Medical Digital Twin: A Review on Technical Principles and Clinical Applications
Abstract
:1. Introduction
2. Methodology
3. Origin and Conceptualization of the Digital Twin
- -
- Based on historical or infrequently updated data, a static twin model may depict the starting condition of a real thing and has solely static properties. While a functional twin, also known as a mirror twin, continuously receives real-time data from the physical asset, guaranteeing that the digital model evolves in parallel, this digital model does not evolve in real-time [32]. There are few instances of mirror twins being used for surgical planning in the medical industry.
- -
- The self-adaptive twin, also known as the shadow twin, is a functional twin that can gather data in real time and update the model by monitoring changes and interacting with an actual system, organism, or item [33]. Several instances of shadow twins have been used in the medical industry for medication and biomarker development.
- -
- Thanks to machine learning and artificial intelligence programs, the most sophisticated kind of DT is the intelligent, self-adaptive twin, often referred to as extended DTs, cognitive DTs, or physical avatars, which have the capacity to learn, reason, know, act, and communicate with other twins. Examples of individualized medicine in healthcare have been utilized [31,34].
4. Digital Twin in Healthcare
5. Clinical Application in Oncology
6. Clinical Application in Cardiology
7. Clinical Application in Neurosciences
7.1. Multiple Sclerosis as Model of Chronic Disease Management
7.2. Applications in Neuro-Surgery of Brain and Spine
8. Limitations
9. Future Directions
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://ntrs.nasa.gov/api/citations/20210023699/downloads/ASME%2520Digital%2520Twin%2520Summit%2520Keynote_final.pdf&ved=2ahUKEwiR17y94eKKAxVRqFYBHWnYDZIQFnoECBcQAQ&usg=AOvVaw0meWiMOlC7WeSJwdfDb8YS (accessed on 1 September 2024).
- Voigt, I.; Inojosa, H.; Dillenseger, A.; Haase, R.; Akgün, K.; Ziemssen, T. Digital twins for multiple sclerosis. Front. Immunol. 2021, 12, 669811. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, M.; Nee, A.Y.C. Digital Twin Driven Smart Manufacturing; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Grieves, M. 2018. Available online: http://www.apriso.com/library/Whitepaper_Dr_Grieves_DigitalTwin_ManufacturingExcellence.phphttp://www.apriso.com/library/Whitepaper_Dr_Grieves_DigitalTwin_ManufacturingExcellence.php (accessed on 1 September 2024).
- Rasheed, A.; San, O.; Kvamsdal, T. Digital twin: Values, challenges and enablers from a modeling perspective. IEEE Access 2020, 8, 21980–22012. [Google Scholar] [CrossRef]
- Tao, F.; Qi, Q. Make more digital twins. Nature 2019, 573, 490–491. [Google Scholar] [CrossRef] [PubMed]
- Laubenbacher, R.; Mehrad, B.; Shmulevich, I.; Trayanova, N. Digital twins in medicine. Nat. Comput. Sci. 2024, 4, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y. Integrated and Intelligent Manufacturing: Perspectives and Enablers. Engineering 2017, 3, 588–595. [Google Scholar] [CrossRef]
- Liu, Z.; Meyendorf, N.; Mrad, N. The Role of Data Fusion in Predictive Maintenance Using Digital Twin. AIP Conf. Proc. 2018, 1949, 020023. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, S.; Cheng, H. An Application Framework of Digital Twin and its Case Study. J. Ambient Intell. Humanized Comput. 2019, 10, 1141–1153. [Google Scholar] [CrossRef]
- Vrabic, R.; Erkoyuncu, J.A.; Butala, P.; Roy, R. Digital Twins: Understanding the Added Value of Integrated Models for Through-Life Engineering Services. Proc. Manuf. 2018, 16, 139–146. [Google Scholar] [CrossRef]
- Madni, A.M.; Madni, C.C.; Lucero, S.D. Leveraging Digital Twin Technology in Model-Based Systems Engineering. Systems 2019, 7, 7. [Google Scholar] [CrossRef]
- Siemens. 2020. Available online: https://www.siemens.com/global/en/company/stories/industry/the-digital-twin.html (accessed on 1 September 2024).
- Cimino, C.; Negri, E.; Fumagalli, L. Review of Digital Twin Applications in Manufacturing. Comput. Industry 2019, 113, 103130. [Google Scholar] [CrossRef]
- Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in Manufacturing: A Categorical Literature Review and Classification. IFACPapersOnLine 2018, 51, 1016–1022. [Google Scholar] [CrossRef]
- Digital Twin Driven Smart Manufacturing. 2019. Available online: https://www.sciencedirect.com/book/9780128176306/digital-twin-driven-smart-manufacturing (accessed on 1 December 2024).
- Boschert, S.; Rosen, R. Digital Twin—The Simulation Aspect. In Mechatronic Futures: Challenges and Solutions for Mechatronic Systems and Their Designers; Hehenberger, P., Bradley, D., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 59–74. [Google Scholar]
- Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital Twin-Driven Product Design, Manufacturing and Service with Big Data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [Google Scholar] [CrossRef]
- Coronado, P.D.U.; Lynn, R.; Louhichi, W.; Parto, M.; Wescoat, E.; Kurfess, T. Part Data Integration in the Shop Floor Digital Twin: Mobile and Cloud Technologies to Enable a Manufacturing Execution System. J. Manuf. Syst. 2018, 48, 25–33. [Google Scholar] [CrossRef]
- Schluse, M.; Priggemeyer, M.; Atorf, L.; Roßmann, J. Experimentable Digital Twin Streamlining Simulation-Based Systems Engineering for Industry 4.0. IEEE Trans. Ind. Inf. 2018, 14, 1722–1731. [Google Scholar] [CrossRef]
- Laaki, H.; Miché, Y.; Tammi, K. Prototyping a Digital Twin for Real Time Remote Control Over Mobile Networks: Application of Remote Surgery. IEEE Access 2019, 7, 20325–20336. [Google Scholar] [CrossRef]
- Jimenez, J.I.; Jahankhani, H.; Kendzierskyj, S. Health Care in the Cyberspace: Medical Cyber-Physical System and Digital Twin Challenges. In Digital Twin Technologies and Smart Cities; Farsi, M., Daneshkhah, A., Hosseinian-Far, A., Jahankhani, H., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 79–92. [Google Scholar]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A. Digital Twin in Industry: State-of-the-Art. IEEE Trans. Ind. Inf. 2019, 15, 2405–2415. [Google Scholar] [CrossRef]
- Kannadasan, K.; Edla, D.R.; Kuppili, V. Type 2 Diabetes Data Classification Using Stacked Autoencoders in Deep Neural Networks. Clin. Epidemiol. Global Health 2019, 7, 530–535. [Google Scholar] [CrossRef]
- Schroeder, G.N.; Steinmetz, C.; Pereira, C.E.; Espindola, D.B. Digital Twin Data Modeling with AutomationML and a Communication Methodology for Data Exchange. IFAC-PapersOnLine 2016, 49, 12–17. [Google Scholar] [CrossRef]
- Haag, S.; Anderl, R. Digital Twin—Proof of Concept. Manuf. Lett. 2018, 15, 64–66. [Google Scholar] [CrossRef]
- Uhlemann, T.H.J.; Schock, C.; Lehmann, C.; Freiberger, S.; Steinhilper, R. The Digital Twin: Demonstrating the Potential of Real Time Data Acquisition in Production Systems. Proc. Manuf. 2017, 9, 113–120. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, M.; Liu, Y.; Nee, A.Y.C. Digital Twin Driven Prognostics and Health Management for Complex Equipment. Cirp. Ann.-Manuf. Technol. 2018, 67, 169–172. [Google Scholar] [CrossRef]
- Negri, E.; Fumagalli, L.; Macchi, M. A review of the roles of Digital Twin in CPS-based production systems. Procedia Manuf. 2017, 11, 9. [Google Scholar] [CrossRef]
- Björnsson, B.; Borrebaeck, C.; Elander, N.; Gasslander, T.; Gawel, D.R.; Gustafsson, M.; Jörnsten, R.; Lee, E.J.; Li, X.; on behalf of the Swedish Digital Twin Consortium; et al. Digital twins to personalize medicine. Genome Med. 2020, 12, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Katsoulakis, E.; Wang, Q.; Wu, H.; Shahriyari, L.; Fletcher, R.; Liu, J.; Achenie, L.; Liu, H.; Jackson, P.; Xiao, Y.; et al. Digital twins for health: A scoping review. NPJ Digit. Med. 2024, 7, 77. [Google Scholar] [CrossRef]
- Barricelli, B.R.; Casiraghi, E.; Fogli, D. A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications. IEEE Access 2019, 7, 167653–167671. [Google Scholar] [CrossRef]
- Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access 2020, 8, 108952–108971. [Google Scholar] [CrossRef]
- Sahal, R.; Alsamhi, S.H.; Brown, K.N. Personal Digital Twin: A Close Look into the Present and a Step towards the Future of Personalised Healthcare Industry. Sensors 2022, 22, 5918. [Google Scholar] [CrossRef] [PubMed]
- Croatti, A.; Gabellini, M.; Montagna, S.; Ricci, A. On the Integration of Agents and Digital Twins in Healthcare. J. Med. Syst. 2020, 44, 161. [Google Scholar] [CrossRef]
- Venkatesh, K.P.; Raza, M.M.; Kvedar, J.C. Health digital twins as tools for precision medicine: Considerations for computation, implementation, and regulation. NPJ Digit. Med. 2022, 5, 150. [Google Scholar] [CrossRef] [PubMed]
- Fagherazzi, G. Deep Digital Phenotyping and Digital Twins for Precision Health: Time to Dig Deeper. J. Med. Internet Res. 2020, 22, e16770. [Google Scholar] [CrossRef]
- Sun, T.; He, X.; Li, Z. Digital twin in healthcare: Recent updates and challenges. Digit. Health 2023, 9, 20552076221149651. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, M.C. Warum Intelligente Decision-Support-Systeme Das Betriebssystem Eines Smart Hospitals Sein Und Medizin Menschlicher Machen Werden. In Smart Hospital—Digitale Und Empathische Zukunftsmedizin; Werner, J.A., Forsting, M., Kaazte, T., Schmidt-Rumposch, A., Eds.; MMV Medizinisch Wissenschaftliche Verlagsgesellschaft: Berlin, Germany, 2020; pp. 93–102. [Google Scholar]
- Rajula, H.S.R.; Verlato, G.; Manchia, M.; Antonucci, N.; Fanos, V. Comparison of Conventional Statistical Methods with Machine Learning in Medicine: Diagnosis, Drug Development, and Treatment. Medicina 2020, 56, 455. [Google Scholar] [CrossRef] [PubMed]
- Shameer, K.; Johnson, K.W.; Glicksberg, B.S.; Dudley, J.T.; Sengupta, P.P. Machine Learning in Cardiovascular Medicine: Are We There Yet? Heart 2018, 104, 1156–1164. [Google Scholar] [CrossRef]
- Alber, M.; Tepole, A.B.; Cannon, W.R.; De, S.; Dura-Bernal, S.; Garikipati, K.; Karniadakis, G.; Lytton, W.W.; Perdikaris, P.; Petzold, L.; et al. Integrating Machine Learning and Multiscale Modeling—Perspectives, Challenges, and Opportunities in the Biological, Biomedical, and Behavioral Sciences. NPJ Digit. Med. 2019, 2, 115. [Google Scholar] [CrossRef]
- Winter, N.R.; Hahn, T. Big Data, AI and Machine Learning for Precision Psychiatry: How are They Changing the Clinical Practice? Fortschr. Der Neurol.-Psychiatr. 2020, 88, 786–793. [Google Scholar] [CrossRef]
- Corral-Acero, J.; Margara, F.; Marciniak, M.; Rodero, C.; Loncaric, F.; Feng, Y.; Gilbert, Y.; Fernandes, J.F.; Bukhari, H.A.; Wajdan, A.; et al. The ‘Digital Twin’ to Enable the Vision of Precision Cardiology. Eur. Heart J. 2020, 41, 4556–4564. [Google Scholar] [CrossRef] [PubMed]
- Digitwins. 2018. Available online: https://www.digitwins.org (accessed on 1 September 2024).
- Filippo, M.D.; Damiani, C.; Vanoni, M.; Maspero, D.; Mauri, G.; Alberghina, L.; Pescini, D. Single-CellDigitalTwins for Cancer Preclinical Investigation. Methods Mol. Biol. 2020, 2088, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Ardila, D.; Kiraly, A.P.; Bharadwaj, S.; Choi, B.; Reicher, J.J.; Peng, L.; Tse, D.; Etemadi, M.; Ye, W.; Corrado, G.; et al. End-to- End Lung Cancer Screening with Three-Dimensional Deep Learning on Low-Dose Chest Computed Tomography. Nat. Med. 2019, 25, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, D.; Berlet, M.; Feussner, H.; Ostler, D. Digitalisierung in Der Onkologischen Chirurgie. Forum 2021, 36, 22–28. [Google Scholar] [CrossRef]
- Zhang, J.; Qian, H.; Zhou, H. Application and Research of Digital Twin Technology in Safety and Health Monitoring of the Elderly in Community. Zhongguo Yi Liao Qi Xie Za Zhi Chin J. Med. Instrum. 2019, 43, 410–413. [Google Scholar] [CrossRef]
- Calderita, L.V.; Vega, A.; Barroso-Ramírez, S.; Bustos, P.; Núñez, P. Designing a Cyber-Physical System for Ambient Assisted Living: A Use-Case Analysis for Social Robot Navigation in Caregiving Centers. Sensors 2020, 20, 4005. [Google Scholar] [CrossRef]
- Hirschvogel, M.; Jagschies, L.; Maier, A.; Wildhirt, S.M.; Gee, M.W. An In Silico Twin for Epicardial Augmentation of the Failing Heart. Int. J. Numer. Methods Biomed. Eng. 2019, 35, e3233. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, O.; Roy, D.; Bhattacharya, S.; Sinha, A.; Pal, A. Synthetic PPG generation from haemodynamic model with baroreflex autoregulation: A Digital twin of cardiovascular system. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2019, 2019, 5024–5029. [Google Scholar] [CrossRef]
- Niederer, S.A.; Aboelkassem, Y.; Cantwell, C.D.; Corrado, C.; Coveney, S.; Cherry, E.M.; Delhaas, T.; Fenton, F.H.; Panfilov, A.V.; Pathmanathan, P.; et al. Creation and Application of Virtual Patient Cohorts of Heart Models. Philos Trans. A Math Phys. Eng. Sci. 2020, 378, 20190558. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Suehling, M.; Flohr, T.; Comaniciu, D. Artificial Intelligence in Diagnostic Imaging: Status Quo, Challenges, and Future Opportunities. J. Thorac. Imaging 2020, 35, S11–S16. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, D. Predicting the Impacts of Epidemic Outbreaks on Global Supply Chains: A Simulation-Based Analysis on the Coronavirus Outbreak (COVID-19/SARS-CoV-2) Case. Transp. Res. Part E Logistics Transport Rev. 2020, 136, 101922. [Google Scholar] [CrossRef] [PubMed]
- Tellechea-Luzardo, J.; Winterhalter, C.; Widera, P.; Kozyra, J.W.; de Lorenzo, V.; Krasnogor, N. Linking Engineered Cells to Their Digital Twins: A Version Control System for Strain Engineering. ACS Synthetic Biol. 2020, 9, 536–545. [Google Scholar] [CrossRef]
- Lauzeral, N.; Borzacchiello, D.; Kugler, M.; George, D.; Rémond, Y.; Hostettler, A.; Chinesta, F.; Lauzeral, N.; Borzacchiello, D.; Kugler, M.; et al. A Model Order Reduction Approach to Create Patient-Specific Mechanical Models of Human Liver in Computational Medicine Applications. Comput. Methods Programs Biomed. 2019, 170, 95–106. [Google Scholar] [CrossRef]
- Tomašev, N.; Glorot, X.; Rae, J.W.; Zielinski, M.; Askham, H.; Saraiva, A.; Mottram, A.; Meyer, C.; Ravuri, S.; Protsyuk, I.; et al. A Clinically Applicable Approach to Continuous Prediction of Future Acute Kidney Injury. Nature 2019, 572, 116–119. [Google Scholar] [CrossRef]
- Pizzolato, C.; Saxby, D.J.; Palipana, D.; Diamond, L.E.; Barrett, R.S.; Teng, Y.D.; Lloyd, D.G. Neuromusculoskeletal Modeling-Based Prostheses for Recovery After Spinal Cord Injury. Front. Neurorobot. 2019, 13, 97. [Google Scholar] [CrossRef] [PubMed]
- Chakshu, N.K.; Carson, J.; Sazonov, I.; Nithiarasu, P. A Semi-Active Human Digital Twin Model for Detecting Severity of Carotid Stenoses from Head Vibration-a Coupled Computational Mechanics and Computer Vision Method. Int. J. Numer. Methods Biomed. Eng. 2019, 35, e3180. [Google Scholar] [CrossRef] [PubMed]
- Lareyre, F.; Adam, C.; Carrier, M.; Raffort, J. Using Digital Twins for Precision Medicine in Vascular Surgery. Ann. Vasc. Surg. 2020, 5096, e577–e578. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Boussard, T.; Macklin, P.; Greenspan, E.J.; Gryshuk, A.L.; Stahlberg, E.; Syeda-Mahmood, T.; Shmulevich, I. Digital twins for predictive oncology will be a paradigm shift for precision cancer care. Nat. Med. 2021, 27, 2065–2066. [Google Scholar] [CrossRef]
- Stahlberg, E.A.; Abdel-Rahman, M.; Aguilar, B.; Asadpoure, A.; Beckman, R.A.; Borkon, L.L.; Bryan, J.N.; Cebulla, C.M.; Chang, Y.H.; Chatterjee, A.; et al. Exploring approaches for predictive cancer patient digital twins: Opportunities for collaboration and innovation. Front. Digit. Health 2022, 4, 1007784. [Google Scholar] [CrossRef] [PubMed]
- Tortora, M.; Gemini, L.; Scaravilli, A.; Ugga, L.; Ponsiglione, A.; Stanzione, A.; D’arco, F.; D’anna, G.; Cuocolo, R. Radiomics applications in head and neck tumor imaging: A narrative review. Cancers 2023, 15, 1174. [Google Scholar] [CrossRef] [PubMed]
- Gemini, L.; Tortora, M.; Giordano, P.; Prudente, M.E.; Villa, A.; Vargas, O.; Giugliano, M.F.; Somma, F.; Marchello, G.; Chiaramonte, C.; et al. Vasari scoring system in discerning between different degrees of glioma and IDH status prediction: A possible machine learning application? J. Imaging 2023, 9, 75. [Google Scholar] [CrossRef]
- Pacchiano, F.; Tortora, M.; Doneda, C.; Izzo, G.; Arrigoni, F.; Ugga, L.; Cuocolo, R.; Parazzini, C.; Righini, A.; Brunetti, A. Radiomics and artificial intelligence applications in pediatric brain tumors. World J. Pediatr. 2024, 20, 747–763. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Lorenzo, G.; Hormuth, D.A.; Lima, E.A.B.F.; Slavkova, K.P.; DiCarlo, J.C.; Virostko, J.; Phillips, C.M.; Patt, D.; Chung, C.; et al. Integrating mechanism-based modeling with biomedical imaging to build practical digital twins for clinical oncology. Biophys. Rev. 2022, 3, 021304. [Google Scholar] [CrossRef] [PubMed]
- Jarrett, A.M.; Faghihi, D.; Hormuth, D.A.; Lima, E.A.B.F.; Virostko, J.; Biros, G.; Patt, D.; Yankeelov, T.E. Optimal control theory for personalized therapeutic regimens in oncology: Background, history, challenges and opportunities. J. Clin. Med. 2020, 9, 1314. [Google Scholar] [CrossRef]
- Baldock, A.L.; Rockne, R.C.; Boone, A.D.; Neal, M.L.; Hawkins-Daarud, A.; Corwin, D.M.; Bridge, C.A.; Guyman, L.A.; Trister, A.D.; Mrugala, M.M.; et al. From patient-specific mathematical neurooncology to precision medicine. Front. Oncol. 2013, 3, 62. [Google Scholar] [CrossRef]
- Jackson, P.R.; Juliano, J.; Hawkins-Daarud, A.; Rockne, R.C.; Swanson, K.R. Patient-specific mathematical neuro-oncology: Using a simple proliferation and invasion tumor model to inform clinical practice. Bull. Math. Biol. 2015, 77, 846–856. [Google Scholar] [CrossRef]
- Hawkins-Daarud, A.; Rockne, R.; Corwin, D.; Anderson, A.R.A.; Kinahan, P.; Swanson, K.R. In silico analysis suggests differential response to bevacizumab and radiation combination therapy in newly diagnosed glioblastoma. J. R. Soc. Interface 2015, 12, 20150388. [Google Scholar] [CrossRef] [PubMed]
- Arevalo, H.J.; Vadakkumpadan, F.; Guallar, E.; Jebb, A.; Malamas, P.; Wu, K.C.; Trayanova, N.A. Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nat. Commun. 2016, 7, 11437. [Google Scholar] [CrossRef] [PubMed]
- Sung, E.; Prakosa, A.; Zhou, S.; Berger, R.D.; Chrispin, J.; Nazarian, S.; Trayanova, N.A. Fat infiltration in the infarcted heart as a paradigm for ventricular arrhythmias. Nat. Cardiovasc. Res. 2022, 1, 933–945. [Google Scholar] [CrossRef] [PubMed]
- Cartoski, M.J.; Nikolov, P.P.; Prakosa, A.; Boyle, P.M.; Spevak, P.J.; Trayanova, N.A. Computational identification of ventricular arrhythmia risk in pediatric myocarditis. Pediatr. Cardiol. 2019, 40, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Shade, J.K.; Cartoski, M.J.; Nikolov, P.; Prakosa, A.; Doshi, A.; Binka, E.; Olivieri, L.; Boyle, P.M.; Spevak, P.J.; Trayanova, N.A. Ventricular arrhythmia risk prediction in repaired tetralogy of Fallot using personalized computational cardiac models. Heart Rhythm 2020, 17, 408–414. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, R.P.; Binka, E.; Prakosa, A.; Zimmerman, S.L.; Cartoski, M.J.; Abraham, M.R.; Lu, D.-Y.; Boyle, P.M.; A Trayanova, N.; Children, N.I.D.H.F.; et al. Personalized computational heart models with T1-mapped fibrotic remodeling predict sudden death risk in patients with hypertrophic cardiomyopathy. eLife 2022, 11, e73325. [Google Scholar] [CrossRef]
- Shade, J.K.; Prakosa, A.; Popescu, D.M.; Yu, R.; Okada, D.R.; Chrispin, J.; Trayanova, N.A. Predicting risk of sudden cardiac death in patients with cardiac sarcoidosis using multimodality imaging and personalized heart modeling in a multivariable classifier. Sci. Adv. 2021, 7, eabi8020. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, K.; Prakosa, A.; James, C.; Zimmerman, S.L.; Carrick, R.; Sung, E.; Gasperetti, A.; Tichnell, C.; Murray, B.; et al. Predicting ventricular tachycardia circuits in patients with arrhythmogenic right ventricular cardiomyopathy using genotype-specific heart digital twins. eLife 2023, 12, RP88865. [Google Scholar] [CrossRef]
- Ashikaga, H.; Arevalo, H.; Vadakkumpadan, F.; Blake, R.C., III; Bayer, J.D.; Nazarian, S.; Zviman, M.M.; Tandri, H.; Berger, R.D.; Calkins, H.; et al. Feasibility of image-based simulation to estimate ablation target in human ventricular arrhythmia. Heart Rhythm 2013, 10, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Prakosa, A.; Arevalo, H.J.; Deng, D.; Boyle, P.M.; Nikolov, P.P.; Ashikaga, H.; Blauer, J.J.; Ghafoori, E.; Park, C.J.; Blak, R.C., III; et al. Personalized virtual-heart technology for guiding the ablation of infarct-related ventricular tachycardia. Nat. Biomed. Eng. 2018, 2, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Sung, E.; Prakosa, A.; Aronis, K.N.; Zhou, S.; Zimmerman, S.L.; Tandri, H.; Nazarian, S.; Berger, R.D.; Chrispin, J.; Trayanova, N.A. Personalized digital-heart technology for ventricular tachycardia ablation targeting in hearts with infiltrating adiposity. Circ. Arrhythm. Electrophysiol. 2020, 13, e008912. [Google Scholar] [CrossRef]
- McDowell, K.S.; Zahid, S.; Vadakkumpadan, F.; Blauer, J.; MacLeod, R.S.; Trayanova, N.A. Virtual electrophysiological study of atrial fibrillation in fibrotic remodeling. PLoS ONE 2015, 10, e0117110. [Google Scholar] [CrossRef] [PubMed]
- Roney, C.H.; Beach, M.L.; Mehta, A.M.; Sim, I.; Corrado, C.; Bendikas, R.; Solis-Lemus, J.A.; Razeghi, O.; Whitaker, J.; O’neill, L.; et al. In silico comparison of left atrial ablation techniques that target the anatomical, structural and electrical substrates of atrial fibrillation. Front. Physiol. 2020, 11, 1145. [Google Scholar] [CrossRef] [PubMed]
- Zahid, S.; Cochet, H.; Boyle, P.M.; Schwarz, E.L.; Whyte, K.N.; Vigmond, E.J.; Dubois, R.; Hocini, M.; Haïssaguerre, M.; Jaïs, P.; et al. Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovasc. Res. 2016, 110, 443–454. [Google Scholar] [CrossRef] [PubMed]
- oewe, A.; Poremba, E.; Oesterlein, T.; Luik, A.; Schmitt, C.; Seemann, G.; Dössel, O. Patient-specific identification of atrial flutter vulnerability—A computational approach to reveal latent reentry pathways. Front. Physiol. 2019, 9, 1910. [Google Scholar]
- Roney, C.H.; Sim, I.; Yu, J.; Beach, M.; Mehta, A.; Solis-Lemus, J.A.; Kotadia, I.; Whitaker, J.; Corrado, C.; Razeghi, O.; et al. Predicting atrial fibrillation recurrence by combining population data and virtual cohorts of patient-specific left atrial models. Circ. Arrhythm. Electrophysiol. 2022, 15, e010253. [Google Scholar] [CrossRef]
- Yang, P.; Rose, A.; DeMarco, K.R.; Dawson, J.R.D.; Han, Y.; Jeng, M.; Harvey, R.D.; Santana, L.F.; Ripplinger, C.M.; Vorobyov, I.; et al. A multiscale predictive digital twin for neurocardiac modulation. J. Physiol. 2023, 601, 3789–3812. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boyle, P.M.; Zghaib, T.; Zahid, S.; Ali, R.L.; Deng, D.; Franceschi, W.H.; Hakim, J.B.; Murphy, M.J.; Prakosa, A.; Zimmerman, S.L.; et al. Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nat. Biomed. Eng. 2019, 3, 870–879. [Google Scholar] [CrossRef]
- Ali, R.L.; Hakim, J.B.; Boyle, P.M.; Zahid, S.; Sivasambu, B.; E Marine, J.; Calkins, H.; A Trayanova, N.; Spragg, D.D. Arrhythmogenic propensity of the fibrotic substrate after atrial fibrillation ablation: A longitudinal study using magnetic resonance imaging-based atrial models. Cardiovasc. Res. 2019, 115, 1757–1765. [Google Scholar] [CrossRef] [PubMed]
- Shade, J.K.; Ali, R.L.; Basile, D.; Popescu, D.; Akhtar, T.; Marine, J.E.; Spragg, D.D.; Calkins, H.; Trayanova, N.A. Preprocedure application of machine learning and mechanistic simulations predicts likelihood of paroxysmal atrial fibrillation recurrence following pulmonary vein isolation. Circ. Arrhythm. Electrophysiol. 2020, 13, e008213. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.R.; Smith, A.M.; Pouliot, Y.; Li-Bland, D.; Loukianov, A.; Fisher, C.K. Generating Digital Twins with Multiple Sclerosis Using Probabilistic Neural Networks. bioRxiv 2020. [Google Scholar] [CrossRef]
- Wang, H.; Triebkorn, P.; Breyton, M.; Dollomaja, B.; Lemarechal, J.-D.; Petkoski, S.; Sorrentino, P.; Depannemaecker, D.; Hashemi, M.; Jirsa, V.K. Virtual brain twins: From basic neuroscience to clinical use. Natl. Sci. Rev. 2024, 11, nwae079. [Google Scholar] [CrossRef] [PubMed]
- Marasco, A.; Spera, E.; De Falco, V.; Iuorio, A.; Lupascu, C.A.; Solinas, S.; Migliore, M. An Adaptive Generalized Leaky Integrate-and-Fire Model for Hippocampal CA1 Pyramidal Neurons and Interneurons. Bull. Math. Biol. 2023, 85, 109. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sainz-DeMena, D.; García-Aznar, J.M.; Pérez, M.; Borau, C. Im2mesh: A Python Library to Reconstruct 3D Meshes from Scattered Data and 2D Segmentations, Application to Patient-Specific Neuroblastoma Tumour Image Sequences. Appl. Sci. 2022, 12, 11557. [Google Scholar] [CrossRef]
- Dang, J.; Lal, A.; Montgomery, A.; Flurin, L.; Litell, J.; Gajic, O.; Rabinstein, A.; Cervantes-Arslanian, A.; Marcellino, C.; Robinson, C.; et al. Developing DELPHI expert consensus rules for a digital twin model of acute stroke care in the neuro critical care unit. BMC Neurol. 2023, 23, 161. [Google Scholar] [CrossRef] [PubMed]
- Lemaréchal, J.-D.; Triebkorn, P.; Vattikonda, A.N.; Hashemi, M.; Woodman, M.; Guye, M.; Bartolomei, F.; Wang, H.E.; Jirsa, V. Effects of the spatial resolution of the Virtual Epileptic Patient on the identification of epileptogenic networks. Imaging Neurosci. 2024, 2, 153. [Google Scholar] [CrossRef]
- Petrova-Antonova, D.; Spasov, I.; Krasteva, I.; Manova, I.; Ilieva, S. (Eds.) A Digital Twin Platform for Diagnostics and Rehabilitation of Multiple Sclerosis; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Ziemssen, T.; Kern, R.; Thomas, K. Multiple Sclerosis: Clinical Profiling and Data Collection as Prerequisite for Personalized Medicine Approach. BMC Neurol. 2016, 16, 124. [Google Scholar] [CrossRef]
- Ziemssen, T.; Hillert, J.; Butzkueven, H. The Importance of Collecting Structured Clinical Information on Multiple Sclerosis. BMC Med. 2016, 14, 81. [Google Scholar] [CrossRef] [PubMed]
- Magyari, M.; Sorensen, P.S. Comorbidity in Multiple Sclerosis. Front. Neurol. 2020, 11, 851. [Google Scholar] [CrossRef] [PubMed]
- Toscano, S.; Patti, F. CSF Biomarkers in Multiple Sclerosis: Beyond Neuroinflammation. Neuroimmunol. Neuroinflamm. 2020, 7, 14–41. [Google Scholar] [CrossRef]
- Ziemssen, T.; Akgün, K.; Brück, W. Molecular Biomarkers in Multiple Sclerosis. J. Neuroinflamm. 2019, 16, 272. [Google Scholar] [CrossRef] [PubMed]
- Thebault, S.; Booth, R.A.; Freedman, M.S. Blood Neurofilament Light Chain: The Neurologist’s Troponin? Biomedicines 2020, 8, 523. [Google Scholar] [CrossRef] [PubMed]
- Ziemssen, T.; Piani-Meier, D.; Bennett, B.; Johnson, C.; Tinsley, K.; Trigg, A.; Hach, T.; Dahlke, F.; Tomic, D.; Tolley, C.; et al. A Physician-Completed Digital Tool for Evaluating Disease Progression (Multiple Sclerosis Progression Discussion Tool): Validation Study. J. Med. Internet Res. 2020, 22, e16932. [Google Scholar] [CrossRef] [PubMed]
- D’souza, M.; Yaldizli.; John, R.; Vogt, D.R.; Papadopoulou, A.; Lucassen, E.; Menegola, M.; Andelova, M.; Dahlke, F.; Schnyder, F.; et al. Neurostatus e-Scoring Improves Consistency of Expanded Disability Status Scale Assessments: A Proof of Concept Study. Mult. Scler. 2017, 23, 597–603. [Google Scholar] [CrossRef]
- Kosa, P.; Barbour, C.; Wichman, A.; Sandford, M.; Greenwood, M.; Bielekova, B. NeurEx: Digitalized Neurological Examination Offers a Novel High- Resolution Disability Scale. Ann. Clin. Trans. Neurol. 2018, 5, 1241–1249. [Google Scholar] [CrossRef] [PubMed]
- Kurtzke, J.F.M. Rating Neurologic Impairment in Multiple Sclerosis: An Expanded Disability Status Scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [PubMed]
- Beste, C.; Mückschel, M.; Paucke, M.; Ziemssen, T. Dual-Tasking in Multiple Sclerosis—Implications for a Cognitive Screening Instrument. Front. Hum. Neurosci. 2018, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- Trentzsch, K.; Weidemann, M.L.; Torp, C.; Inojosa, H.; Scholz, M.; Haase, R.; Schriefer, D.; Akgün, K.; Ziemssen, T. The Dresden Protocol for Multidimensional Walking Assessment (DMWA) in Clinical Practice. Front. Neurosci. 2020, 14, 582046. [Google Scholar] [CrossRef] [PubMed]
- Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; et al. Defining the Clinical Course of Multiple Sclerosis: The 2013 Revision. Neurology 2014, 83, 278–286. [Google Scholar] [CrossRef]
- De Meo, E.; Portaccio, E.; Giorgio, A.; Ruano, L.; Goretti, B.; Niccolai, C.; Patti, F.; Chisari, C.G.; Gallo, P.; Grossi, P.; et al. Identifying the Distinct Cognitive Phenotypes in Multiple Sclerosis. JAMA Neurol. 2021, 78, 414–425. [Google Scholar] [CrossRef]
- Inojosa, H.; Schriefer, D.; Ziemssen, T. Clinical Outcome Measures in Multiple Sclerosis: A Review. Autoimmun. Rev. 2020, 19, 102512. [Google Scholar] [CrossRef]
- D’Souza, M.; Papadopoulou, A.; Girardey, C.; Kappos, L. Standardization and Digitization of Clinical Data in Multiple Sclerosis. Nat. Rev. Neurol. 2021, 17, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Zu Hörste, G.M.; Gross, C.C.; Klotz, L.; Schwab, N.; Wiendl, H. Next- Generation Neuroimmunology: New Technologies to Understand Central Nervous System Autoimmunity. Trends Immunol. 2020, 41, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Leocani, L.; Rocca, M.A.; Comi, G. MRI and Neurophysiological Measures toPredict Course, Disability and Treatment Response in Multiple Sclerosis. Curr. Opin. Neurol. 2016, 29, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Marciniewicz, E.; Podgórski, P.; Sąsiadek, M.; Bladowska, J. The Role of MR Volumetry in Brain Atrophy Assessment in Multiple Sclerosis: A Review of the Literature. Adv. Clin. Exp. Med. Off. Organ Wroclaw Med. Univ. 2019, 28, 989–999. [Google Scholar] [CrossRef]
- Louapre, C. Conventional and Advanced MRI in Multiple Sclerosis. Rev. Neurol. 2018, 174, 391–397. [Google Scholar] [CrossRef]
- Kaufmann, M.; Haase, R.; Proschmann, U.; Ziemssen, T.; Akgün, K. Real-World Lab Data in Natalizumab Treated Multiple Sclerosis Patients Up to 6 Years Long- Term Follow Up. Front. Neurol. 2018, 9, 1071. [Google Scholar] [CrossRef]
- Kaufmann, M.; Haase, R.; Proschmann, U.; Ziemssen, T.; Akgün, K. Real WorldLab Data: Patterns of Lymphocyte Counts in Fingolimod Treated Patients. Front. Immunol. 2018, 9, 2669. [Google Scholar] [CrossRef]
- Cortese, R.; Collorone, S.; Ciccarelli, O.; Toosy, A.T. Advances in Brain Imaging in Multiple Sclerosis. Ther. Adv. Neurol. Disord. 2019, 12, 1756286419859722. [Google Scholar] [CrossRef]
- Oreja-Guevara, C. Overview of Magnetic Resonance Imaging for Management of Relapsing-Remitting Multiple Sclerosis in Everyday Practice. Eur. J. Neurol. 2015, 22, 22–27. [Google Scholar] [CrossRef]
- Tomassini, V.; Sinclair, A.; Sawlani, V.; Overell, J.; Pearson, O.R.; Hall, J.; Guadagno, J. Diagnosis and Management of Multiple Sclerosis: MRI in Clinical Practice. J. Neurol. 2020, 267, 2917–2925. [Google Scholar] [CrossRef] [PubMed]
- Tortora, M.; Tranfa, M.; D’elia, A.C.; Pontillo, G.; Petracca, M.; Bozzao, A.; Caranci, F.; Cervo, A.; Cosottini, M.; Falini, A.; et al. Walk your talk: Real-world adherence to guidelines on the use of MRI in multiple sclerosis. Diagnostics 2021, 11, 1310. [Google Scholar] [CrossRef]
- Pirozzi, M.A.; Tranfa, M.; Tortora, M.; Lanzillo, R.; Morra, V.B.; Brunetti, A.; Alfano, B.; Quarantelli, M. A polynomial regression-based approach to estimate relaxation rate maps suitable for multiparametric segmentation of clinical brain MRI studies in multiple sclerosis. Comput. Methods Programs Biomed. 2022, 223, 106957. [Google Scholar] [CrossRef]
- Oh, J.; Sicotte, N.L. New imaging approaches for precision diagnosis and disease staging of MS? Mult. Scler. J. 2020, 26, 568–575. [Google Scholar] [CrossRef]
- Arevalo, O.; Riascos, R.; Rabiei, P.; Kamali, A.; Nelson, F. Standardizing Magnetic Resonance Imaging Protocols, Requisitions, and Reports in Multiple Sclerosis: An Update for Radiologist Based on 2017 Magnetic Resonance Imaging in Multiple Sclerosis and 2018 Consortium of Multiple Sclerosis Centers Consensus Guidelines. J. Comput. Assist. Tomogr. 2019, 43, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Saslow, L.; Li, D.K.; Halper, J.; Banwell, B.; Barkhof, F.; Barlow, L.; Costello, K.; Damiri, P.; Dunn, J.; Giri, S.; et al. An International Standardized Magnetic Resonance Imaging Protocol for Diagnosis and Follow-up of Patients with Multiple Sclerosis: Advocacy, Dissemination, and Implementation Strategies. Int. J. MS Care 2020, 22, 226–232. [Google Scholar] [CrossRef]
- Pessini, R.A.; dos Santos, A.C.; Salmon, C.E.G. Quantitative MRI Data in Multiple Sclerosis Patients: A Pattern Recognition Study. Res. Biomed. Eng. 2018, 34, 138–146. [Google Scholar] [CrossRef]
- Afzal, H.M.R.; Luo, S.; Ramadan, S.; Lechner-Scott, J. The Emerging Role of Artificial Intelligence in Multiple Sclerosis Imaging. Mult. Scler. 2020, 28, 849–858. [Google Scholar] [CrossRef]
- Tauhid, S.; Neema, M.; Healy, B.C.; Weiner, H.L.; Bakshi, R. MRI Phenotypes Based on Cerebral Lesions and Atrophy in Patients with Multiple Sclerosis. J. Neurol. Sci. 2014, 346, 250–254. [Google Scholar] [CrossRef]
- Hanson, J.V.M.; Wicki, C.A.; Manogaran, P.; Petzold, A.; Schippling, S. OCT and Imaging in Central Nervous System Diseases: The Eye as a Window to the Brain. In OCT and Multiple Sclerosis, 2nd ed.; Springer International Publishing:: Cham, Switzerland, 2020; pp. 195–233. [Google Scholar] [CrossRef]
- Bauckneht, M.; Capitanio, S.; Raffa, S.; Roccatagliata, L.; Pardini, M.; Lapucci, C.; Marini, C.; Sambuceti, G.; Inglese, M.; Gallo, P.; et al. Molecular Imaging of Multiple Sclerosis: From the Clinical Demand to Novel Radiotracers. EJNMMI Radiopharm. Chem 2019, 4, 6. [Google Scholar] [CrossRef] [PubMed]
- Chumnanvej, S.; Chumnanvej, S.; Tripathi, S. Assessing the benefits of digital twins in neurosurgery: A systematic review. Neurosurg. Rev. 2024, 47, 52. [Google Scholar] [CrossRef] [PubMed]
- Mashour, G.A.; Woodrum, D.T.; Avidan, M.S. Neurological complications of surgery and anaesthesia. Br. J. Anaesth. 2015, 114, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Budohoski, K.P.; Ngerageza, J.G.; Austard, B.; Fuller, A.; Galler, R.; Haglund, M.; Lett, R.; Lieberman, I.H.; Mangat, H.S.; March, K.; et al. Neurosurgery in East Africa: Innovations. World Neurosurg. 2018, 113, 436–452. [Google Scholar] [CrossRef]
- Singh, R.; Baby, B.; Suri, A. A virtual repository of neurosurgical instrumentation for neuroengineering research and collaboration. World Neurosurg. 2019, 126, e84–e93. [Google Scholar] [CrossRef] [PubMed]
- Thomas, N.W.D.; Sinclair, J. Image-guided neurosurgery: History and current clinical applications. J. Med. Imaging Radiat. Sci. 2015, 46, 331–342. [Google Scholar] [CrossRef]
- Graziano, F.; Bue, E.L.; Scalia, G.; Umana, G.E.; Iacopino, D.G.; Tumbiolo, S.; Maugeri, R.; Nicoletti, G.F. Neurosurgical post-operative complications with incidental life-saving findings. Interdisci. Neurosurg. 2021, 24, 101088. [Google Scholar] [CrossRef]
- Landriel Ibañez, F.A.; Hem, S.; Ajler, P.; Vecchi, E.; Ciraolo, C.; Baccanelli, M.; Tramontano, R.; Knezevich, F.; Carrizo, A. A new classification of complications in neurosurgery. World Neurosurg. 2011, 75, 709–715. [Google Scholar] [CrossRef]
- Panda, N.B.; Mahajan, S.; Chauhan, R. Management of postoperative neurosurgical patients. 81Management of postoperative neurosurgical patients. J. Neuroanaesthesiol. Crit. Care 2019, 6, 80–86. [Google Scholar] [CrossRef]
- Kamel Boulos, M.N.; Zhang, P. Digital twins: From personalized medicine to precision public health. J. Pers Med. 2021, 11, 745. [Google Scholar] [CrossRef]
- Karas, C.S.; Chiocca, E.A. Neurosurgical robotics: A review of brain and spine applications. J. Robot. Surg. 2007, 1, 39–43. [Google Scholar] [CrossRef]
- Khoshnevisan, A.; Allahabadi, N.S. Neuronavigation: Principles, clinical applications and potential pitfalls. Iran. J. Psychiatry 2012, 7, 97–103. [Google Scholar] [PubMed]
- Qureshi, Y.A.; Mohammadi, B. Robotic oesophago-gastric cancer surgery. Ann. R. Coll. Surg. Engl. 2018, 100, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, S.; Ganeshkumar, P. Systematic reviews and meta-analysis: Understanding the best evidence in primary healthcare. J. Family Med. Prim. Care 2013, 2, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Bero, L.; Chartres, N.; Diong, J.; Fabbri, A.; Ghersi, D.; Lam, J.; Lau, A.; McDonald, S.; Mintzes, B.; Sutton, P.; et al. The risk of bias in observational studies of exposures (ROBINSE) tool: Concerns arising from application to observational studies of exposures. Syst. Rev. 2018, 7, 242. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Kim, C.; Kang, B. Risk of bias assessment of randomized controlled trials referenced in the 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care: A cross-sectional review. BMJ Open 2019, 9, e023725. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, A.E.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Li, F.Y.; Chen, X.L.; Xu, B.N. Intraoperative high-field magnetic resonance imaging, multimodal neuronavigation, and intraoperative electrophysiological monitoring-guided surgery for treating supratentorial cavernomas. Chronic Dis. Transl. Med. 2016, 2, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Roessler, K.; Sommer, B.; Grummich, P.; Coras, R.; Kasper, B.S.; Hamer, H.M.; Blumcke, I.; Stefan, H.; Buchfelder, M. Improved resection in lesional temporal lobe epilepsy surgery using neuronavigation and intraoperative MR imaging: Favourable long term surgical and seizure outcome in 88 consecutive cases. Seizure 2014, 23, 201–207. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, H.; Zhao, Y.; Feng, X.; Wu, L.; Lou, L. Stereoelectroencephalography- guided radiofrequency thermocoagulation of epileptic foci in the eloquent motor cortex: Feasibility, safety, and efficacy. World Neurosurg. 2022, 164, e492–e500. [Google Scholar] [CrossRef]
- Khan, M.; Chari, A.; Seunarine, K.; Eltze, C.; Moeller, F.; D‘Arco, F.; Thornton, R.; Das, K.; Boyd, S.; Cross, J.H.; et al. Proportion of resected seizure onset zone contacts in pediatric stereo-EEG-guided resective surgery does not correlate with outcome. Clin. Neurophysiol. 2022, 138, 18–24. [Google Scholar] [CrossRef]
- Billiet, C.; Joye, I.; Mercier, C.; Depuydt, L.; De Kerf, G.; Vermeulen, P.; Van Laere, S.; Van de Kelft, E.; Meijnders, P.; Verellen, D.; et al. Outcome and toxicity of hypofractionated image-guided SABR for spinal oligometastases. Clin. Transl. Radiat. Oncol. 2020, 25, 65–70. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Xue, P.; Zhou, Y.; Shi, W.; Zhou, S.; Wang, Y.; Li, H.; Zhao, R. Optimized SEEG-guided radiofrequency thermocoagulation in the treatment of pediatric hypothalamic hamartomas. Seizure 2021, 86, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.A.; Salehi, A.; Limbrick, D.D.; Smyth, M.D. Applications of a robotic stereotactic arm for pediatric epilepsy and neurooncology surgery. J. Neurosurg. Pediatr. 2017, 20, 364–370. [Google Scholar] [CrossRef] [PubMed]
- De Benedictis, A.; Trezza, A.; Carai, A.; Genovese, E.; Procaccini, E.; Messina, R.; Randi, F.; Cossu, S.; Esposito, G.; Palma, P.; et al. Robot-assisted procedures in pediatric neurosurgery. Neurosurg. Focus 2017, 42, E7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wu, J.; Xu, C.; Zheng, W.; Pan, Y.; Li, C.; Zhou, Y. Minimally invasive full-endoscopic posterior cervical foraminotomy assisted by O-arm-based navigation. Pain Physician 2018, 21, E215–E223. [Google Scholar] [PubMed]
- Kutlay, M.; Kural, C.; Solmaz, I.; Tehli, O.; Temiz, C.; Daneyemez, M.; Izci, Y. Fully endoscopic resection of intra-axial brain lesions using neuronavigated pediatric anoscope. Turk. Neurosurg. 2016, 26, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Unsgård, G.; Rao, V.; Solheim, O.; Lindseth, F. Clinical experience with navigated 3D ultrasound angiography (power Doppler) in microsurgical treatment of brain arteriovenous malformations. Acta Neurochir. 2016, 158, 875–883. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, Y.; Sun, Z.; Wu, C.; Xue, Z.; Ma, Y.; Jiang, J. Application of multimodal navigation together with fluorescein angiography in microsurgical treatment of cerebral arteriovenous malformations. Sci. Rep. 2017, 7, 14822. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.-Y.; Lin, C.-W.; Chang, C.-C.; Chen, H.-T.; Chen, Y.-J.; Lo, Y.-S.; Hsiao, P.-H.; Chen, P.-C.; Lin, C.-S.; Tsou, H.-K. Percutaneous endoscopic unilateral laminotomy and bilateral decompression under 3D realtime image-guided navigation for spinal stenosis in degenerative lumbar kyphoscoliosis patients: An innovative preliminary study. BMC Musculoskelet. Disord. 2020, 21, 734. [Google Scholar] [CrossRef] [PubMed]
- Katsevman, G.A.; Spencer, R.D.; Daffner, S.D.; Bhatia, S.; Marsh, R.A.; France, J.C.; Cui, S.; Dekeseredy, P.; Sedney, C.L. Robotic-navigated percutaneous pedicle screw placement has less facet joint violation than fluoroscopy-guided percutaneous screws. World Neurosurg. 2021, 151, e731–e737. [Google Scholar] [CrossRef] [PubMed]
- Rubino, F.; Eichberg, D.G.; Cordeiro, J.G.; Di, L.; Eliahu, K.; Shah, A.H.; Luther, E.M.; Lu, V.M.; Komotar, R.J.; Ivan, M.E. Robotic guidance platform for laser interstitial thermal ablation and stereotactic needle biopsies: A single center experience. J. Robot Surg. 2022, 16, 549–557. [Google Scholar] [CrossRef]
- Vakharia, V.N.; Rodionov, R.; Miserocchi, A.; McEvoy, A.W.; O’keeffe, A.; Granados, A.; Shapoori, S.; Sparks, R.; Ourselin, S.; Duncan, J.S. Comparison of robotic and manual implantation of intracerebral electrodes: A single-centre, single-blinded, randomized controlled trial. Sci. Rep. 2021, 11, 17127. [Google Scholar] [CrossRef]
- Tandon, N.; Tong, B.A.; Friedman, E.R.; Johnson, J.A.; Von Allmen, G.; Thomas, M.S.; Hope, O.A.; Kalamangalam, G.P.; Slater, J.D.; Thompson, S.A. Analysis of morbidity and outcomes associated with use of subdural grids vs stereoelectroencephalography in patients with intractable epilepsy. JAMA Neurol. 2019, 76, 672–681. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, P.F.; Connors, S.; Reiner, A.S.; Greenfield, J.P. Image guidance for placement of Ommaya reservoirs: Comparison of fluoroscopy and frameless stereotactic navigation in 145 patients. World Neurosurg. 2016, 93, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Ankory, R.; Kadar, A.; Netzer, D.; Schermann, H.; Gortzak, Y.; Dadia, S.; Kollander, Y.; Segal, O. 3D imaging and stealth navigation instead of CT guidance for radiofrequency ablation of osteoid osteomas: A series of 52 patients. BMC Musculoskelet. Disord. 2019, 20, 579. [Google Scholar] [CrossRef] [PubMed]
- Kovalenko, R.A.; Kashin, V.A.; Cherebillo, V.Y. Individual navigation templates for subcortical screw placement in lumbar spine. Sovrem. Tekhnologii Med. 2021, 13, 41–46. [Google Scholar] [CrossRef] [PubMed]
- La Rocca, G.; Mazzucchi, E.; Pignotti, F.; Nasto, L.A.; Galieri, G.; Olivi, A.; De Santis, V.; Rinaldi, P.; Pola, E.; Sabatino, G. Intraoperative CT-guided navigation versus fluoroscopy for percutaneous pedicle screw placement in 192 patients: A comparative analysis. J. Orthop. Traumatol. 2022, 23, 44. [Google Scholar] [CrossRef]
- Hubbe, U.; Sircar, R.; Scheiwe, C.; Scholz, C.; Kogias, E.; Krüger, M.T.; Volz, F.; Klingler, J.-H. Surgeon, staff, and patient radiation exposure in minimally invasive transforaminal lumbar interbody fusion:impact of 3D fluoroscopy-based navigation partially replacing conventional fluoroscopy: Study protocol for a randomized controlled trial. Trials 2015, 9, 142. [Google Scholar] [CrossRef]
- Vardiman, A.B.; Wallace, D.J.; Booher, G.A.; Crawford, N.R.; Riggleman, J.R.; Greeley, S.L.; Ledonio, C.G. Does the accuracy of pedicle screw placement differ between the attending surgeon and resident in navigated robotic-assisted minimally invasive spine surgery? J. Robot. Surg. 2020, 14, 567–572. [Google Scholar] [CrossRef]
- Wang, R.; Han, Y.; Lu, L. Computer-assisted design template guided percutaneous radiofrequency thermocoagulation through foramen rotundum for treatment of isolated V2 trigeminal neuralgia: A retrospective case-control study. Pain Res. Manag. 2019, 3, 9784020. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, C.; Ma, L.; Zhang, C. Artificial intelligence algorithm-based intraoperative magnetic resonance navigation for glioma resection. Contrast Media Mol. Imaging 2022, 4, 4147970. [Google Scholar] [CrossRef] [PubMed]
- Elmi-Terander, A.; Burström, G.; Nachabé, R.; Fagerlund, M.; Ståhl, F.; Charalampidis, A.; Edström, E.; Gerdhem, P. Augmented reality navigation with intraoperative 3D imaging vs fluoroscopyassisted free-hand surgery for spine fixation surgery: A matchedcontrol study comparing accuracy. Sci. Rep. 2020, 10, 707. [Google Scholar] [CrossRef] [PubMed]
- Panciani, P.P.; Fontanella, M.; Schatlo, B.; Garbossa, D.; Agnoletti, A.; Ducati, A.; Lanotte, M. Fluorescence and image guided resection in high grade glioma. Clin. Neurol. Neurosurg. 2012, 114, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Huang, S.; Zhang, L.; Ballangrud, A.M.; Aristophanous, M.; Arriba, L.I.C.; Li, G. Accuracy of surface-guided patient setup for conventional radiotherapy of brain and nasopharynx cancer. J. Appl. Clin. Med. Phys. 2021, 22, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Nerland, U.S.; Jakola, A.S.; Solheim, O.; Weber, C.; Rao, V.; Lønne, G.; Solberg, T.K.; Salvesen, Ø.; Carlsen, S.M.; Nygaard, P.; et al. Minimally invasive decompression versus open laminectomy for central stenosis of the lumbar spine: Pragmatic comparative effectiveness study. BMJ 2015, 1, h1603. [Google Scholar] [CrossRef]
- Cho, J.M.; Lim, J.J.; Kim, S.H.; Cho, K.G. Clinical experience of glioma surgery using “tailed bullet”: Overcoming the limitations of conventional neuro-navigation guided surgery. Yonsei Med. J. 2015, 56, 388–396. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zong, C.L.; Shi, Y.L.; Jia, J.Q.; Ding, M.C.; Chang, S.P.; Lu, J.B.; Chen, Y.L.; Tian, L. A retrospective study to compare the treatment outcomes with and without surgical navigation for fracture of the orbital wall. Chin. J. Traumatol. 2021, 24, 11–17. [Google Scholar] [CrossRef]
- Wang, W.-H.; Hung, Y.-C.; Hsu, S.P.; Lin, C.-F.; Chen, H.-H.; Shih, Y.-H.; Lee, C.-C. Endoscopic hematoma evacuation in patients with spontaneous supratentorial intracerebral hemorrhage. J. Chin. Med. Assoc. 2015, 78, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Schebesch, K.-M.; Höhne, J.; Rosengarth, K.; Noeva, E.; Schmidt, N.O.; Proescholdt, M. Fluorescein-guided resection of newly diagnosed high-grade glioma: Impact on extent of resection and outcome. Brain Spine 2022, 9, 101690. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Hu, J.; Wu, J.; Lang, L.; Ma, C.; Sun, B.; Gu, X.; Pan, L. Accurate source imaging based on high resolution scalp electroencephalography and individualized finite difference head models in epilepsy pre-surgical workup. Seizure 2018, 59, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Li, B.; Xu, C.; Hu, S.; Dai, M.; Xia, J.; Luo, P.; Shi, X.; Zhao, Z.; Dong, X.; et al. Comparison of electrical impedance tomography and intracranial pressure during dehydration treatment of cerebral edema. Neuroimage Clin. 2019, 23, 101909. [Google Scholar] [CrossRef] [PubMed]
- Alhilani, M.; Tamilia, E.; Ricci, L.; Ricci, L.; Grant, P.E.; Madsen, J.R.; Pearl, P.L.; Papadelis, C. Ictal and interictal source imaging on intracranial EEG predicts epilepsy surgery outcome in children with focal cortical dysplasia. Clin. Neurophysiol. 2020, 131, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Young, J.J.; Coulehan, K.; Fields, M.C.; Yoo, J.Y.; Marcuse, L.V.; Jette, N.; Panov, F.; Ghatan, S.; Bender, H.A. Language mapping using electrocorticography versus stereoelectroencephalography: A case series. Epilepsy Behav. 2018, 84, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Mchirgui, N.; Quadar, N.; Kraiem, H.; Lakhssassi, A. The Applications and Challenges of Digital Twin Technology in Smart Grids: A Comprehensive Review. Appl. Sci. 2024, 14, 10933. [Google Scholar] [CrossRef]
- Karbout, K.; El Ghazouani, M.; Lachgar, M.; Hrimech, H. Multimodal data fusion techniques in smart healthcare. In Proceedings of the 2024 International Conference on Global Aeronautical Engineering and Satellite Technology (GAST), Marrakesh, Morocco, 24–26 April 2024. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, H.-Y.; Baptista-Hon, D.T.; Gao, Y.; Liu, X.; Oermann, E.; Xu, S.; Jin, S.; Zhang, J.; Sun, Z.; et al. Concepts and applications of digital twins in healthcare and medicine. Patterns 2024, 5, 101028. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, P.-H.; Kim, K.-H.; Schermer, M. Ethical Issues of Digital Twins for Personalized Health Care Service: Preliminary Mapping Study. J. Med. Internet Res. 2022, 24, e33081. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aldoseri, A.; Al-Khalifa, K.N.; Hamouda, A.M. Re-Thinking Data Strategy and Integration for Artificial Intelligence: Concepts, Opportunities, and Challenges. Appl. Sci. 2023, 13, 7082. [Google Scholar] [CrossRef]
- Shajari, S.; Kuruvinashetti, K.; Komeili, A.; Sundararaj, U. The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review. Sensors 2023, 23, 9498. [Google Scholar] [CrossRef]
- Mennella, C.; Maniscalco, U.; De Pietro, G.; Esposito, M. Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon 2024, 10, e26297. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Field | What is Known | Applications of Digital Twin Technologies |
---|---|---|
Healthcare (general) | Digital twins are virtual replicas of physical entities, enabling real-time simulation and prediction. They integrate data from IoT devices, EMRs, and sensors to provide insight |
|
Oncology | Cancer treatment often requires personalized approaches due to high variability in tumor behavior and patient responses |
|
Cardiology | Cardiovascular diseases are complex, involving multiple interacting factors like blood flow, heart rhythm, and vessel health |
|
Neuroscience | Chronic Diseases: Neurological disorders like Multiple Sclerosis, Parkinson’s, Alzheimer’s, and epilepsy have complex mechanisms and high individual variability Neurosurgery: Neurosurgical procedures require precision in understanding brain structures and functional regions | Chronic Diseases:
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tortora, M.; Pacchiano, F.; Ferraciolli, S.F.; Criscuolo, S.; Gagliardo, C.; Jaber, K.; Angelicchio, M.; Briganti, F.; Caranci, F.; Tortora, F.; et al. Medical Digital Twin: A Review on Technical Principles and Clinical Applications. J. Clin. Med. 2025, 14, 324. https://doi.org/10.3390/jcm14020324
Tortora M, Pacchiano F, Ferraciolli SF, Criscuolo S, Gagliardo C, Jaber K, Angelicchio M, Briganti F, Caranci F, Tortora F, et al. Medical Digital Twin: A Review on Technical Principles and Clinical Applications. Journal of Clinical Medicine. 2025; 14(2):324. https://doi.org/10.3390/jcm14020324
Chicago/Turabian StyleTortora, Mario, Francesco Pacchiano, Suely Fazio Ferraciolli, Sabrina Criscuolo, Cristina Gagliardo, Katya Jaber, Manuel Angelicchio, Francesco Briganti, Ferdinando Caranci, Fabio Tortora, and et al. 2025. "Medical Digital Twin: A Review on Technical Principles and Clinical Applications" Journal of Clinical Medicine 14, no. 2: 324. https://doi.org/10.3390/jcm14020324
APA StyleTortora, M., Pacchiano, F., Ferraciolli, S. F., Criscuolo, S., Gagliardo, C., Jaber, K., Angelicchio, M., Briganti, F., Caranci, F., Tortora, F., & Negro, A. (2025). Medical Digital Twin: A Review on Technical Principles and Clinical Applications. Journal of Clinical Medicine, 14(2), 324. https://doi.org/10.3390/jcm14020324