Does Non-Immersive Virtual Reality Improve Attention Processes in Severe Traumatic Brain Injury? Encouraging Data from a Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conventional Attention Processes Training (C_APT)
2.2. Virtual Reality Based-Attention Processes Training (VB_APT)
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; et al. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 2018, 130, 1039–1408. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.Y.; Lee, A. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front. Cell. Neurosci. 2019, 13, 528. [Google Scholar] [CrossRef] [PubMed]
- Iaccarino, C.; Carretta, A.; Nicolosi, F.; Morselli, C. Epidemiology of severe traumatic brain injury. J. Neurosurg. Sci. 2018, 62, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Menon, D.K.; Schwab, K.; Wright, D.W.; Maas, A.I. Demographics and Clinical Assessment Working Group of the International and Interagency Initiative toward Common Data Elements for Research on Traumatic Brain Injury and Psychological Health Position statement: Definition of traumatic brain injury. Arch. Phys. Med. Rehabil. 2010, 91, 1637–1640. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Levin, H.S.; Prough, D.S. Mild, moderate and severe: Terminology implications for clinical and experimental traumatic brain injury. Curr. Opin. Neurol. 2018, 31, 672–680. [Google Scholar] [CrossRef]
- Bonanno, M.; De Luca, R.; Torregrossa, W.; Tonin, P.; Calabrò, R.S. Moving toward Appropriate Motor Assessment Tools in People Affected by Severe Acquired Brain Injury: A Scoping Review with Clinical Advices. Healthcare 2022, 10, 1115. [Google Scholar] [CrossRef]
- Reith, F.C.M.; Van den Brande, R.; Synnot, A.; Gruen, R.; Maas, A.I.R. The reliability of the Glasgow Coma Scale: A systematic review. Intensive Care Med. 2016, 42, 3–15. [Google Scholar] [CrossRef]
- Jourdan, C.; Azouvi, P.; Genet, F.; Selly, N.; Josseran, L.; Schnitzler, A. Disability and health consequences of traumatic brain injury: National prevalence. Am. J. Phys. Med. Rehabil. 2018, 97, 323–331. [Google Scholar] [CrossRef]
- Wilson, L.; Stewart, W.; Dams-O’Connor, K.; Diaz-Arrastia, R.; Horton, L.; Menon, D.K.; Polinder, S. The chronic and evolving neurological consequences of traumatic brain injury. Lancet Neurol. 2017, 16, 813–825. [Google Scholar] [CrossRef]
- Alnawmasi, M.M.; Mani, R.; Khuu, S.K. Changes in the components of visual attention following traumatic brain injury: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0268951. [Google Scholar] [CrossRef]
- Walz, J.A.; Mani, R.; Alnawmasi, M.M.; Khuu, S.K. Visuospatial Attention Allocation as an Indicator of Cognitive Deficit in Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Front. Hum. Neurosci. 2021, 15, 675376. [Google Scholar] [CrossRef] [PubMed]
- Van Zomeren, A.H.; Van DenBurg, W. Residual complaints of patients two years after severe head injury. J. Neurol. Neurosurg. Psychiatry 1985, 48, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Esterman, M.; Fortenbaugh, F.C.; Pierce, M.E.; Fonda, J.R.; DeGutis, J.; Milberg, W.; McGlinchey, R. Trauma-related psychiatric and behavioral conditions are uniquely associated with sustained attention dysfunction. Neuropsychology 2019, 33, 711–724. [Google Scholar] [CrossRef] [PubMed]
- Galetto, V.; Sacco, K. Neuroplastic changes induced by cognitive rehabilitation in traumatic brain injury: A review. Neurorehabilit. Neural Repair 2017, 31, 800–813. [Google Scholar] [CrossRef] [PubMed]
- Barman, A.; Chatterjee, A.; Bhide, R. Cognitive impairment and rehabilitation strategies after traumatic brain injury. Indian J. Psychol. Med. 2016, 38, 172–181. [Google Scholar] [CrossRef]
- Michel, J.A.; Mateer, C.A. Attention rehabilitation following stroke and traumatic brain injury. A review. Eur. Med. 2006, 42, 59–67. [Google Scholar]
- Rohling, M.L.; Faust, M.E.; Beverly, B.; Demakis, G. Effectiveness of cognitive rehabilitation following acquired brain injury: A meta-analytic re-examination of Cicerone et al.’s (2000, 2005) systematic reviews. Neuropsychology 2009, 23, 20–39. [Google Scholar] [CrossRef] [PubMed]
- Bartfai, A.; Elg, M.; Schult, M.L.; Markovic, G. Predicting Outcome for Early Attention Training After Acquired Brain Injury. Front. Hum. Neurosci. 2022, 16, 767276. [Google Scholar] [CrossRef]
- Lawton, T.; Huang, M.X. Dynamic cognitive remediation for a Traumatic Brain Injury (TBI) significantly improves attention, working memory, processing speed, and reading fluency. Restor. Neurol. Neurosci. 2021, 37, 71–86. [Google Scholar] [CrossRef] [PubMed]
- De Luca, R.; Calabrò, R.S.; Bramanti, P. Cognitive rehabilitation after severe acquired brain injury: Current evidence and future directions. Neuropsychol. Rehabil. 2018, 28, 879–898. [Google Scholar] [CrossRef]
- Haskins, M.E.; Cicerone, K.D.; Dams-O’Connor, K.; Langenbahn, D.M.; Shapiro-Rosenbaum, A. Cognitive Rehabilitation Manual. Translating Evidence-Based Recommendations into Practice; Trexler, L., Ed.; ACRM Publishing: Atlanta, GA, USA, 2013. [Google Scholar]
- Sohlberg, M.M.; Mateer, C.A. Effectiveness of an attention-training program. J. Clin. Exp. Neuropsychol. 2001, 9, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Cicerone, K.D.; Goldin, Y.; Ganci, K.; Rosenbaum, A.; Wethe, J.V.; Langenbahn, D.M.; Malec, J.F.; Bergquist, T.F.; Kingsley, K.; Nagele, D.; et al. Evidence-Based Cognitive Rehabilitation: Systematic Review of the Literature From 2009 Through 2014. Arch. Phys. Med. Rehabil. 2019, 100, 1515–1533. [Google Scholar] [CrossRef] [PubMed]
- Markovic, G.; Schult, M.; Elg, M.; Bartfai, A. Beneficial effects of early attention process training after acquired brain injury: A randomized controlled trial. J. Rehabil. Med. 2020, 52, jrm00011. [Google Scholar] [CrossRef] [PubMed]
- Zickefoose, S.; Hux, K.; Brown, J.; Wulf, K. Let the games begin: A preliminary study using attention process training-3 and Lumosity™ brain games to remediate attention deficits following traumatic brain injury. Brain Inj. 2013, 27, 707–716. [Google Scholar] [CrossRef]
- Ponsford, J.; Bayley, M.; Wiseman-Hakes, C.; Togher, L.; Velikonja, D.; McIntyre, A.; Janzen, S.; Tate, R.; INCOG Expert Panel. INCOG recommendations for management of cognition following traumatic brain injury, part II: Attention and information processing speed. J. Head Trauma Rehabil. 2014, 29, 321–337. [Google Scholar] [CrossRef]
- Virk, S.; Williams, T.; Brunsdon, R.; Suh, F.; Morrow, A. Cognitive remediation of attention deficits following acquired brain injury: A systematic review and meta-analysis. NeuroRehabilitation 2015, 36, 367–377. [Google Scholar] [CrossRef]
- Aida, B.; Chau, J. Dunn Immersive virtual reality in traumatic brain injury rehabilitation: A literature review. NeuroRehabilitation 2018, 42, 441–448. [Google Scholar] [CrossRef]
- Maggio, M.G.; De Luca, R.; Molonia, F.; Porcari, B.; Destro, M.; Casella, C.; Salvati, R.; Bramanti, P.; Calabro, R.S. Cognitive rehabilitation in patients with traumatic brain injury: A narrative review on the emerging use of virtual reality. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2019, 61, 1–4. [Google Scholar] [CrossRef]
- De Luca, R.; Maggio, M.G.; Maresca, G.; Latella, D.; Cannavò, A.; Sciarrone, F.; Lo Voi, E.; Accorinti, M.; Bramanti, P.; Calabrò, R.S. Improving Cognitive Function after Traumatic Brain Injury: A Clinical Trial on the Potential Use of the Semi-Immersive Virtual Reality. Behav. Neurol. 2019, 2019, 9268179. [Google Scholar] [CrossRef]
- Jung, H.; Jeong, J.G.; Cheong, Y.S.; Nam, T.W.; Kim, J.H.; Park, C.H.; Park, E.; Jung, T.D. The Effectiveness of Computer-Assisted Cognitive Rehabilitation and the Degree of Recovery in Patients with Traumatic Brain Injury and Stroke. J. Clin. Med. 2021, 10, 5728. [Google Scholar] [CrossRef]
- Perez-Marcos, D.; Bieler-Aeschlimann, M.; Serino, A. Virtual Reality as a Vehicle to Empower Motor-Cognitive Neurorehabilitation. Front. Psychol. 2018, 9, 2120. [Google Scholar] [CrossRef] [PubMed]
- Himanen, L.; Portin, R.; Tenovuo, O.; Taiminen, T.; Koponen, S.; Hiekkanen, H.; Helenius, H. Attention and depressive symptoms in chronic phase after traumatic brain injury. Brain Inj. 2009, 23, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Spinnler, H.; Lagnoni, G. Standardizzazione e Taratura Italiana di Test Neuropsicologici. Ltalian J. Neurol. Sci. 1987, 6, 47–50. [Google Scholar]
- Kortte, K.B.; Horner, M.D.; Windham, W.K. The trail making test, part B: Cognitive flexibility or ability to maintain set? Appl. Neuropsychol. 2002, 9, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef]
- Sohlberg, M.M.; Mateer, C.A. Cognitive Rehabilitation: An Integrative Neuropsychological Approach; Guilford Press: New York, NY, USA, 2001. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 29 April 2022).
- Wu, C.Y.; Hung, S.J.; Lin, K.C.; Chen, K.H.; Chen, P.; Tsay, P.K. Responsiveness, Minimal Clinically Important Difference, and Validity of the MoCA in Stroke Rehabilitation. Occup. Ther. Int. 2019, 2019, 2517658. [Google Scholar] [CrossRef]
- Sullivan, G.M.; Feinn, R. Using Effect Size-or Why the P value is not enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef]
- Mitchell, E.; Ahern, E.; Saha, S.; Trepel, D. Neuropsychological rehabilitation interventions for people with an acquired brain injury. A protocol for a systematic review of economic evaluation. HRB Open Res. 2020, 3, 83. [Google Scholar] [CrossRef] [PubMed]
- Skidmore, E.R.; Whyte, E.M.; Holm, M.B.; Becker, J.T.; Butters, M.A.; Dew, M.A.; Munin, M.C.; Lenze, E.J. Cognitive and affective predictors of rehabilitation participation after stroke. Arch. Phys. Med. Rehabil. 2010, 91, 203–207. [Google Scholar] [CrossRef]
- Paolucci, S.; Iosa, M.; Coiro, P.; Venturiero, V.; Savo, A.; De Angelis, D.; Morone, G. Post-stroke Depression Increases Disability More Than 15% in Ischemic Stroke Survivors: A Case-Control Study. Front. Neurol. 2019, 10, 926. [Google Scholar] [CrossRef] [PubMed]
- Iosa, M.; Galeoto, G.; De Bartolo, D.; Russo, V.; Ruotolo, I.; Spitoni, G.F.; Ciancarelli, I.; Tramontano, M.; Antonucci, G.; Paolucci, S.; et al. Italian Version of the Pittsburgh Rehabilitation Participation Scale: Psychometric Analysis of Validity and Reliability. Brain Sci. 2021, 11, 626. [Google Scholar] [CrossRef] [PubMed]
- Cahn-Weiner, D.A.; Malloy, P.F.; Boyle, P.A.; Marran, M.; Salloway, S. Prediction of functional status from neuropsychological tests in community-dwelling elderly individuals. Clin. Neuropsychol. 2000, 14, 187–195. [Google Scholar] [CrossRef]
- Dang, B.; Chen, W.; He, W.; Chen, G. Rehabilitation Treatment and Progress of Traumatic Brain Injury Dysfunction. Neural Plast. 2017, 2017, 1582182. [Google Scholar] [CrossRef] [PubMed]
- Morone, G.; Spitoni, G.F.; De Bartolo, D.; Ghanbari Ghooshchy, S.; Di Iulio, F.; Paolucci, S.; Zoccolotti, P.; Iosa, M. Rehabilitative devices for a top-down approach. Expert Rev. Med. Devices 2019, 16, 187–195. [Google Scholar] [CrossRef]
- De Bartolo, D.; Spitoni, G.F.; Iosa, M.; Morone, G.; Ciancarelli, I.; Paolucci, S.; Antonucci, G. From movement to thought and back: A review on the role of cognitive factors influencing technological neurorehabilitation. Funct. Neurol. 2019, 34, 131–144. [Google Scholar] [PubMed]
- Green, C.S.; Bavelier, D. Learning, attentional control, and action video games. Curr. Biol. 2019, 22, R197–R206. [Google Scholar] [CrossRef]
- Tieri, G.; Morone, G.; Paolucci, S.; Iosa, M. Virtual reality in cognitive and motor rehabilitation: Facts, fiction and fallacies. Expert Rev. Med. Devices 2018, 15, 107–117. [Google Scholar] [CrossRef]
- Palmese, C.A.; Raskin, S.A. The rehabilitation of attention in individuals with mild traumatic brain injury, using the APT-II programme. Brain Inj. 2000, 14, 535–548. [Google Scholar] [CrossRef]
- Bruschetta, R.; Maggio, M.G.; Naro, A.; Ciancarelli, I.; Morone, G.; Arcuri, F.; Tonin, P.; Tartarisco, G.; Pioggia, G.; Cerasa, A.; et al. Gender Influences Virtual Reality-Based Recovery of Cognitive Functions in Patients with Traumatic Brain Injury: A Secondary Analysis of a Randomized Clinical Trial. Brain Sci. 2022, 12, 491. [Google Scholar] [CrossRef]
- van Dijk, H.; Jannink, M.J.; Hermens, H.J. Effect of augmented feedback on motor function of the affected upper extremity in rehabilitation patients: A systematic review of randomized controlled trials. J. Rehabil. Med. 2005, 37, 202–211. [Google Scholar] [CrossRef]
- Sharma, D.A.; Chevidikunnan, M.F.; Khan, F.R.; Gaowgzeh, R.A. Effectiveness of knowledge of result and knowledge of performance in the learning of a skilled motor activity by healthy young adults. J. Phys. Ther. Sci. 2016, 28, 1482–1486. [Google Scholar] [CrossRef] [Green Version]
- Leonardi, S.; Maggio, M.G.; Russo, M.; Bramanti, A.; Arcadi, F.A.; Naro, A.; Calabrò, R.S.; De Luca, R. Cognitive recovery in people with relapsing/remitting multiple sclerosis: A randomized clinical trial on virtual reality-based neurorehabilitation. Clin. Neurol. Neurosurg. 2021, 208, 106828. [Google Scholar] [CrossRef] [PubMed]
- Maresca, G.; Maggio, M.G.; Latella, D.; Cannavò, A.; De Cola, M.C.; Portaro, S.; Stagnitti, M.C.; Silvestri, G.; Torrisi, M.; Bramanti, A.; et al. Toward Improving Poststroke Aphasia: A Pilot Study on the Growing Use of Telerehabilitation for the Continuity of Care. J. Stroke Cerebrovasc. Dis. 2019, 28, 104303. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, I.; Chiappedi, M.; Meriggi, P.; Mazzola, M.; Grandi, A.; Angelini, L. Rehabilitation of children with hemiparesis: A pilot study on the use of virtual reality. Biomed. Res. Int. 2013, 2013, 695935. [Google Scholar] [CrossRef] [PubMed]
- Luque-Moreno, C.; Oliva-Pascual-Vaca, A.; Kiper, P.; Rodríguez-Blanco, C.; Agostini, M.; Turolla, A. Virtual Reality to Assess and Treat Lower Extremity Disorders in Post-stroke Patients. Methods Inf. Med. 2016, 55, 89–92. [Google Scholar] [PubMed]
Experimental | Control | All | p-Value | |
---|---|---|---|---|
Participants | 15 | 15 | 30 | |
Age | 44.6 (±14.44) | 42.53 (±17.95) | 43.56 (±16.04) | 0.86 |
Gender | ||||
Male | 7 (46.6%) | 7 (46.6%) | 14 (46.66) | |
Female | 8 (53.33%) | 8 (53.33%) | 16 (53.33%) | |
Education | 0.41 | |||
Elementary school | 2 (13.33%) | 4 (26.6%) | 6 (20%) | |
Middle school | 2 (13.33%) | 4 (26.6%) | 7 (23.33%) | |
High school | 9 (60%) | 4 (26.6%) | 13 (43.33%) | |
University | 2 (13.33%) | 3 (20%) | 5 (16.66%) | |
MoCA | 22 ± 2.90 | 23.26 ± 3.69 | 22.63 ± 3.32 | 0.17 |
Executive Visuo-Spatial | 3.13 ± 0.83 | 3.6 ± 0.98 | 3.6 ± 0.92 | 0.25 |
Denomination | 2.93 ± 0.25 | 2.73 ± 0.45 | 2.83 ± 0.37 | 0.36 |
Attention | 1.33 ± 0.87 | 1.48 ± 0.81 | 1.41 ± 0.84 | 0.45 |
Language | 1.03 ± 0.85 | 1.16 ± 0.74 | 1.1 ± 0.79 | 0.58 |
Abstraction | 1 ± 0.37 | 0.53 ± 0.51 | 0.76 ± 0.50 | 0.04 |
Deferred recall | 3.2 ± 1.01 | 3.8 ± 1.08 | 3.5 ± 1.07 | 0.14 |
Orientation | 5.66 ± 0.48 | 5.8 ± 0.41 | 5.73 ± 0.44 | 0.54 |
AMT | 36.06 ± 10.54 | 34.25 ± 13.65 | 35.14 ± 12.02 | 0.56 |
HRS-D | 10.53 ± 6.35 | 11.8 ± 4.41 | 11.16 ± 5.41 | 0.90 |
TMT-A | 76.46± 50.83 | 121.8 ± 97.24 | 99.13 ± 79.65 | 0.15 |
TMT-B | 206.86 ± 86.41 | 221.13 ± 111.67 | 214 ± 98.38 | 0.95 |
TMT-BA | 127 ± 74.05 | 153.6 ± 142.24 | 140.3 ± 112.24 | 0.88 |
Test/Scale | Domains | Description |
---|---|---|
Montreal Cognitive Assessment (MoCA) | Global Cognitive status | The MoCA evaluate several neuropsychological sub-items:
|
Attentive Matrices (AM) | Attention Processes | The Attentive Matrices is used to evaluate the selective visual attention. There are 3 matrices that are shown to the subject. Each of them consists of 13 lines of 10 numbers from 0 to 9 each, arranged in a random sequence. The subject must block all numbers equal to those printed at the top of the matrix. Matrices should be presented from the simplest to the most difficult. The number of correct answers is calculated (range 0–60 overall in the three matrices); the number of false alarms (range 0–270 overall in the three matrices); omissions (range 0–60). The cut-off is ≤30 |
Hamilton Rating Scale-Depression (HRS-D) | Mood | HRS-D is a clinical scale used to evaluate the presence or not of the depression symptoms. It is articulated in 21-items, including 4 items intended to subtype the depression, but which are sometimes, incorrectly, used to rate severity. HRS-D is characterized by a specific scoring, from a not depressed: 0–7 to a very severe depressive status (severe): >23. |
Trail making Test (TMT-A; TMT-B; TMT-BA) | Attention and visuo-spatial function | TMT assesses spatial planning capability in a visuo-motor task. TMT is composed of two parts, A and B. The trail A evaluates the sustained attention, the trail B measures split and alternate attention, and the difference in time between the 2 tests (B–A) is a factor of cognitive flexibility and shifting ability |
Cognitive Domain | Interaction | C_APT Human interface | VB_APT VRRS evo System | |
Modality | Paper and pencil task | Pc-based task | ||
Face to Face setting | Human–web interface | |||
Direct interaction | Virtual interaction by VRRS | |||
3 levels of complexity for execution’s time and the numbers of stimuli-target and distractores administered | 3 levels of difficulty for execution’s time and the numbers of stimuli-target and distractores administered | |||
Sub-items | CAPT-Task | VRRS-APT Task | ||
Attention Processes | Execution Time 15 min For each attention component | Selective | Pointing the stimulus target and ignoring the distractor symbols. Locating the target symbol and ignoring the distractions; to indicate and touch directly with his hand the selected/standard target-stimuli in relation to specific characteristics presented (color, image, animals, function…) neglecting the distracters, which consist in other picture, different for number and complexity of criteria. Cognitive therapist showed the verbal commands to the patient, which combined the different selective images. The patient touches the standard target stimuli presented in a specific time, according to the therapist’s verbal command. | Scanning the entire screen to locate all of the information. To administer scanning exercise, the user must locate the target symbols in a grid, and select the matching virtual symbols. To select and immediately recall feedback (audio and video) similar to various elements: colors, musical strings, geometric or not form, animals…) observed in the virtual environment. The patient touches the virtual target element in a specific time, this action causes a visual change with a specific audio feedback (positive reinforcement), using VVRS-interaction between the cognitive therapist and patient. Otherwise, the element disappears (negative reinforcement). |
Alternating | Switching between stimulus A and stimulus B. To increase the attention alternating processes, the cognitive therapist organized specific activities, involving the mental flexibility for moving between tasks with different cognitive requirements, which use pencil-and-paper tasks (such as to make simple sequences of animals, fruits, objects-colors-pictures). | To increase the attention to alternating processes, the cognitive therapist selected specific virtual activities, involving the mental flexibility for moving between tasks with different cognitive requirements, which use computer games/software dedicated (such as to make simple sequences of animals, fruit, objects-colors-pictures). | ||
Sustained | To stimulate sustained attention processes, the patient observed different stimuli for a variable and progressive time, with an attentional focus on traditional tasks. | To stimulate sustained attention processes, the patient observed from 3 to 5 targets-stimuli for a variable and progressive time (10–15 min), with an attentional focus on virtual tasks. | ||
Split | The therapist asks the TBI patient to perform a double task such as selecting/associating the color to the shape and at the same time eliminating the different standard stimuli. | The therapist asks the TBI patient to perform a double task such as selecting/associating the color to the shape and at the same time eliminating the different shapes/virtual stimuli. |
Psychomethic Tests | Attention Training | p-Value (Intha-Group Analysis) | Range (First–Third Quartile) | Median | p-Value (Between-Group Analysis) | ES |
---|---|---|---|---|---|---|
MoCA | VB_APT | 0.0006 | 24.5–28.5 | 27 | 0.02 | 0.46 |
MoCA | C_APT | 0.02 | 23.5–27 | 25 | ||
Executive Visuo-Spatial | VB_APT | 0.001 | 1–5 | 5 | 0.33 | 0.43 |
Executive Visuo-Spatial | C_APT | 0.12 | 3–3 | 2 | ||
Attention | VB_APT | 0.004 | 1–2 | 1 | 0.04 | 0.44 |
Attention | C_APT | 0.24 | 1–2 | 1 | ||
AMT | VB_APT | 0.0007 | 41.37–49.12 | 43.25 | 0.03 | 1 |
AMT | C_APT | 0.47 | 29–42.62 | 34 | ||
HRS-D | VB_APT | 0.004 | 2.5–12 | 10 | 0.04 | 0.41 |
HRS-D | C_APT | 0.009 | 9–12.5 | 12 | ||
TMT-A | VB_APT | 0.0007 | 30.5–64.5 | 55 | 0.01 | 0.77 |
TMT-A | C_APT | 0.01 | 56.5–139.5 | 76 | ||
TMT-B | VB_APT | 0.0007 | 82–215 | 152 | 0.12 | 0.71 |
TMT-B | C_APT | 0.40 | 155–257.5 | 189 | ||
TMT-BA | VB_APT | 0.007 | 42–159 | 72 | 0.25 | 1.36 |
TMT-BA | C_APT | 0.002 | 155–257.5 | 189 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Luca, R.; Bonanno, M.; Rifici, C.; Pollicino, P.; Caminiti, A.; Morone, G.; Calabrò, R.S. Does Non-Immersive Virtual Reality Improve Attention Processes in Severe Traumatic Brain Injury? Encouraging Data from a Pilot Study. Brain Sci. 2022, 12, 1211. https://doi.org/10.3390/brainsci12091211
De Luca R, Bonanno M, Rifici C, Pollicino P, Caminiti A, Morone G, Calabrò RS. Does Non-Immersive Virtual Reality Improve Attention Processes in Severe Traumatic Brain Injury? Encouraging Data from a Pilot Study. Brain Sciences. 2022; 12(9):1211. https://doi.org/10.3390/brainsci12091211
Chicago/Turabian StyleDe Luca, Rosaria, Mirjam Bonanno, Carmela Rifici, Patrizia Pollicino, Angelo Caminiti, Giovanni Morone, and Rocco Salvatore Calabrò. 2022. "Does Non-Immersive Virtual Reality Improve Attention Processes in Severe Traumatic Brain Injury? Encouraging Data from a Pilot Study" Brain Sciences 12, no. 9: 1211. https://doi.org/10.3390/brainsci12091211
APA StyleDe Luca, R., Bonanno, M., Rifici, C., Pollicino, P., Caminiti, A., Morone, G., & Calabrò, R. S. (2022). Does Non-Immersive Virtual Reality Improve Attention Processes in Severe Traumatic Brain Injury? Encouraging Data from a Pilot Study. Brain Sciences, 12(9), 1211. https://doi.org/10.3390/brainsci12091211