A Bibliometric Analysis and Overall Review of the New Technology and Development of Unmanned Surface Vessels
Abstract
:1. Introduction
2. Data and Methodology
2.1. Research Framework
2.2. Bibliometric Methods and Visualization Tools Used in the Analysis
2.3. Data Extraction and Exclusion Criteria
3. The Results of the Bibliometric Analysis
3.1. Publication Trends
3.2. Social Structure Analysis
3.2.1. Influential Authors Analysis
- (1)
- Revealing leading knowledge providers: the analysis of an author’s collaboration network can identify the central figures or leading knowledge providers in a specific field; in this case, slip-and-fall incident research. These are the experts or authors who have made significant contributions to the body of knowledge in this domain.
- (2)
- Understanding social networks: beyond identifying individual experts, this analysis also delves into the social networks that exist among these authors. It reveals how these experts collaborate, communicate and share ideas, shedding light on the dynamics of knowledge creation and dissemination within the field.
- (3)
- Interest for early career researchers: early career researchers can benefit from such analyses when entering a new research domain. By identifying the key figures and their collaborative networks, they can find mentors, potential collaborators and resources to accelerate their research and integration into the field.
- (4)
- Interest for external stakeholders: external stakeholders, such as industry professionals, policymakers or organizations interested in slip-and-fall incident research, can use this information to connect with world-class experts in the field. It enables them to seek advice, collaboration or expertise from those who are well-established in the domain.
3.2.2. Institutions Analysis
3.2.3. Countries and International Cooperation Analysis
3.2.4. Disciplines and Subjects Analysis
3.3. Citation and Co-Citation Network Analysis
3.3.1. Publications Citation and Co-Citation Analysis
3.3.2. Distribution and Co-Citation Analysis of Journal Sources
3.4. Keywords and Term Analysis
3.4.1. Keywords Analysis
3.4.2. Term Analysis
4. Synthesis and Summary
4.1. Past and Current Trends
4.2. The Features of Social Structure
4.3. Citation and Co-Citation Network Summary
4.4. Future Directions
4.4.1. Enhanced Intelligence and Autonomy
4.4.2. Highly Integrated Sensor Systems and Multi-Modal Task Execution
4.4.3. Extended Endurance and Resilience
4.4.4. Satellite Communication and Interconnectivity
4.4.5. Eco-Friendly and Sustainable Practices
4.4.6. Navigation Safety and Military Defense
4.4.7. Brief Summary
4.5. Biases and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Time | Index Word Input | Number of Papers |
---|---|---|
1 | TS = (unmanned surface vessel) AND TS = (new technology) AND TS = (automation) | 1 |
2 | TS = (driverless surface vessel or unmanned surface vessel or manless surface vessel) AND TS = (new technology or new science or new technique) AND TS = (automatic control or automation or automatization) | 7 |
3 | TS = (driverless surface vessel or unmanned surface vessel or manless surface vessel or unattended surface vessel or automatic surface vessel) AND TS = (new technology or new science or new technique or advanced technology) AND TS = (automatic control or automation or automatization or robotization or automate) | 30 |
4 | TS = (driverless surface vessel or unmanned surface vessel or manless surface vessel or unattended surface vessel or automatic surface vessel or unmanned surface ship or driverless surface ship) AND TS = (new technology or new science or new technique or advanced technology) AND TS = (automatic control or automation or automatization or robotization or automate) | 30 |
5 | TS = (driverless surface vessel or unmanned surface vessel or manless surface vessel or unattended surface vessel or automatic surface vessel or unmanned surface ship or driverless surface ship or unmanned surface ships driverless surface ships or unmanned surface marines or driverless surface marines) AND TS = (new technology or new science or new technique or advanced technology) AND TS = (automatic control or automation or automatization or robotization or automate) | 32 |
6 | TS = (driverless surface vessel or unmanned surface vessel or manless surface vessel or unattended surface vessel or automatic surface vessel or unmanned surface ship or driverless surface ship or unmanned surface ships or driverless surface ships or unmanned surface marines or driverless surface marines or unmanned surface vehicles or driverless surface vehicles or automatic surface vehicles) AND TS = (new technology or new science or new technique or advanced technology) AND TS = (automatic control or automation or automatization or robotization or automate) | 91 |
7 | TS = (driverless surface vessel or unmanned surface vessel or manless surface vessel or unattended surface vessel or automatic surface vessel or unmanned surface ship or driverless surface ship or unmanned surface ships or driverless surface ships or unmanned surface marines or driverless surface marines or unmanned surface vehicles or driverless surface vehicles or automatic surface vehicles) AND TS = (new technology or new science or new technique or advanced technology) AND TS = (automatic control or automation or automatization or robotization or automate or marine navigation) | 108 |
8 | TS = (driverless surface vessel or unmanned surface vessel or manless surface vessel or unattended surface vessel or automatic surface vessel or unmanned surface ship or driverless surface ship or unmanned surface ships or driverless surface ships or unmanned surface marines or driverless surface marines or unmanned surface vehicles or driverless surface vehicles or automatic surface vehicles) AND TS = (new technology or new science or new technique or advanced technology or new technologies or new technological or new processes) AND TS = (automatic control or automation or automatization or robotization or automate or marine navigation) | 145 |
9 | TS = (driverless surface vessel or unmanned surface vessel or manless surface vessel or unattended surface vessel or automatic surface vessel or unmanned surface ship or driverless surface ship or unmanned surface ships or driverless surface ships or unmanned surface marines or driverless surface marines or unmanned surface vehicles or driverless surface vehicles or automatic surface vehicles or unmanned surface vessels or automatic surface vessels or driverless surface vessels) and TS = (new technology or new science or new technique or advanced technology or new technologies or new technological or new processes or new methods or new method or new model or new approach) and TS = (automatic control or automation or automatization or robotization or automate or marine navigation or automatic operation or automated or automations) OR TI = (driverless surface vessel or unmanned surface vessel or manless surface vessel or unattended surface vessel or automatic surface vessel or unmanned surface ship or driverless surface ship or unmanned surface ships or driverless surface ships or unmanned surface marines or driverless surface marines or unmanned surface vehicles or driverless surface vehicles or automatic surface vehicles unmanned surface vessels or automatic surface vessels or driverless surface vessels) and TI = (new technology or new science or new technique or advanced technology or new technologies or new technological or new processes or new methods) and TI = (automatic control or automation or automatization or robotization or automate or marine navigation or automatic operation or automated or automations) | 216 |
10 | TS = (USV or unmanned surface vehicle or driverless surface vessel or unmanned surface vessel or manless surface vessel or unattended surface vessel or automatic surface vessel or unmanned surface ship or driverless surface ship or unmanned surface ships or driverless surface ships or unmanned surface marines or driverless surface marines or unmanned surface vehicles or driverless surface vehicles or automatic surface vehicles or marine navigation or unmanned surface vessels or automatic surface vessels or driverless surface vessels) and TS = (new technology or new science or new technique or advanced technology new technologies or new technological or new processes or new methods or new model or new approach) and TS = (automatic control or automation or automatization or automate or robotization or automatic operation or automated or automations) OR TI = (USV or unmanned surface vehicle or driverless surface vessel or unmanned surface vessel or manless surface vessel or unattended surface vessel or automatic surface vessel or unmanned surface ship or driverless surface ship or unmanned surface ships or driverless surface ships or unmanned surface marines or driverless surface marines or unmanned surface vehicles or driverless surface vehicles or automatic surface vehicles or marine navigation or unmanned surface vessels or automatic surface vessels or driverless surface vessels) and TI = (new technology or new science or new technique or advanced technology new technologies or new technological or new processes or new methods or new model or new approach) OR AB = (USV or unmanned surface vehicle or driverless surface vessel or unmanned surface vessel or manless surface vessel or unattended surface vessel or automatic surface vessel or unmanned surface ship or driverless surface ship or unmanned surface ships or driverless surface ships or unmanned surface marines or driverless surface marines or unmanned surface vehicles or driverless surface vehicles or automatic surface vehicles or marine navigation or unmanned surface vessels or automatic surface vessels or driverless surface vessels) and AB = (new technology or new science or new technique or advanced technology new technologies or new technological or new processes or new methods or new model or new approach) | 1025 |
References
- Campbell, S.; Naeem, W.; Irwin, G.W. A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres. Annu. Rev. Control 2012, 36, 267–283. [Google Scholar] [CrossRef]
- Liu, Z.X.; Zhang, Y.M.; Yu, X.; Yuan, C. Unmanned surface vehicles.: An overview of developments and challenges. Annu. Rev. Control 2016, 41, 71–93. [Google Scholar] [CrossRef]
- Liu, G.Q.; Wu, J.W.; Wen, N.F.; Zhang, R.B. A Review on Collaborative Planning of Multiple Unmanned Surface Vehicles. In Proceedings of the Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp. 2158–2163. [Google Scholar]
- Ma, T.; Yang, S.; Wang, T.; Xin, L. Research status and development overview of multi-USV collaborative system. Ship Sci. Technol. 2014, 36, 7–13. [Google Scholar]
- Abdelaal, M.; Fränzle, M.; Hahn, A. Nonlinear Model Predictive Control for trajectory tracking and collision avoidance of underactuated vessels with disturbances. Ocean Eng. 2018, 160, 168–180. [Google Scholar] [CrossRef]
- Lyu, H.G.; Yin, Y. COLREGS-Constrained Real-time Path Planning for Autonomous Ships Using Modified Artificial Potential Fields. J. Navig. 2019, 72, 588–608. [Google Scholar] [CrossRef]
- McMahon, J.; Plaku, E. Autonomous Data Collection With Dynamic Goals and Communication Constraints for Marine Vehicles. IEEE Trans. Autom. Sci. Eng. 2023, 20, 1607–1620. [Google Scholar] [CrossRef]
- Sotelo-Torres, F.; Alvarez, L.V.; Roberts, R.C. An Unmanned Surface Vehicle (USV): Development of an Autonomous Boat with a Sensor Integration System for Bathymetric Surveys. Sensors 2023, 23, 4420. [Google Scholar] [CrossRef]
- Li, W.; Ge, Y.; Guan, Z.; Ye, G. Synchronized Motion-Based UAV-USV Cooperative Autonomous Landing. J. Mar. Sci. Eng. 2022, 10, 1214. [Google Scholar] [CrossRef]
- Wu, G.X.; Li, D.B.; Ding, H.; Shi, D.D.; Han, B. An overview of developments and challenges for unmanned surface vehicle autonomous berthing. Complex Intell. Syst. 2023, 9, 1–23. [Google Scholar] [CrossRef]
- Barrera, C.; Padron, I.; Luis, F.S.; Llinas, O.; Marichal, G.N. Trends and Challenges in Unmanned Surface Vehicles (USV): From Survey to Shipping. TransNav 2021, 15, 135–142. [Google Scholar] [CrossRef]
- Huang, Y.M.; Chen, L.Y.; Chen, P.F.; Negenborn, R.R.; van Gelder, P. Ship collision avoidance methods: State-of-the-art. Saf. Sci. 2020, 121, 451–473. [Google Scholar] [CrossRef]
- Chen, L.Y.; Fu, Y.H.; Chen, P.F.; Mou, J.M. Survey on Cooperative Collision Avoidance Research for Ships. IEEE Trans. Transp. Electrif. 2023, 9, 3012–3025. [Google Scholar] [CrossRef]
- Vagale, A.; Oucheikh, R.; Bye, R.T.; Osen, O.L.; Fossen, T.I. Path planning and collision avoidance for autonomous surface vehicles I: A review. J. Mar. Sci. Technol. 2021, 26, 1292–1306. [Google Scholar] [CrossRef]
- Gu, N.; Wang, D.; Peng, Z.H.; Wang, J.; Han, Q.L. Advances in Line-of-Sight Guidance for Path Following of Autonomous Marine Vehicles: An Overview. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 12–28. [Google Scholar] [CrossRef]
- Xing, B.; Yu, M.; Liu, Z.; Tan, Y.; Sun, Y.; Li, B. A Review of Path Planning for Unmanned Surface Vehicles. J. Mar. Sci. Eng. 2023, 11, 1556. [Google Scholar] [CrossRef]
- Steinberg, M. Intelligent autonomy for unmanned naval vehicles. In Proceedings of the Conference on Unmanned Systems Technology VIII, Kissimmee, FL, USA, 17–20 April 2006. [Google Scholar]
- Farinha, A.; di Tria, J.; Zufferey, R.; Armanini, S.F.; Kovac, M. Challenges in Control and Autonomy of Unmanned Aerial-Aquatic Vehicles. In Proceedings of the 29th Mediterranean Conference on Control and Automation (MED), Puglia, Italy, 22–25 June 2021; pp. 937–942. [Google Scholar]
- Gu, J.; Hu, M.; Gu, Z.; Yu, J.; Ji, Y.; Li, L.; Hu, C.; Wei, G.; Huo, J. Bibliometric Analysis Reveals a 20-Year Research Trend for Chemotherapy-Induced Peripheral Neuropathy. Front. Neurol. 2022, 12, 793663. [Google Scholar] [CrossRef]
- Li, H.; Jiang, H.D.; Yang, B.; Liao, H. An analysis of research hotspots and modeling techniques on carbon capture and storage. Sci. Total Environ. 2019, 687, 687–701. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.; Wrobel, K.; Montewka, J.; Goerlandt, F. A bibliometric analysis and systematic review of shipboard Decision Support Systems for accident prevention. Saf. Sci. 2020, 128, 104717. [Google Scholar] [CrossRef]
- Li, J.; Goerlandt, F.; Li, K.W. Slip and Fall Incidents at Work: A Visual Analytics Analysis of the Research Domain. Int. J. Environ. Res. Public Health 2019, 16, 4972. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Xue, M.; Zhang, X. Characteristics and Trends of Ocean Remote Sensing Research from 1990 to 2020: A Bibliometric Network Analysis and Its Implications. J. Mar. Sci. Eng. 2022, 10, 373. [Google Scholar] [CrossRef]
- Bertocci, F.; Mannino, G. Can Agri-Food Waste Be a Sustainable Alternative in Aquaculture? A Bibliometric and Meta-Analytic Study on Growth Performance, Innate Immune System, and Antioxidant Defenses. Foods 2022, 11, 1861. [Google Scholar] [CrossRef]
- Gizzi, F.T.; Potenza, M.R. The Scientific Landscape of November 23rd, 1980 Irpinia-Basilicata Earthquake: Taking Stock of (Almost) 40 Years of Studies. Geosciences 2020, 10, 482. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. VOS: A new method for visualizing similarities between objects. In Proceedings of the 30th Annual Conference of the German-Classification-Society, Berlin, Germany, 8–10 March 2006; pp. 299–305. [Google Scholar]
- Li, J.; Goerlandt, F.; Reniers, G. An overview of scientometric mapping for the safety science community: Methods, tools, and framework. Saf. Sci. 2021, 134, 105093. [Google Scholar] [CrossRef]
- Jin, R.; Zou, P.X.W.; Piroozfar, P.; Wood, H.; Yang, Y.; Yan, L.; Han, Y. A science mapping approach based review of construction safety research. Saf. Sci. 2019, 113, 285–297. [Google Scholar] [CrossRef]
- Merigó, J.M.; Miranda, J.; Modak, N.M.; Boustras, G.; de la Sotta, C. Forty years of Safety Science: A bibliometric overview. Saf. Sci. 2019, 115, 66–88. [Google Scholar] [CrossRef]
- Amin, M.T.; Khan, F.; Amyotte, P. A bibliometric review of process safety and risk analysis. Process Saf. Environ. Prot. 2019, 126, 366–381. [Google Scholar] [CrossRef]
- Veiga-del-Bano, J.M.; Camara, M.A.; Oliva, J.; Hernandez-Cegarra, A.T.; Andreo-Martinez, P.; Motas, M. Mapping of emerging contaminants in coastal waters research: A bibliometric analysis of research output during 1986–2022. Mar. Pollut. Bull. 2023, 194, 115366. [Google Scholar] [CrossRef]
- Demirci, S.M.E.; Elcicek, H. Scientific awareness of marine accidents in Europe: A bibliometric and correspondence analysis. Accid. Anal. Prev. 2023, 190, 107166. [Google Scholar] [CrossRef]
- Duan, P.; Cao, Y.; Wang, Y.; Yin, P. Bibliometric Analysis of Coastal and Marine Tourism Research from 1990 to 2020. J. Coast. Res. 2022, 38, 229–240. [Google Scholar] [CrossRef]
- Corsi, S.; Ruggeri, G.; Zamboni, A.; Bhakti, P.; Espen, L.; Ferrante, A.; Noseda, M.; Varanini, Z.; Scarafoni, A. A Bibliometric Analysis of the Scientific Literature on Biostimulants. Agronomy 2022, 12, 1257. [Google Scholar] [CrossRef]
- Di Ciaccio, F.; Troisi, S. Monitoring marine environments with Autonomous Underwater Vehicles: A bibliometric analysis. Results Eng. 2021, 9, 100205. [Google Scholar] [CrossRef]
- Bettencourt, S.; Costa, S.; Caeiro, S. Marine litter: A review of educative interventions. Mar. Pollut. Bull. 2021, 168, 112446. [Google Scholar] [CrossRef]
- Vasconcelos, R.N.; Cunha Lima, A.T.; Lentini, C.A.D.; Miranda, G.V.; Mendonca, L.F.; Silva, M.A.; Cambui, E.C.B.; Lopes, J.M.; Porsani, M.J. Oil Spill Detection and Mapping: A 50-Year Bibliometric Analysis. Remote Sens. 2020, 12, 3647. [Google Scholar] [CrossRef]
- Araujo, R.J.; Shideler, G. Celebrating 60 years of publication of the Bulletin of Marine Science: A bibliometric history (1951–2010). Bull. Mar. Sci. 2011, 87, 707–726. [Google Scholar] [CrossRef]
- Costas, R.; Bordons, M. Development of a thematic filter for the bibliometric delimitation on interdisciplinary area: The case of Marine Science. Rev. Esp. De Doc. Cient. 2008, 31, 261–272. [Google Scholar] [CrossRef]
- Erftemeijer, P.L.A.; Semesi, A.K.; Ochieng, C.A. Challenges for marine botanical research in East Africa: Results of a bibliometric survey. S. Afr. J. Bot. 2001, 67, 411–419. [Google Scholar] [CrossRef]
- Li, J.; Hale, A. Identification of, and knowledge communication among core safety science journals. Saf. Sci. 2015, 74, 70–78. [Google Scholar] [CrossRef]
- Oliveira, P.; Pascoal, A. On the design of multirate complementary filters for autonomous marine vehicle navigation. In Proceedings of the 1st IFAC Workshop on Guidance and Control of Underwater Vehicles, Newport, UK, 9–11 April 2003; pp. 151–156. [Google Scholar]
- Papadopoulos, G.; Fallon, M.F.; Leonard, J.J.; Patrikalakis, N.M. Cooperative Localization of Marine Vehicles using Nonlinear State Estimation. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 4874–4879. [Google Scholar]
- Xie, S.R.; Wu, P.; Liu, H.L.; Yan, P.; Li, X.M.; Luo, J.; Li, Q.M. A novel method of unmanned surface vehicle autonomous cruise. Ind. Robot 2016, 43, 121–130. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, G.; Reniers, G.; Goerlandt, F. A bibliometric analysis of process safety research in China: Understanding safety research progress as a basis for making China’s chemical industry more sustainable. J. Clean. Prod. 2020, 263, 121433. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Shahjalal, M.; Ahmed, S.; Jang, Y.M. 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions. IEEE Open J. Commun. Soc. 2020, 1, 957–975. [Google Scholar] [CrossRef]
- Hover, F.S.; Eustice, R.M.; Kim, A.; Englot, B.; Johannsson, H.; Kaess, M.; Leonard, J.J. Advanced perception, navigation and planning for autonomous in-water ship hull inspection. Int. J. Robot. Res. 2012, 31, 1445–1464. [Google Scholar] [CrossRef]
- Jahanbakht, M.; Xiang, W.; Hanzo, L.; Azghadi, M.R. Internet of Underwater Things and Big Marine Data Analytics-A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2021, 23, 904–956. [Google Scholar] [CrossRef]
- Song, R.; Liu, Y.C.; Bucknall, R. Smoothed A* algorithm for practical unmanned surface vehicle path planning. Appl. Ocean Res. 2019, 83, 9–20. [Google Scholar] [CrossRef]
- Lazarowska, A. Ship’s Trajectory Planning for Collision Avoidance at Sea Based on Ant Colony Optimisation. J. Navig. 2015, 68, 291–307. [Google Scholar] [CrossRef]
- Tsou, M.C.; Hsueh, C.K. The study of ship collision avoidance route planning by ant colony algorithm. J. Mar. Sci. Technol.-Taiwan 2010, 18, 746–756. [Google Scholar] [CrossRef]
- Kahveci, N.E.; Ioannou, P.A. Adaptive steering control for uncertain ship dynamics and stability analysis. Automatica 2013, 49, 685–697. [Google Scholar] [CrossRef]
- Kristan, M.; Kenk, V.S.; Kovacic, S.; Pers, J. Fast Image-Based Obstacle Detection From Unmanned Surface Vehicles. IEEE Trans. Cybern. 2016, 46, 641–654. [Google Scholar] [CrossRef]
- Kim, H.; Kim, D.; Shin, J.U.; Kim, H.; Myung, H. Angular rate-constrained path planning algorithm for unmanned surface vehicles. Ocean Eng. 2014, 84, 37–44. [Google Scholar] [CrossRef]
- Small, H. Co-citation in scientific literature—New measure of relationship between 2 documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control, 1. Aufl.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Naeem, W.; Irwin, G.W.; Yang, A. COLREGs-based collision avoidance strategies for unmanned surface vehicles. Mechatronics 2012, 22, 669–678. [Google Scholar] [CrossRef]
- Huntsberger, T.; Aghazarian, H.; Howard, A.; Trotz, D.C. Stereo Vision-Based Navigation for Autonomous Surface Vessels. J. Field Robot. 2011, 28, 3–18. [Google Scholar] [CrossRef]
- Mao, G.; Huang, N.; Chen, L.; Wang, H. Research on biomass energy and environment from the past to the future: A bibliometric analysis. Sci. Total Environ. 2018, 635, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Han, Q. Improved reinforcement learning for collision-free local path planning of dynamic obstacle. Ocean Eng. 2023, 283, 115040. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, S.; Pan, Y.; Chang, X.; Xu, G. The Application Status and Development Trend of Artificial Intelligence in Ship Fields of China. In International Conference on Marine Equipment & Technology and Sustainable Development; Springer: Singapore, 2023; pp. 1132–1149. [Google Scholar]
- Wang, K.; Wang, J.; Huang, L.; Yuan, Y.; Wu, G.; Xing, H.; Wang, Z.; Wang, Z.; Jiang, X. A comprehensive review on the prediction of ship energy consumption and pollution gas emissions. Ocean Eng. 2022, 266, 112826. [Google Scholar] [CrossRef]
- Runnan, L.; Guangze, L.; Pengfei, H.; Xingzhi, L. Research on artificial intelligence safety prediction and intervention model based on ship driving habits. In MATEC Web Conferences; EDP Sciences: Les Ulis, France, 2022; Volume 355, pp. 03032–03038. [Google Scholar] [CrossRef]
- Heubl, B. Fishing In Murky Waters Investigation-Sea Fish. Eng. Technol. 2021, 16, 48–50. [Google Scholar] [CrossRef]
- Alexiou, K.; Pariotis, E.G.; Zannis, T.C.; Leligou, H.C. Prediction of a Ship’s Operational Parameters Using Artificial Intelligence Techniques. J. Mar. Sci. Eng. 2021, 9, 681. [Google Scholar] [CrossRef]
- Munim, Z.H.; Dushenko, M.; Jimenez, V.J.; Shakil, M.H.; Imset, M. Big data and artificial intelligence in the maritime industry: A bibliometric review and future research directions. Marit. Policy Manag. 2020, 47, 577–597. [Google Scholar] [CrossRef]
- Mei, J.; Weigang, Z. Information Exchange Method of Ship Automatic Control Under Artificial Intelligence. In Innovative Computing: IC 2020; Springer: Singapore, 2020; pp. 1819–1826. [Google Scholar]
- Yun, Z. The application of artificial intelligence in logistics and express delivery. J. Phys. Conf. Ser. 2019, 1325, 012085. [Google Scholar] [CrossRef]
- Bekiros, S.; Loukeris, N.; Matsatsinis, N.; Bezzina, F. Customer Satisfaction Prediction in the Shipping Industry with Hybrid Meta-heuristic Approaches. Comput. Econ. 2019, 54, 647–667. [Google Scholar] [CrossRef]
- Xue, J.; Wu, C.; Chen, Z.; Van Gelder, P.H.A.J.M.; Yan, X. Modeling human-like decision-making for inbound smart ships based on fuzzy decision trees. Expert Syst. Appl. 2019, 115, 172–188. [Google Scholar] [CrossRef]
- Le Roux, N.; Bengio, Y. Representational power of restricted Boltzmann machines and deep belief networks. Neural Comput. 2008, 20, 1631–1649. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.C.; Xu, P.F.; Cheng, H.X.; Zhou, X.G.; Zhu, D.Q. Hybrid Path Planning for Unmanned Surface Vehicles in Inland Rivers Based on Collision Avoidance Regulations. Sensors 2023, 23, 8326. [Google Scholar] [CrossRef]
- Atasoy, S.; Karagoz, O.K.; Ankarali, M.M. Trajectory-Free Motion Planning of an Unmanned Surface Vehicle Based on MPC and Sparse Neighborhood Graph. IEEE Access 2023, 11, 47690–47700. [Google Scholar] [CrossRef]
- Ji, Z.G.; Gan, H.B.; Liu, B. A Deep Learning-Based Fault Warning Model for Exhaust Temperature Prediction and Fault Warning of Marine Diesel Engine. J. Mar. Sci. Eng. 2023, 11, 1509. [Google Scholar] [CrossRef]
- Olena, J. Software Standardization and Infrastructure Development Efforts in Support of Unmanned Maritime Vehicle Autonomy. Nav. Eng. J. 2023, 135, 41–45. [Google Scholar]
- Yu, Y.G.; Ahn, Y.J.; Lee, C.H. Using FRAM for Causal Analysis of Marine Risks in the Motor Vessel Milano Bridge Accident: Identifying Potential Solutions. Appl. Sci. 2023, 13, 8764. [Google Scholar] [CrossRef]
- Wibisono, A.; Piran, M.J.; Song, H.-K.; Lee, B.M. A Survey on Unmanned Underwater Vehicles: Challenges, Enabling Technologies, and Future Research Directions. Sensors 2023, 23, 7321. [Google Scholar] [CrossRef]
- Aguzzi, J.; Flögel, S.; Marini, S.; Thomsen, L.; Albiez, J.; Weiss, P.; Picardi, G.; Calisti, M.; Stefanni, S.; Mirimin, L.; et al. Developing technological synergies between deep-sea and space research. Elementa-Sci. Anthrop. 2022, 10, 19. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, T.; Xue, Z.F.; Zhu, Z.Z.; Xu, J.H.; Liu, Y. A Novel Unmanned Surface Vehicle with 2D-3D Fused Perception and Obstacle Avoidance Module. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (IEEE ROBIO), Sanya, China, 27–31 December 2021; pp. 1804–1809. [Google Scholar]
- Cho, H.J.; Jeong, S.K.; Ji, D.H.; Tran, N.H.; Vu, M.T.; Choi, H.S. Study on Control System of Integrated Unmanned Surface Vehicle and Underwater Vehicle. Sensors 2020, 20, 2633. [Google Scholar] [CrossRef]
- Zhou, L.L.; Ye, X.M.; Huang, Z.H.; Xie, P.Z.; Song, Z.G.; Tong, Y.J. An Improved Genetic Algorithm for the Recovery System of USVs Based on Stern Ramp Considering the Influence of Currents. Sensors 2023, 23, 8075. [Google Scholar] [CrossRef]
- Overaas, H.; Halvorsen, H.S.; Landstad, O.; Smines, V.; Johansen, T.A. Dynamic Positioning Using Model Predictive Control With Short-Term Wave Prediction. IEEE J. Ocean. Eng. 2023, 13, 1065–1077. [Google Scholar] [CrossRef]
- Wang, N.; Gao, Y.; Weng, Y.; Zheng, Z.; Zhao, H. Implementation of an integrated navigation, guidance and control system for an unmanned surface vehicle. In Proceedings of the 2018 Tenth International Conference on Advanced Computational Intelligence, Xiamen, China, 29–31 March 2018; pp. 717–722. [Google Scholar]
- Veitch, E.; Alsos, O.A. A systematic review of human-AI interaction in autonomous ship system. Saf. Sci. 2022, 152, 23. [Google Scholar] [CrossRef]
- Xiong, J.; Li, J.N.; Du, P. A novel non-fragile H∞ fault-tolerant course-keeping control for uncertain unmanned surface vehicles with rudder failures. Ocean Eng. 2023, 280, 11. [Google Scholar] [CrossRef]
- Tong, H.Y. An adaptive error constraint line-of-sight guidance and finite-time backstepping control for unmanned surface vehicles. Ocean Eng. 2023, 285, 10. [Google Scholar] [CrossRef]
- Dagdilelis, D.; Blanke, M.; Andersen, R.H.; Galeazzi, R. Cyber-resilience for marine navigation by information fusion and change detection. Ocean Eng. 2022, 266, 14. [Google Scholar] [CrossRef]
- Liu, Y.C.; Bucknall, R. The angle guidance path planning algorithms for unmanned surface vehicle formations by using the fast marching method. Appl. Ocean Res. 2016, 59, 327–344. [Google Scholar] [CrossRef]
- Jin, K.; Wang, J.; Wang, H.; Liang, X.; Guo, Y.; Wang, M.; Yi, H. Soft formation control for unmanned surface vehicles under environmental disturbance using multi-task reinforcement learning. Ocean Eng. 2022, 260, 112035. [Google Scholar] [CrossRef]
- Suryanarayanan, S.; Cartes, D.; Sidley, R. Energy Scavenging Modes from Renewable Sources for Unmanned Surface Vehicles: A Survey of Concepts; SPIE: Bellingham, WA, USA, 2006; p. 62302K–62302K–7. [Google Scholar]
- Khare, N.; Singh, P. Modeling and optimization of a hybrid power system for an unmanned surface vehicle. J. Power Sources 2012, 198, 368–377. [Google Scholar] [CrossRef]
- Anonymous. Autonaut uncrewed surface vehicle selected by plymouth marine laboratory. Ocean News Technol. 2021, 37, 22. [Google Scholar]
- Mostafa, M.Z.; Khater, H.A.; Rizk, M.R.; Bahasan, A.M. A novel GPS/RAVO/MEMS-INS smartphone-sensor-integrated method to enhance USV navigation systems during GPS outages. MST 2019, 30, 95103. [Google Scholar] [CrossRef]
- Si, K.; Wei, J.; He, X.; Liu, D.; Li, P. Integrated Navigation Algorithm for USV with Insufficient Satellites. In Proceedings of the 2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC), Guiyang, China, 23–25 July 2021; pp. 743–748. [Google Scholar]
- Lv, Z.; Zhang, J.; Jin, J.; Li, Q.; Liu, L.; Zhang, P.; Gao, B. Underwater Acoustic Communication Quality Evaluation Model Based on USV. Shock. Vib. 2018, 2018, 1–7. [Google Scholar] [CrossRef]
- Dong, K.; Sun, R.; Dong, X. CO2 emissions, natural gas and renewables, economic growth: Assessing the evidence from China. Sci. Total Environ. 2018, 640–641, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Alboody, A.; Vandenbroucke, N.; Porebski, A.; Sawan, R.; Viudes, F.; Doyen, P.; Amara, R. A New Remote Hyperspectral Imaging System Embedded on an Unmanned Aquatic Drone for the Detection and Identification of Floating Plastic Litter Using Machine Learning. Remote Sens. 2023, 15, 3455. [Google Scholar] [CrossRef]
- Balanescu, M.; Suciu, G.; Badicu, A.; Birdici, A.; Pasat, A.; Poenaru, C.; Zatreanu, I. Study on Unmanned Surface Vehicles used for Environmental Monitoring in Fragile Ecosystems. In Proceedings of the IEEE 26th International Symposium for Design and Technology in Electronic Packaging (SIITME), Pitesti, Romania, 21–24 October 2020; pp. 94–97. [Google Scholar]
- Barrera, C.; Maarouf, M.; Campuzano, F.; Llinas, O.; Marichal, G.N. A Comparison of Intelligent Models for Collision Avoidance Path Planning on Environmentally Propelled Unmanned Surface Vehicles. J. Mar. Sci. Eng. 2023, 11, 692. [Google Scholar] [CrossRef]
- Jo, W.; Hoashi, Y.; Aguilar, L.L.P.; Postigo-Malaga, M.; Garcia-Bravo, J.M.; Min, B.C. A low-cost and small USV platform for water quality monitoring. HardwareX 2019, 6, 13. [Google Scholar] [CrossRef]
- Siyang, S.; Kerdcharoen, T. Development of Unmanned Surface Vehicle for Smart Water Quality Inspector. In Proceedings of the 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Chiang Mai, Thailand, 28 June–1 July 2016. [Google Scholar]
- Cross, J.N.; Mordy, C.W.; Tabisola, H.M.; Meinig, C.; Cokelet, E.D.; Stabeno, P.J. Innovative Technology Development for Arctic Exploration. In Proceedings of the OCEANS MTS, Washington, DC, USA, 19–22 October 2015. [Google Scholar]
- Daniel, T.; Manley, J.; Trenaman, N. The Wave Glider: Enabling a new approach to persistent ocean observation and research. Ocean Dyn. 2011, 61, 1509–1520. [Google Scholar] [CrossRef]
- Gong, Y.H.; Zhang, S.J.; Luo, M.; Ma, S.A. A mutation operator self-adaptive differential evolution particle swarm optimization algorithm for USV navigation. Front. Neurorobotics 2022, 16, 11. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.H.; Ji, M.J.; Zhang, W.D. Research on a new two-level scheduling approach for unmanned surface vehicles transportation containers in automated terminals. Comput. Ind. Eng. 2023, 175, 16. [Google Scholar] [CrossRef]
- Cai, J.H.; Du, S.; Lu, C.D.; Xiao, B.; Wu, M. Obstacle Detection of Unmanned Surface Vessel based on Faster RCNN. In Proceedings of the IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS), Wuhan, China, 8–11 May 2023. [Google Scholar]
- Peng, Y.; Li, Y. Autonomous Trajectory Tracking Integrated Control of Unmanned Surface Vessel. J. Mar. Sci. Eng. 2023, 11, 568. [Google Scholar] [CrossRef]
- Liu, W.; Qiu, K.; Yang, X.F.; Wang, R.H.; Xiang, Z.R.; Wang, Y.; Xu, W.X. COLREGS-based collision avoidance algorithm for unmanned surface vehicles using modified artificial potential fields. Phys. Commun. 2023, 57, 13. [Google Scholar] [CrossRef]
- Wang, C.B.; Zhang, X.Y.; Yang, Z.L.; Bashir, M.; Lee, K. Collision avoidance for autonomous ship using deep reinforcement learning and prior-knowledge-based approximate representation. Front. Mar. Sci. 2023, 9, 14. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Zhang, D.; Yao, H.J.; Zhang, K. A probabilistic model of human error assessment for autonomous cargo ships focusing on human-autonomy collaboration. Saf. Sci. 2020, 130, 12. [Google Scholar] [CrossRef]
- Liang, Z.Q.; Xiao, G.; Hu, J.Q.; Wang, J.S.; Ding, C.S. MotionTrack: Rethinking the motion cue for multiple object tracking in USV videos. Visual Comput. 2023, 39, 1–13. [Google Scholar] [CrossRef]
- Kouriampalis, N.; Pawling, R.J.; Andrews, D.J. Modelling the operational effects of deploying and retrieving a fleet of uninhabited vehicles on the design of dedicated naval surface ships. Ocean Eng. 2021, 219, 19. [Google Scholar] [CrossRef]
Rank | Author | Institution | TP | TC | AC | H-Index |
---|---|---|---|---|---|---|
1 | Yuanchang Liu | University College London | 13 | 338 | 26.00 | 7 |
2 | Kristan Matej | University of Ljubljana | 9 | 231 | 25.67 | 6 |
3 | Bucknall Richard | University College London National Engineering Research Center for Water Transport Safety | 8 | 251 | 31.38 | 5 |
4 | Yun Li | Shanghai Maritime University | 8 | 62 | 7.75 | 5 |
5 | Yan Peng | Shanghai University | 8 | 31 | 3.88 | 3 |
6 | Guofeng Wang | Dalian Maritime University | 8 | 101 | 12.63 | 4 |
7 | Dongdong Mu | Dalian Maritime University | 7 | 101 | 14.43 | 4 |
8 | Pers Janez | University of Ljubljana | 7 | 209 | 29.86 | 5 |
9 | Yunsheng Fan | Dalian Maritime University | 6 | 82 | 13.67 | 3 |
10 | Yuqing He | Chinese Academy of Sciences | 6 | 40 | 6.67 | 3 |
Rank | Institution | Country | TP | TC | AC | TLS | APY |
---|---|---|---|---|---|---|---|
1 | Dalian Maritime University | China | 31 | 428 | 13.81 | 18 | 2020.2 |
2 | Harbin Engineering University | China | 21 | 160 | 7.62 | 17 | 2019.0 |
3 | Chinese Academy of Science | China | 15 | 91 | 5.69 | 14 | 2015.8 |
4 | University College London | England | 13 | 338 | 26.00 | 13 | 2019.2 |
5 | Shenyang Institute of Autonomous CAS | China | 12 | 57 | 4.75 | 12 | 2015.7 |
6 | Wuhan University of technology | China | 12 | 266 | 22.17 | 17 | 2019.4 |
7 | University of Ljubljana | Slovenia | 7 | 101 | 14.43 | 3 | 2018.7 |
8 | Norwegian University of Science Technology NTNU | Norway | 9 | 141 | 15.67 | 11 | 2020.2 |
9 | Gdynia Maritime University | Poland | 8 | 262 | 32.75 | 4 | 2014.1 |
10 | Jiangsu University of science technology | China | 8 | 5 | 0.63 | 8 | 2019.2 |
11 | Korea Maritime Ocean University | Korea | 8 | 100 | 12.50 | 14 | 2021.1 |
12 | Shanghai University | China | 8 | 53 | 6.63 | 11 | 2019.7 |
13 | National Oceanic Atmospheric Admin NOAA USA | USA | 7 | 48 | 6.86 | 12 | 2016.3 |
14 | Shanghai Maritime University | China | 7 | 29 | 4.14 | 9 | 2021.7 |
15 | Harbin Institute of Technology | China | 6 | 41 | 6.83 | 4 | 2019.8 |
16 | Shanghai Jiaotong University | China | 5 | 27 | 5.40 | 3 | 2021.8 |
Rank | Country | TC | AC |
---|---|---|---|
1 | China | 1655 | 8.40 |
2 | USA | 1315 | 19.39 |
3 | South Korea | 702 | 35.10 |
4 | England | 685 | 20.83 |
5 | Bangladesh | 413 | 413.00 |
6 | Poland | 332 | 17.47 |
7 | Slovenia | 231 | 23.10 |
8 | Australia | 223 | 27.88 |
9 | Finland | 157 | 31.40 |
10 | Norway | 146 | 12.17 |
Article | Title | TC | ACY |
---|---|---|---|
Chowdhury et al., 2020 [46] | 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions | 415 | 103.75 |
Lyu et al., 2019 [6] | COLREGS-Constrained Real-time Path Planning for Autonomous Ships Using Modified Artificial Potential Fields | 164 | 32.80 |
Hover et al., 2012 [47] | Advanced perception, navigation and planning for autonomous in-water ship hull inspection | 157 | 13.08 |
Jahanbakht et al., 2021 [48] | Internet of Underwater Things and Big Marine Data Analytics-A Comprehensive Survey | 129 | 43.00 |
Song et al., 2019 [49] | Smoothed A* algorithm for practical USV path planning | 125 | 25.00 |
Lazarowska, A, 2015 [50] | Ship’s Trajectory Planning for Collision Avoidance at Sea Based on Ant Colony Optimisation | 116 | 12.89 |
Tsou et al., 2010 [51] | The Study of Ship Collision Avoidance Route Planning by Ant Colony Algorithm | 116 | 8.29 |
Kahveci et al., 2013 [52] | Adaptive steering control for uncertain ship dynamics and stability analysis | 99 | 9.00 |
Kristan et al., 2016 [53] | Fast Image-Based Obstacle Detection From USV | 88 | 11.00 |
Kim et al., 2014 [54] | Angular rate-constrained path planning algorithm for USV | 88 | 8.80 |
Rank | Journal | TP | TC | AC | IF |
---|---|---|---|---|---|
1 | Ocean Engineering | 28 | 344 | 12.29 | 5.0 |
2 | Journal of Marine Science and Engineering | 16 | 89 | 5.56 | 2.9 |
3 | Sensors | 15 | 250 | 16.67 | 3.9 |
4 | IFAC-PapersOnLine | 14 | 80 | 5.71 | / |
5 | Applied Sciences-Basel | 9 | 100 | 11.11 | 2.7 |
6 | IEEE Access | 8 | 104 | 13.00 | 3.9 |
Rank | Country | TP | TC | AC | H-Index |
---|---|---|---|---|---|
1 | China | 172 | 1455 | 8.46 | 19 |
2 | USA | 68 | 1320 | 19.41 | 18 |
3 | South Korea | 20 | 704 | 35.2 | 8 |
4 | England | 29 | 605 | 20.86 | 10 |
5 | Poland | 19 | 334 | 17.58 | 8 |
Direction | New Trends | Effect |
---|---|---|
Enhanced Intelligence and Autonomy | Make autonomous decisions and execute tasks like autonomous cruising and autonomous maintenance | Alleviate the burden on operators, enhance efficiency and reduce costs |
Highly Integrated Sensor Systems and Multi-Modal Task Execution | Marine conservation, military operations, underwater exploration, subsea operations, cargo transportation, search and rescue | Necessitate advanced adaptive control systems and task-planning algorithms |
Extended Endurance and Resilience | More efficient battery technology and the integration of renewable energy sources | Allow them to carry out longer-duration missions |
Satellite Communication and Interconnectivity | Real-time communication and collaborative operations with other USVs, vessels and terrestrial stations; 6G | A recipe for the ground-breaking progress for USV |
Eco-Friendly and Sustainable Practices | Emissions reduction the adoption of renewable energy sources, mitigating marine pollution; new energy converter Intelligent feeding | More green to the world Cut down the cost |
Safety and Defense | Enhanced Safety Anti-Jamming Communication Automatic Missile Defense Systems Surveillance and Reconnaissance Autonomous Swarming Cost-Effective Alternatives | Protect the lives of operators, countries and the sea |
Eco-Friendly and Sustainable Practices | Emissions reduction The adoption of renewable energy sources, mitigating marine pollution new energy converter Intelligent feeding | More green to the world Cut down the cost |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.; Xue, J.; Hu, H. A Bibliometric Analysis and Overall Review of the New Technology and Development of Unmanned Surface Vessels. J. Mar. Sci. Eng. 2024, 12, 146. https://doi.org/10.3390/jmse12010146
Yang P, Xue J, Hu H. A Bibliometric Analysis and Overall Review of the New Technology and Development of Unmanned Surface Vessels. Journal of Marine Science and Engineering. 2024; 12(1):146. https://doi.org/10.3390/jmse12010146
Chicago/Turabian StyleYang, Peijie, Jie Xue, and Hao Hu. 2024. "A Bibliometric Analysis and Overall Review of the New Technology and Development of Unmanned Surface Vessels" Journal of Marine Science and Engineering 12, no. 1: 146. https://doi.org/10.3390/jmse12010146