The human amygdala and the emotional evaluation of sensory stimuli. Brain Res. Rev. 2003, 41, 88–123. [Google Scholar] [CrossRef]
- Critchley, H.; Daly, E.; Phillips, M.; Brammer, M.; Bullmore, E.; Williams, S.; van Amelsvoort, T.; Robertson, D.; David, A.; Murphy, D. Explicit and implicit neural mechanisms for processing of social information from facial expressions: A functional magnetic resonance imaging study. Hum. Brain Mapp. 2000, 9, 93–105. [Google Scholar] [CrossRef]
- Hinojosa, J.A.; Mercado, F.; Carretié, L. N170 sensitivity to facial expression: A meta-analysis. Neurosci. Biobehav. Rev. 2015, 55, 498–509. [Google Scholar] [CrossRef] [PubMed]
- Bertini, C.; Pietrelli, M.; Braghittoni, D.; Làdavas, E. Pulvinar Lesions Disrupt Fear-Related Implicit Visual Processing in Hemianopic Patients. Front. Psychol. 2018, 9, 2329. [Google Scholar] [CrossRef] [Green Version]
- Bertini, C.; Cecere, R.; Làdavas, E. I am blind, but I “see” fear. Cortex 2013, 49, 985–993. [Google Scholar] [CrossRef]
- Bertini, C.; Cecere, R.; Làdavas, E. Unseen fearful faces facilitate visual discrimination in the intact field. Neuropsychologia 2019, 128, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Cecere, R.; Bertini, C.; Maier, M.E.; Làdavas, E. Unseen fearful faces influence face encoding: Evidence from ERPs in hemianopic patients. J. Cogn. Neurosci. 2014, 26, 2564–2577. [Google Scholar] [CrossRef]
- Bentin, S.; Allison, T.; Puce, A.; Perez, E.; McCarthy, G. Electrophysiological studies of face perception in humans. J. Cogn. Neurosci. 1996, 8, 551–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batty, M.; Taylor, M.J. Early processing of the six basic facial emotional expressions. Cogn. Brain Res. 2003, 17, 613–620. [Google Scholar] [CrossRef]
- Johnston, P.; Overell, A.; Kaufman, J.; Robinson, J.; Young, A.W. Expectations about person identity modulate the face-sensitive N170. Cortex 2016, 85, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.E.; Breakspear, M.; Young, A.W.; Johnston, P.J. Dose-dependent modulation of the visually evoked N1/N170 by perceptual surprise: A clear demonstration of prediction-error signalling. Eur. J. Neurosci. 2020, 52, 4442–4452. [Google Scholar] [CrossRef] [Green Version]
- de Gelder, B.; Vroomen, J.; Pourtois, G.; Weiskrantz, L. Non-conscious recognition of affect in the absence of striate cortex. Neuroreport 1999, 10, 3759–3763. [Google Scholar] [CrossRef] [Green Version]
- de Gelder, B.; Pourtois, G.; van Raamsdonk, M.; Vroomen, J.; Weiskrantz, L. Unseen stimuli modulate conscious visual experience: Evidence from inter-hemispheric summation. Neuroreport 2001, 12, 385–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pegna, A.J.; Khateb, A.; Lazeyras, F.; Seghier, M.L. Discriminating emotional faces without primary visual cortices involves the right amygdala. Nat. Neurosci. 2005, 8, 24–25. [Google Scholar] [CrossRef]
- Tamietto, M.; Pullens, P.; de Gelder, B.; Weiskrantz, L.; Goebel, R. Subcortical connections to human amygdala and changes following destruction of the visual cortex. Curr. Biol. 2012, 22, 1449–1455. [Google Scholar] [CrossRef] [Green Version]
- Gerbella, M.; Caruana, F.; Rizzolatti, G. Pathways for smiling, disgust and fear recognition in blindsight patients. Neuropsychologia 2019, 128, 6–13. [Google Scholar] [CrossRef]
- Kapp, B.S.; Frysinger, R.C.; Gallagher, M.; Haselton, J.R. Amygdala central nucleus lesions: Effect on heart rate conditioning in the rabbit. Physiol. Behav. 1979, 23, 1109–1117. [Google Scholar] [CrossRef]
- Kapp, B.S.; Whalen, P.J.; Supple, W.F.; Pascoe, J.P. Amygdaloid contributions to conditioned arousal and sensory information processing. In The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction; Wiley: Hoboken, NJ, USA, 1992; pp. 229–254. [Google Scholar]
- Phelps, E.A. Emotion and cognition: Insights from studies of the human amygdala. Annu. Rev. Psychol. 2006, 57, 27–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whalen, P.J.; Rauch, S.L.; Etcoff, N.L.; McInerney, S.C.; Lee, M.B.; Jenike, M.A. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J. Neurosci. 1998, 18, 411–418. [Google Scholar] [CrossRef] [PubMed]
- LeDoux, J.E. The Emotional Brain: The Mysterious Underpinnings of Emotional Life; Simon and Schuster: New York, NY, USA, 1998. [Google Scholar] [CrossRef]
- Sonkusare, S.; Nguyen, V.T.; Moran, R.; van der Meer, J.; Ren, Y.; Koussis, N.; Dionisio, S.; Breakspear, M.; Guo, C. Intracranial-EEG evidence for medial temporal pole driving amygdala activity induced by multi-modal emotional stimuli. Cortex 2020, 130, 32–48. [Google Scholar] [CrossRef]
- Williams, L.M.; Das, P.; Liddell, B.J.; Kemp, A.H.; Rennie, C.J.; Gordon, E. Mode of functional connectivity in amygdala pathways dissociates level of awareness for signals of fear. J. Neurosci. Off. J. Soc. Neurosci. 2006, 26, 9264–9271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochsner, K.N.; Gross, J.J. The cognitive control of emotion. Trends Cogn. Sci. 2005, 9, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, L.; Adolphs, R. Emotion processing and the amygdala: From a’low road’to’many roads’ of evaluating biological significance. Nat. Rev. Neurosci. 2010, 11, 773–782. [Google Scholar] [CrossRef] [Green Version]
- Rafal, R.D.; Koller, K.; Bultitude, J.H.; Mullins, P.; Ward, R.; Mitchell, A.S.; Bell, A.H. Connectivity between the superior colliculus and the amygdala in humans and macaque monkeys: Virtual dissection with probabilistic DTI tractography. J. Neurophysiol. 2015, 114, 1947–1962. [Google Scholar] [CrossRef] [Green Version]
- Koller, K.; Rafal, R.D.; Platt, A.; Mitchell, N.D. Orienting toward threat: Contributions of a subcortical pathway transmitting retinal afferents to the amygdala via the superior colliculus and pulvinar. Neuropsychologia 2019, 128, 78–86. [Google Scholar] [CrossRef]
- Garrido, M.I.; Barnes, G.R.; Sahani, M.; Dolan, R.J. Functional evidence for a dual route to amygdala. Curr. Biol. 2012, 22, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Garvert, M.M.; Friston, K.J.; Dolan, R.J.; Garrido, M.I. Subcortical amygdala pathways enable rapid face processing. NeuroImage 2014, 102, 309–316. [Google Scholar] [CrossRef] [Green Version]
- McFadyen, J.; Mermillod, M.; Mattingley, J.B.; Halász, V.; Garrido, M.I. A rapid subcortical amygdala route for faces irrespective of spatial frequency and emotion. J. Neurosci. 2017, 37, 3864–3874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Méndez-Bértolo, C.; Moratti, S.; Toledano, R.; Lopez-Sosa, F.; Martínez-Alvarez, R.; Mah, Y.H.; Vuilleumier, P.; Gil-Nagel, A.; Strange, B.A. A fast pathway for fear in human amygdala. Nat. Neurosci. 2016, 19, 1041–1049. [Google Scholar] [CrossRef]
- Luo, Q.; Holroyd, T.; Jones, M.; Hendler, T.; Blair, J. Neural dynamics for facial threat processing as revealed by gamma band synchronization using MEG. Neuroimage 2007, 34, 839–847. [Google Scholar] [CrossRef] [Green Version]
- Bertini, C.; Grasso, P.A.; Làdavas, E. The role of the retino-colliculo-extrastriate pathway in visual awareness and visual field recovery. Neuropsychologia 2016, 90, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Cecere, R.; Bertini, C.; Ladavas, E. Differential contribution of cortical and subcortical visual pathways to the implicit processing of emotional faces: A tDCS study. J. Neurosci. 2013, 33, 6469–6475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, I.; Soares, S.C.; Castelo-Branco, M. The distinct role of the amygdala, superior colliculus and pulvinar in processing of central and peripheral snakes. PLoS ONE 2015, 10, e0129949. [Google Scholar] [CrossRef] [PubMed]
- van Le, Q.; Isbell, L.A.; Matsumoto, J.; Nguyen, M.; Hori, E.; Maior, R.S.; Tomaz, C.; Tran, A.H.; Ono, T.; Nishijo, H. Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes. Proc. Natl. Acad. Sci. USA 2013, 110, 19000–19005. [Google Scholar] [CrossRef] [Green Version]
- van Le, Q.; Isbell, L.A.; Matsumoto, J.; Le, V.Q.; Hori, E.; Tran, A.H.; Maior, R.S.; Tomaz, C.; Ono, T.; Nishijo, H. Monkey pulvinar neurons fire differentially to snake postures. PLoS ONE 2014, 9, e114258. [Google Scholar] [CrossRef] [Green Version]
- Vuilleumier, P.; Armony, J.L.; Driver, J.; Dolan, R.J. Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nat. Neurosci. 2003, 6, 624–631. [Google Scholar] [CrossRef]
- Ward, R.; Danziger, S.; Bamford, S. Response to visual threat following damage to the pulvinar. Curr. Biol. 2005, 15, 571–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, R.; Calder, A.J.; Parker, M.; Arend, I. Emotion recognition following human pulvinar damage. Neuropsychologia 2007, 45, 1973–1978. [Google Scholar] [CrossRef] [PubMed]
- Whalen, P.J. Fear, vigilance, and ambiguity: Initial neuroimaging studies of the human amygdala. Curr. Dir. Psychol. Sci. 1998, 7, 177–188. [Google Scholar] [CrossRef]
- Bertini Caterina Starita, F.; Passamonti, C.; Santoro, F.; Zamponi, N.; Michelucci, R.; Scarpazza, C. Fear-specific enhancement of tactile perception is disrupted after amygdala lesion. J. Neuropsychol. 2019, 14, 165–182. [Google Scholar] [CrossRef]
- Costafreda, S.G.; Brammer, M.J.; David, A.S.; Fu, C.H. Predictors of amygdala activation during the processing of emotional stimuli: A meta-analysis of 385 PET and fMRI studies. Brain Res. Rev. 2008, 58, 57–70. [Google Scholar] [CrossRef]
- Sabatinelli, D.; Fortune, E.E.; Li, Q.; Siddiqui, A.; Krafft, C.; Oliver, W.T.; Beck, S.; Jeffries, J. Emotional perception: Meta-analyses of face and natural scene processing. Neuroimage 2011, 54, 2524–2533. [Google Scholar] [CrossRef] [PubMed]
- Fusar-Poli, P.; Placentino, A.; Carletti, F.; Landi, P.; Allen, P.; Surguladze, S.; Benedetti, F.; Abbamonte, M.; Gasparotti, R.; Barale, F.; et al. Functional atlas of emotional faces processing: A voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J. Psychiatry Neurosci. 2009, 34, 418–432. [Google Scholar] [PubMed]
- Tye, K.M. Neural circuit motifs in valence processing. Neuron 2018, 100, 436–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindquist, K.A.; Satpute, A.B.; Wager, T.D.; Weber, J.; Barrett, L.F. The brain basis of positive and negative affect: Evidence from a meta-analysis of the human neuroimaging literature. Cereb. Cortex 2016, 26, 1910–1922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cisler, J.M.; Koster, E.H.W. Mechanisms of attentional biases towards threat in anxiety disorders: An integrative review. Clin. Psychol. Rev. 2010, 30, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Peck, C.J.; Lau, B.; Salzman, C.D. The primate amygdala combines information about space and value. Nat. Neurosci. 2013, 16, 340–348. [Google Scholar] [CrossRef] [Green Version]
- Sander, D.; Grafman, J.; Zalla, T. The human amygdala: An evolved system for relevance detection. Rev. Neurosci. 2003, 14, 303–316. [Google Scholar] [CrossRef]
- Cunningham, W.A.; Brosch, T. Motivational salience: Amygdala tuning from traits, needs, values, and goals. Curr. Dir. Psychol. Sci. 2012, 21, 54–59. [Google Scholar] [CrossRef]
- Bonnet, L.; Comte, A.; Tatu, L.; Millot, J.L.; Moulin, T.; Medeiros de Bustos, E. The role of the amygdala in the perception of positive emotions: An “intensity detector”. Front. Behav. Neurosci. 2015, 9, 178. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Müller-Bardorff, M.; Gathmann, B.; Brieke, J.; Mothes-Lasch, M.; Bruchmann, M.; Miltner, W.H.; Straube, T. Stimulus arousal drives amygdalar responses to emotional expressions across sensory modalities. Sci. Rep. 2020, 10, 1898. [Google Scholar] [CrossRef]
- Herry, C.; Bach, D.; Esposito, F.; di Salle, F.; Perrig, W.; Scheffler, K.; Lüthi, A.; Seifritz, E. Processing of temporal unpredictability in human and animal amygdala. J. Neurosci. 2007, 27, 5958–5966. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.; Whalen, P.J. The amygdala: Vigilance and emotion. Mol. Psychiatry 2001, 6, 13–34. [Google Scholar] [CrossRef] [Green Version]
- Kapp, B.S.; Silvestri, A.J.; Guarraci, F.A. Amygdaloid central nucleus neuronal activity: Correlations with EEG arousal. Neurosci. Abstr. 1996, 22, 2049. [Google Scholar]
- Kapp, B.S.; Silvestri, A.J.; Guarraci, F.A.; Moynihan, J.E.; Cain, M.E. Associative and EEG arousal-related characteristics of amyg daloid central nucleus neurons in the rabbit. Neurosci. Abstr. 1997, 23, 787. [Google Scholar]
- Kapp, B.S.; Supple, W.F.; Whalen, P.J. Stimulation of the amygdaloid central nucleus produces EEG arousal. Behav. Neurosci. 1994, 108, 81–93. [Google Scholar] [CrossRef]
- Liddell, B.J.; Brown, K.J.; Kemp, A.H.; Barton, M.J.; Das, P.; Peduto, A.; Gordon, E.; Williams, L.M. A direct brainstem–amygdala–cortical ‘alarm’system for subliminal signals of fear. Neuroimage 2005, 24, 235–243. [Google Scholar] [CrossRef]
- Aston-Jones, G.; Rajkowski, J.; Kubiak, P.; Valentino, R.J.; Shipley, M.T. Role of the locus coeruleus in emotional activation. Prog. Brain 1996, 107, 379–402. [Google Scholar]
- Berntson, G.G.; Sarter, M.; Cacioppo, J.T. Ascending visceral regulation of cortical affective information processing. Eur. J. Neurosci. 2003, 18, 2103–2109. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.E. Arousal Systems. Front. Biosci. 2003, 8, s438–s451. [Google Scholar] [CrossRef] [PubMed]
- Adolphs, R.; Tranel, D.; Damasio, H.; Damasio, A. Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 1994, 372, 669–672. [Google Scholar] [CrossRef]
- Calder, A.J. Facial emotion recognition after bilateral amygdala damage: Differentially severe impairment of fear. Cogn. Neuropsychol. 1996, 13, 699–745. [Google Scholar] [CrossRef]
- Phan, K.L.; Wager, T.; Taylor, S.F.; Liberzon, I. Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage 2002, 16, 331–348. [Google Scholar] [CrossRef] [Green Version]
- Vytal, K.; Hamann, S. Neuroimaging support for discrete neural correlates of basic emotions: A voxel-based meta-analysis. J. Cogn. Neurosci. 2010, 22, 2864–2885. [Google Scholar] [CrossRef] [Green Version]
- Broks, P.; Young, A.W.; Maratos, E.J.; Coffey, P.J.; Calder, A.J.; Isaac, C.L.; Mayes, A.R.; Hodges, J.R.; Montaldi, D.; Cezayirli, E.; et al. Face processing impair ments after encephalitis: Amygdala damage and recognition of fear. Neuropsychologia 1998, 36, 59–70. [Google Scholar] [CrossRef]
- Whalen, P.J.; Shin, L.M.; McInerney, S.C.; Fischer, H.; Wright, C.I.; Rauch, S.L. A functional MRI study of human amygdala responses to facial expressions of fear versus anger. Emotion 2001, 1, 70. [Google Scholar] [CrossRef] [PubMed]
- Hortensius, R.; de Gelder, B.; Schutter, D.J.L.G. When anger dominates the mind: Increased motor corticospinal excitability in the face of threat. Psychophysiology 2016, 53, 1307–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrence, R.D.; Wylie, E.; Carlson, J.M. The Time-Course for the Capture and Hold of Visuospatial Attention by Fearful and Happy Faces. J. Nonverbal Behav. 2017, 41, 139–153. [Google Scholar] [CrossRef]
- Juncai, S.; Jing, Z.; Rongb, S. Differentiating recognition for anger and fear facial expressions via inhibition of return. J. Psychol. Cogn. 2017, 2, 10–16. [Google Scholar] [CrossRef]
- Wieser, M.J.; Keil, A. Fearful faces heighten the cortical representation of contextual threat. NeuroImage 2014, 86, 317–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellena, G.; Starita, F.; Haggard, P.; Làdavas, E. The spatial logic of fear. Cognition 2020, 203, 104336. [Google Scholar] [CrossRef] [PubMed]
- Ellena, G.; Starita, F.; Haggard, P.; Romei, V.; Làdavas, E. Fearful faces modulate spatial processing in peripersonal space: An ERP study. Neuropsychologia 2021, 156, 107827. [Google Scholar] [CrossRef]
- Whalen, P.J. The uncertainty of it all. Trends Cogn. Sci. 2007, 11, 499–500. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.S.; Öhman, A.; Dolan, R.J. Conscious and unconscious emotional learning in the human amygdala. Nature 1998, 393, 467–470. [Google Scholar] [CrossRef] [PubMed]
- Noesselt, T.; Driver, J.; Heinze, H.J.; Dolan, R. Asymmetrical activation in the human brain during processing of fearful faces. Curr. Biol. 2005, 15, 424–429. [Google Scholar] [CrossRef] [Green Version]
- Hung, Y.; Smith, M.L.; Bayle, D.J.; Mills, T.; Cheyne, D.; Taylor, M.J. Unattended emotional faces elicit early lateralized amygdala-frontal and fusiform activations. Neuroimage 2010, 50, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.L.; Medford, N.; Young, A.W.; Williams, L.; Williams, S.C.; Bullmore, E.T.; Gray, J.A.; Brammer, M.J. Time courses of left and right amygdalar responses to fearful facial expressions. Hum. Brain Mapp. 2001, 12, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Morris, J.S.; Ohman, A.; Dolan, R.J. A subcortical pathway to the right amygdala mediating “unseen” fear. Proc. Natl. Acad. Sci. USA 1999, 96, 1680–1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFadyen, J.; Mattingley, J.B.; Garrido, M.I. An afferent white matter pathway from the pulvinar to the amygdala facilitates fear recognition. eLife 2019, 8, e40766. [Google Scholar] [CrossRef]
- Gainotti, G. Réaction catastrophiques et manifestations d’indifferénce au cours des atteintes cérébrales. Neuropsychologia 1969, 7, 195–204. [Google Scholar] [CrossRef]
- Gainotti, G. Emotional behavior and hemispheric side of lesion. Cortex 1972, 8, 41–55. [Google Scholar] [CrossRef]
- Gainotti, G. Unconscious processing of emotions and the right hemisphere. Neuropsychologia 2012, 50, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Gainotti, G. Emotions and the Right Hemisphere: Can New Data Clarify Old Models? Neuroscientist 2019. [Google Scholar] [CrossRef]
- Tamietto, M.; de Gelder, B. Affective blindsight in the intact brain: Neural interhemispheric summation for unseen fearful expressions. Neuropsychologia 2008, 46, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Sato, W.; Aoki, S. Right hemispheric dominance in processing of unconscious negative emotion. Brain Cogn. 2006, 62, 261–266. [Google Scholar] [CrossRef]
- Prete, G.; Laeng, B.; Tommasi, L. Lateralized hybrid faces: Evidence of a valence-specific bias in the processing of implicit emotions. Laterality 2014, 19, 439–454. [Google Scholar] [CrossRef] [PubMed]
- Prete, G.; Capotosto, P.; Zappasodi, F.; Laeng, B.; Tommasi, L. The cerebral correlates of subliminal emotions: An electroencephalographic study with emotional hybrid faces. Eur. J. Neurosci. 2015, 42, 2952–2962. [Google Scholar] [CrossRef]
- Làdavas, E.; Cimatti, D.; Del Pesce, M.; Tozzi, G. Emotional evaluation with and without conscious stimulus identifications: Evidence from a split-brain patient. Cogn. Emot. 1993, 7, 95–114. [Google Scholar] [CrossRef]
- Prete, G.; D’Ascenzo, S.; Laeng, B.; Fabri, M.; Foschi, N.; Tommasi, L. Conscious and unconscious processing of facial expressions: Evidence from two split-brain patients. J. Neuropsychol. 2015, 9, 45–63. [Google Scholar] [CrossRef]
- Corbetta, M.; Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Corbetta, M.; Shulman, G.L. Spatial neglect and attention networks. Annu. Rev. Neurosci. 2011, 34, 569–599. [Google Scholar] [CrossRef] [Green Version]
- Mattingley, J.B.; Bradshaw, J.L.; Nettleton, N.C.; Bradshaw, J.A. Can Task Specific Perceptual Bias Be Distinguished from Unilateral Neglect? Neuropsychologia 1994, 32, 805–817. [Google Scholar] [CrossRef]
- Nicholls, M.E.R.; Bradshaw, J.L.; Mattingley, J.B. Free-Viewing Perceptual Asymmetries for the Judgement of Brightness, Numerosity and Size. Neuropsychologia 1999, 37, 307–314. [Google Scholar] [CrossRef]
- Jewell, G.; McCourt, M.E. Pseudoneglect: A review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia 2000, 38, 93–110. [Google Scholar] [CrossRef]
- Corballis, P.M.; Funnell, M.G.; Gazzaniga, M.S. Hemispheric asymmetries for simple visual judgments in the split brain. Neuropsychologia 2002, 40, 401–410. [Google Scholar] [CrossRef]
- Pietrelli, M.; Zanon, M.; Làdavas, E.; Grasso, P.A.; Romei, V.; Bertini, C. Posterior brain lesions selectively alter alpha oscillatory activity and predict visual performance in hemianopic patients. Cortex 2019, 121, 347–361. [Google Scholar] [CrossRef]
- Gallina, J.; Pietrelli, M.; Zanon, M.; Bertini, C. Hemispheric differences in altered reactivity of brain oscillations at rest after posterior lesions. Brain Struct. Funct. 2021. [Google Scholar] [CrossRef]
- Heilman, K.M.; Abell, T.V.D. Right hemisphere dominance for attention. Neurology 1982, 30, 327. [Google Scholar] [CrossRef] [PubMed]
- Kinsbourne, M. Hemi-neglect and hemisphere rivalry. Adv. Neurolology 1977, 18, 41–49. [Google Scholar]
- Duecker, F.; Sack, A.T. The hybrid model of attentional control: New insights into hemispheric asymmetries inferred from TMS research. Neuropsychologia 2015, 74, 21–29. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Làdavas, E.; Bertini, C. Right Hemisphere Dominance for Unconscious Emotionally Salient Stimuli. Brain Sci. 2021, 11, 823. https://doi.org/10.3390/brainsci11070823
Làdavas E, Bertini C. Right Hemisphere Dominance for Unconscious Emotionally Salient Stimuli. Brain Sciences. 2021; 11(7):823. https://doi.org/10.3390/brainsci11070823
Chicago/Turabian StyleLàdavas, Elisabetta, and Caterina Bertini. 2021. "Right Hemisphere Dominance for Unconscious Emotionally Salient Stimuli" Brain Sciences 11, no. 7: 823. https://doi.org/10.3390/brainsci11070823